DOI QR코드

DOI QR Code

SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

  • Baek, In-Soo (Department of Mathematics Busan University of Foreign Studies)
  • 투고 : 2016.03.28
  • 심사 : 2017.04.05
  • 발행 : 2017.07.31

초록

We give some sufficient conditions for the null and infinite derivatives of the $Riesz-N{\acute{a}}gy-Tak{\acute{a}}cs$ (RNT) singular function. Using these conditions, we show that the Hausdorff dimension of the set of the infinite derivative points of the RNT singular function coincides with its packing dimension which is positive and less than 1 while the Hausdorff dimension of the non-differentiability set of the RNT singular function does not coincide with its packing dimension 1.

키워드

참고문헌

  1. I. S. Baek, A note on the moments of the Riesz-Nagy-Takacs distribution, J. Math. Anal. Appl. 348 (2008), no. 1, 165-168. https://doi.org/10.1016/j.jmaa.2008.07.014
  2. I. S. Baek, Derivative of the Riesz-Nagy-Takacs function, Bull. Korean Math. Soc. 48 (2011), no. 2, 261-275. https://doi.org/10.4134/BKMS.2011.48.2.261
  3. I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287. https://doi.org/10.1016/j.aim.2007.02.003
  4. R. Darst, The Hausdorff dimension of the nondifferentiability set of the Cantor function is $(\frac{1n2}{1n3})^2$, Proc. Amer. Math. Soc. 119 (1993), no. 1, 105-108. https://doi.org/10.1090/S0002-9939-1993-1143222-3
  5. R. Darst, Hausdorff dimension of sets of non-differentiability points of Cantor functions, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 185-191. https://doi.org/10.1017/S0305004100073011
  6. F. M. Dekking and W. Li, How smooth is a devil's staircase?, Fractals 11 (2003), no. 1, 101-107. https://doi.org/10.1142/S0218348X0300132X
  7. J. Eidswick. A characterization of the nondifferentiability set of the Cantor function, Proc. Amer. Math. Soc. 42 (1974), 214-217. https://doi.org/10.1090/S0002-9939-1974-0327992-8
  8. K. J. Falconer, Fractal Geometry, John Wiley and Sons, 1990.
  9. K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997.
  10. L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. (2) 67 (2003), no. 1, 103-122. https://doi.org/10.1112/S0024610702003630
  11. J. Paradis, P. Viader, and L. Bibiloni, Riesz-Nagy singular functions revisited, J. Math. Anal. Appl. 329 (2007), no. 1, 592-602. https://doi.org/10.1016/j.jmaa.2006.06.082
  12. X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133-145. https://doi.org/10.1017/S0305004100064690
  13. Y. Yao, Y. Zhang, and W. Li, Dimensions of non-differentiability points of Cantor functions, Studia Math. 195 (2009), no. 2, 113-125. https://doi.org/10.4064/sm195-2-2