DOI QR코드

DOI QR Code

A RANDOM DISPERSION SCHRÖDINGER EQUATION WITH NONLINEAR TIME-DEPENDENT LOSS/GAIN

  • Jian, Hui (School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology) ;
  • Liu, Bin (School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modelling and Scientific Computing Huazhong University of Science and Technology)
  • Received : 2016.04.16
  • Accepted : 2017.04.05
  • Published : 2017.07.31

Abstract

In this paper, the limit behavior of solution for the $Schr{\ddot{o}}dinger$ equation with random dispersion and time-dependent nonlinear loss/gain: $idu+{\frac{1}{{\varepsilon}}}m({\frac{t}{{\varepsilon}^2}}){\partial}_{xx}udt+{\mid}u{\mid}^{2{\sigma}}udt+i{\varepsilon}a(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$ is studied. Combining stochastic Strichartz-type estimates with $L^2$ norm estimates, we first derive the global existence for $L^2$ and $H^1$ solution of the stochastic $Schr{\ddot{o}}dinger$ equation with white noise dispersion and time-dependent loss/gain: $idu+{\Delta}u{\circ}d{\beta}+{\mid}u{\mid}^{2{\sigma}}udt+ia(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$. Secondly, we prove rigorously the global diffusion-approximation limit of the solution for the former as ${\varepsilon}{\rightarrow}0$ in one-dimensional $L^2$ subcritical and critical cases.

