DOI QR코드

DOI QR Code

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray (Division of Mechatronics Engineering Dongseo University) ;
  • Shin, Jun Yong (Department of Applied Mathematics Pukyong National University)
  • Received : 2016.07.19
  • Accepted : 2016.10.17
  • Published : 2017.07.31

Abstract

We introduce an extrapolated Crank-Nicolson characteristic finite element method to approximate solutions of a convection dominated Sobolev equation. We obtain the higher order of convergence in both the spatial direction and the temporal direction in $L^2$ normed space for the extrapolated Crank-Nicolson characteristic finite element method.

Keywords

Acknowledgement

Supported by : Pukyong National University

References

  1. D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), no. 153, 53-63. https://doi.org/10.1090/S0025-5718-1981-0595041-4
  2. G. I. Barenblatt, I. P. Zheltov, and I. N. Kochian, Basic conception in the theory of seepage of homogenous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1309. https://doi.org/10.1016/0021-8928(60)90107-6
  3. R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems (Mathematics in Sciences and Engineering, Vol. 12), Academic Press, New York, 1976.
  4. P. L. Davis, A quasilinear parabolic and related third order problem, J. Math. Anal. Appl. 49 (1970), 327-335.
  5. J. Douglas and T. F. Russell Jr., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristic with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), no. 5, 871-885. https://doi.org/10.1137/0719063
  6. R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150. https://doi.org/10.1137/0715075
  7. H. Gu, Characteristic finite element methods for nonlinear Sobolev equations, Appl. Math. Comput. 102 (1999), no. 1, 51-62. https://doi.org/10.1016/S0096-3003(98)10019-X
  8. L. Guo and H. Z. Chen, $H^1$-Galerkin mixed finite element method for the Sobolev equation, J. Systems Sci. Math. Sci. 26 (2006), no. 3, 301-314.
  9. H. Guo and H. X. Rui, Least-squares Galerkin procedures for the Sobolev equations, Acta Math. Appl. Sin. 29 (2006), no. 4, 609-618.
  10. Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66. https://doi.org/10.1007/BF02112280
  11. Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191. https://doi.org/10.1016/0022-247X(92)90074-N
  12. M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157. https://doi.org/10.1007/BF01389881
  13. M. R. Ohm and H. Y. Lee, $H^2$-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations, Bull. Korean. Math. Soc. 48 (2011), no. 5, 897-915. https://doi.org/10.4134/BKMS.2011.48.5.897
  14. M. R. Ohm, H. Y. Lee, and J. Y. Shin, $H^2$-error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, Jpn. J. Ind. Appl. Math. 30 (2013), no. 1, 91-110. https://doi.org/10.1007/s13160-012-0096-7
  15. M. R. Ohm and J. Y. Shin, A Crank-Nicolson characteristic finite element method for Sobolev equations, East Asian Math. J. 32 (2016), 729-744. https://doi.org/10.7858/eamj.2016.051
  16. A. Pehlivanov, G. F. Carey, and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal. 31 (1994), no. 5, 1368-1377. https://doi.org/10.1137/0731071
  17. H. X. Rui, S. Kim, and S. D. Kim, A remark on least-squares mixed element methods for reaction-diffusion problems, J. Comput. Appl. Math. 202 (2007), no. 2, 203-236. https://doi.org/10.1016/j.cam.2006.02.025
  18. D. M. Shi, The initial-boundary value problem for a nonlinear equation of migration of moisture in soil, Acta Math. Appl. Sinica 13 (1990), 31-38.
  19. T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159. https://doi.org/10.1016/j.amc.2007.10.053
  20. T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 879-896. https://doi.org/10.1002/num.20294
  21. T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
  22. D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system, Comput. Methods Appl. Mech. Engrg. 108 (1999), no. 1-2, 81-95. https://doi.org/10.1016/S0045-7825(99)00050-X
  23. D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comp. 69 (2000), no. 231, 929-963. https://doi.org/10.1090/S0025-5718-99-01172-2