DOI QR코드

DOI QR Code

공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석

Applicability of reliability indices for water distribution networks

  • 정기문 (경희대학교 사회기반시스템공학과) ;
  • 강두선 (경희대학교 사회기반시스템공학과)
  • Jeong, Gimoon (Department of Civil Engineering, Kyung Hee University) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University)
  • 투고 : 2017.03.17
  • 심사 : 2017.05.22
  • 발행 : 2017.07.31

초록

상수관망 시스템은 다수의 이용자에게 용수를 공급하기 위한 사회기반시설물로써, 적절한 수압을 유지하고 안정적으로 용수를 공급할 수 있어야 한다. 따라서 안정적인 설계와 효율적인 운영을 위해서는 상수관망 시스템의 용수 공급능력을 정량적으로 파악하는 것이 중요하다. 이러한 노력의 일환으로 상수관망 시스템 내 에너지 거동을 통해 신뢰도를 정량화한 신뢰도 지수가 다양한 방법으로 개발되어 왔다. 대부분의 신뢰도 지수는 공통적으로 절점에서의 최소요구수두 및 초과수두의 형태로 공급된 에너지를 기반으로 산정되며, 일부 지수의 경우 상수관망에 공급된 총 에너지 또는 용수 공급과정에서 손실된 에너지를 추가적으로 고려하여 산정된다. 본 연구에서는 상수관망의 용수 공급 과정에 따른 에너지 구성 요소를 소개하였으며 기존에 개발된 몇 가지 신뢰도 지수를 대상으로, 상수관망의 공급부하 상황을 고려한 시나리오 분석을 통해 신뢰도 지수의 적용성을 알아보고자 하였다. 또한, 각 절점 별 지수값을 도시함으로써, 상수관망 내 신뢰도의 공간적 분포를 나타내어 분석함으로써 보다 확장된 시스템 신뢰도 지수의 활용방안을 제시하였다.

Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

키워드

참고문헌

  1. Atkinson, S., Farmani, R., Memon, F. A., and Butler, D. (2014). "Reliability indicators for water distribution system design: comparison." Journal of Water Resources Planning and Management, Vol. 140, No. 2, pp. 160-168. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000304
  2. Banos, R., Reca, J., Martinez, J., Gil, C., and Marquez, A. L. (2011). "Resilience indexes for water distribution network design: a performance analysis under demand uncertainty." Water Resources Management, Vol. 25, No. 10, pp. 2351-2366. https://doi.org/10.1007/s11269-011-9812-3
  3. Cabrera, E., Pardo, M. A., Cobacho, R., and Cabrera Jr, E. (2010). "Energy audit of water networks." Journal of Water Resources Planning and Management, Vol. 136, No. 6, 669-677. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000077
  4. Creaco, E., Fortunato, A., Franchini, M., and Mazzola, M. R. (2014). "Comparison between entropy and resilience as indirect measures of reliability in the framework of water distribution network design." Procedia Engineering, Vol. 70, pp. 379-388. https://doi.org/10.1016/j.proeng.2014.02.043
  5. Di Nardo, A., Greco, R., Santonastaso, G. F., and Di Natale, M. (2010). "Resilience and entropy indices for water supply network sectorization in district meter areas." In Proceedings of International Conference on Hydroinformatics, Tianjin, China.
  6. Dziedzic, R. M., and Karney, B. W. (2014.) "Energy Metrics for Water Distribution System Assessment."
  7. EPANET2 User's Manual (2000). United States Environmental Protection Agency.
  8. Farmani, R., Walters, G. A., and Savic, D. A. (2005). "Trade-off between total cost and reliability for Anytown water distribution network." Journal of Water Resources Planning and Management, Vol. 131, No. 3, pp. 161-171. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(161)
  9. Greco, R., Di Nardo, A., and Santonastaso, G. (2012). "Resilience and entropy as indices of robustness of water distribution networks." Journal of Hydroinformatics, Vol. 14, No. 3, pp. 761-771. https://doi.org/10.2166/hydro.2012.037
  10. IPCC (2008). Climate change and water. IPCC Technical Paper IV, 200, UNEP.
  11. Jayaram, N., and Srinivasan, K. (2008). "Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing." Water Resources Research, Vol. 44, No. 1, W01417. https://doi.org/10.1029/2006WR005316
  12. MATLAB User's Manual (2000). The MathWorks, Inc.
  13. Ministry of Public Safety and Security (2015). NFSC 109
  14. Prasad, T. D., and Park, N. S. (2003). "Multiobjective genetic algorithms for design of water distribution networks." Journal of Water Resources Planning and Management, Vol. 130, No. 1, pp. 73-82. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(73)
  15. Raad, D. N., Sinske, A. N., and Van Vuuren, J. H. (2010). "Comparison of four reliability surrogate measures for water distribution systems design." Water Resources Research, Vol. 46, No. 5, W05524. https://doi.org/10.1029/2009WR007785
  16. Reca, J., Martinez, J., Banos, R., and Gil, C. (2008). "Optimal design of gravity-fed looped water distribution networks considering the resilience index." Journal of Water Resources Planning and Management, Vol. 134, No. 3, pp. 234-238. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(234)
  17. Todini, E. (2000). "Looped water distribution networks design using a resilience index based heuristic approach." Urban Water, Vol. 2, No. 2, pp. 115-122. https://doi.org/10.1016/S1462-0758(00)00049-2