Keywords

References

  1. F. Kh. Abdullaev, J. C. Bronski, and G. Papanicolaou, Soliton perturbations and the random Kepler problem, Phys. D 135 (2000), no. 3-4, 369-386. https://doi.org/10.1016/S0167-2789(99)00118-9
  2. F. Kh. Abdullaev and J. Garnier, Optical solitons in random media, in: Progress in Optics 48 (2005), 35-106.
  3. G. P. Agrawal, Nonlinear Fiber Optics, Academic press, San Diego, 2001.
  4. G. P. Agrawal, Application of Nonlinear Fiber Optics, Academic press, San Diego, 2001.
  5. V. Barbu, M. Rockner, and D. Zhang, Stochastic nonlinear Schrodinger equations with linear multiplicative noise: rescaling approach, J. Nonlinear Sci. 24 (2014), no. 3, 383-409. https://doi.org/10.1007/s00332-014-9193-x
  6. P. Antonelli, R. Carles, and C. Sparber, On nonlinear Schrodinger-type equations with nonlinear damping, Int. Math. Res. Not. 2015 (2015), no. 3, 740-762. https://doi.org/10.1093/imrn/rnt217
  7. P. Antonelli and C. Sparber, Global well-posedness for cubic NLS with nonlinear damping, Comm. Partial Differential Equations 35 (2010), no. 12, 2310-2328. https://doi.org/10.1080/03605300903540943
  8. A. Biswas, Optical soliton perturbation with nonlinear damping and saturable amplifiers, Math. Comput. Simullation 56 (2001), no. 6, 521-537. https://doi.org/10.1016/S0378-4754(01)00322-6
  9. A. de Bouard and A. Debussche, A stochastic nonlinear Schrodinger equation with multiplicative noise, Comm. Math. Phys. 205 (1999), no. 1, 161-181. https://doi.org/10.1007/s002200050672
  10. A. de Bouard and A. Debussche, On the effect of a noise on the solutions of supercritical Schrodinger equation, Probab. Theory Related Fields 123 (2002), no. 1, 76-96. https://doi.org/10.1007/s004400100183
  11. A. de Bouard and A. Debussche, The stochastic nonlinear Schrodinger equation in $H^1$, Stochastic Anal. Appl. 21 (2003), no. 1, 97-126. https://doi.org/10.1081/SAP-120017534
  12. A. de Bouard and A. Debussche, Blowup for the supercritical Schrodinger equation with multiplicative noise, Ann. Probab. 33 (2005), no. 3, 1078-1110. https://doi.org/10.1214/009117904000000964
  13. A. de Bouard and A. Debussche, The nonlinear Schrodinger equation with white noise dispersion, J. Funct. Anal. 259 (2010), no. 5, 1300-1321. https://doi.org/10.1016/j.jfa.2010.04.002
  14. A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrodinger evolution equations and applications, Nonlinearity 25 (2012), no. 11, 2993-3022. https://doi.org/10.1088/0951-7715/25/11/2993
  15. T. Cazenave, Semilinear Schrodinger equations, in: Courant Lecture Notes in Mathematics, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
  16. M. Darwich, On the $L^2$-critical nonlinear Schrodinger equation with a nonlinear damping, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2377-2394. https://doi.org/10.3934/cpaa.2014.13.2377
  17. A. Debussche and L. DiMenza, Numerical simulation of focusing stochastic Schrodinger equation, Phys. D 162 (2002), no. 3-4, 131-154. https://doi.org/10.1016/S0167-2789(01)00379-7
  18. A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appl. 96 (2011), no. 4, 363-376. https://doi.org/10.1016/j.matpur.2011.02.002
  19. D. Y. Fang, L. Z. Zhang, and T. Zhang, A random dispersion Schrodinger equation with time-oscillating nonlinearity, J. Math. Anal. Appl. 418 (2014), no. 1, 403-414. https://doi.org/10.1016/j.jmaa.2014.04.020
  20. B. H. Feng, D. Zhao, and C. Y. Sun, The limit behavior of solutions for nonlinear Schrodinger equation including nonlinear loss/gain with variable coefficient, J. Math. Anal. Appl. 405 (2013), no. 1, 240-251. https://doi.org/10.1016/j.jmaa.2013.04.001
  21. B. H. Feng, D. Zhao, and C. Y. Sun, On the Cauchy problem for the nonlinear Schrodinger equations with timedependent linear loss/gain, J. Math. Anal. Appl. 416 (2014), no. 2, 901-923. https://doi.org/10.1016/j.jmaa.2014.03.019
  22. G. Fibich and M. Klein, Nonlinear-damping continuation of the nonlinear Schrodinger equationa numerical study, Phys. D 241 (2012), no. 5, 519-527. https://doi.org/10.1016/j.physd.2011.11.008
  23. H. Jian and B. Liu, A random Schrodinger equation with time-oscillating nonlinearity and linear dissipation/gain, Published online in Bull. Malays. Math. Sci. Soc. 2015 (2015), DOI:10.1007/s40840-015-0277-z.
  24. Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length, Phys. Rev. Lett. 81 (1998), 933-937. https://doi.org/10.1103/PhysRevLett.81.933
  25. T. Kato, On nonlinear Schrodinger equations, Ann. Inst. H. Poincare, Phys. Theor. 46 (1987), no. 1, 113-129.
  26. R. Marty, On a splitting scheme for the nonlinear Schrodinger equation in a random medium, Commun. Math. Sci. 4 (2006), no. 4, 679-705. https://doi.org/10.4310/CMS.2006.v4.n4.a1
  27. L. X. Meng, J. Y. Li, and J. Tao, Blow-up for the stochastic nonlinear Schrodinger equations with quadratic potential and additive noise, Bound. Value Probl. 2015 (2015), 18 pp. https://doi.org/10.1186/s13661-014-0278-0
  28. M. Ohta and G. Todorova, Remarks on global existence and blow-up for damped nonlinear Schrodinger equations, Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1313-1325. https://doi.org/10.3934/dcds.2009.23.1313
  29. T. Passot, C. Sulem, and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Phys. D 203 (2005), no. 3-4, 167-184. https://doi.org/10.1016/j.physd.2005.03.011
  30. M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrodinger equations, SIAM J. Math. Anal. 15 (1984), no. 2, 357-366. https://doi.org/10.1137/0515028