DOI QR코드

DOI QR Code

STABILIZATION OF VISCOELASTIC WAVE EQUATION WITH VARIABLE COEFFICIENTS AND A DELAY TERM IN THE INTERNAL FEEDBACK

  • Liang, Fei (Department of Mathematics Xi An University of Science and Technology)
  • Received : 2016.07.30
  • Accepted : 2016.12.02
  • Published : 2017.07.31

Abstract

In this paper, we consider the stabilization of the viscoelastic wave equation with variable coefficients in a bounded domain with smooth boundary, subject to linear dissipative internal feedback with a delay. Our stabilization result is mainly based on the use of the Riemannian geometry methods and Lyapunov functional techniques.

Keywords

References

  1. C. Abdallah, P. Dorato, and R. Byrne, Delayed positive feedback can stabilize oscillatory system, Proceedings of the American Control Conference, San Francisco, pp. 3106-3107, 1993.
  2. F. Alabau-Boussouira, P. Cannarsa, and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal. 254 (2008), no. 5, 1342-1372. https://doi.org/10.1016/j.jfa.2007.09.012
  3. J. A. D. Appleby, M. Fabrizio, B. Lazzari, and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci. 16 (2006), no. 10, 1677-1694. https://doi.org/10.1142/S0218202506001674
  4. M.M. Cavalcanti, A. Khemmoudj, and M. Medjden, Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), no. 2, 900-930. https://doi.org/10.1016/j.jmaa.2006.05.070
  5. M. M. Cavalcanti and H. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIMA J. Control Optim, 42 (2003), no. 4, 1310-1324. https://doi.org/10.1137/S0363012902408010
  6. C. M. Dafermos, An abstract Volterra equation with application to linear viscoelasticity, J. Differential Equations 7 (1970), 554-589. https://doi.org/10.1016/0022-0396(70)90101-4
  7. R. Datko, J. Lagnese, and M. P. Polis, An example on the of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152-156. https://doi.org/10.1137/0324007
  8. R. Gulliver, I. Lasiecka, W. Littman, and R. Triggiani, The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, In: Geometric Methods in Inverse Problems and PDE Control. IMA Vol. Math. Appl., vol. 137, pp. 73-181. Springer, New York, 2004.
  9. B. Z. Guo and Z.C. Shao, On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback, Nonlinear Anal. 71 (2009), no. 12, 5961-5978. https://doi.org/10.1016/j.na.2009.05.018
  10. M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys. 62 (2011), no. 6, 1065-1082. https://doi.org/10.1007/s00033-011-0145-0
  11. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 60 (1990), no. 1, 33-54.
  12. W. J. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation, Discrete Contin. Dyn. Syst. Ser. B 2 (2002), no. 1, 47-56. https://doi.org/10.3934/dcdsb.2002.2.47
  13. J. E. Munoz Rivera and J. Barbosa Sobrinho, Existence and uniform rates of decay for contact problems in viscoelasticity, Appl. Anal. 67 (1997), no. 3-4, 175-199. https://doi.org/10.1080/00036819708840604
  14. S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), no. 5, 1561-1585. https://doi.org/10.1137/060648891
  15. S. Nicaise and C. Pignotti, Internal and boundary observability estimates for the heterogeneous Maxwells system, Appl. Math. Optim. 54 (2006), no. 1, 47-70. https://doi.org/10.1007/s00245-005-0851-0
  16. S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations 21 (2008), no. 9-10, 935-958.
  17. Z. H. Ning, C. X. Shen, and X. P. Zhao, Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback, J. Math. Anal. Appl. 405 (2013), no. 1, 148-155. https://doi.org/10.1016/j.jmaa.2013.01.072
  18. Z. H. Ning, C. X. Shen, X. P. Zhao, H. Li, C. S. Lin, and Y. M. Zhang, Nonlinear boundary stabilization of the wave equations with variable coefficients and time dependent delay, Appl. Math. Comput. 232 (2014), 511-520.
  19. J. E. M. Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math. 52 (1994), 629-648.
  20. J. E. M. Rivera and A. P. Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials, Quart. Appl. Math. 59 (2001), 557-578. https://doi.org/10.1090/qam/1848535
  21. I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control 25 (1980), 600-503. https://doi.org/10.1109/TAC.1980.1102347
  22. C. Q. Xu, S.P. Yung, and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12 (2006), no. 4, 770-785. https://doi.org/10.1051/cocv:2006021
  23. P. F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Contr. Optim. 37 (1999), no. 5, 1568-1599. https://doi.org/10.1137/S0363012997331482
  24. P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differential Equations 241 (2007), no. 1, 62-93. https://doi.org/10.1016/j.jde.2007.06.014
  25. P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim. 61 (2010), no. 2, 191-233. https://doi.org/10.1007/s00245-009-9088-7
  26. P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics, A Differential Geometric Approach, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL, 2011.