DOI QR코드

DOI QR Code

Integration of Graphene Oxide Into PAN Nanofibers with Improved Physical Property

Graphene Oxide를 활용한 PAN 나노섬유 제조 및 물리적 특성 향상

  • Lee, Jeonghun (Department of Chemical Engineering, Keimyung University) ;
  • Yun, Jaehan (Department of Chemical Engineering, Keimyung University) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • Received : 2017.06.20
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

In this study, systematic integration of graphene oxide (GO) into polyacrylonitrile (PAN) nanofibers was accomplished by electrospinning to examine their mechanical properties. Exfoliated GO was initially prepared by the modified Hummer's method, and the surface of the GO was modified with an organic surfactant (e.g., cetyltrimetylammonium chloride) to improve its stability and dispersity. The overall mechanical property of the nanofiber composite membranes was highly improved. Particularly, the composite membranes with the modified GO exhibited much improved mechanical property, presumably due to the increased stability and dispersity of GO during electrospinning.

본 연구에서는 graphene oxide (GO)를 polyacrylonitrile (PAN)에 첨가하여 전기방사법을 이용해 나노섬유 복합막을 제조한 뒤 물리적 특성을 관찰하였다. GO의 제조는 개선된 Hummer's 방법을 이용하였으며, 표면처리가 되지 않은 GO의 경우 0.5 wt% 이상에서 전기방사가 이루어지지 않았다. GO의 안정성 및 분산도 증가를 개선하기 위해 계면활성제를 이용하여 GO의 표면처리를 하였다. 표면처리가 된 GO를 사용하여 나노섬유 복합막의 GO의 함량을 0.5 wt% 이상 첨가할 수 있었다. 특히, 표면처리가 된 GO가 첨가된 나노섬유 복합막은 향상된 물리적 특성을 가지며, 이는 나노섬유 분리막 내의 GO의 분산도와 상관관계가 있는 것으로 보인다.

Keywords

References

  1. B. N. Kim, S. W. Lee, Y. G. Ko, K. H. Jung, and O. H. Kwon, "Fabrication of nanofibrous polyimide non-wovens by isothermal heat treatment from electrospun poly(amic acid) nanofiber mats", Polym. Korea, 41, 75 (2017). https://doi.org/10.7317/pk.2017.41.1.75
  2. W. G. Jang, J. H. Yun, K. S. Jeon, and H. S. Byun, "PVdF/grapheme oxide hybrid membranes via electrospinning for water treatment applications", RSC Adv., 5, 46711 (2015). https://doi.org/10.1039/C5RA04439A
  3. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies" Membr. J., 23, 101 (2013).
  4. W. G. Jang, J. H. Yun, and H. S. Byun, "Preparation of PAN nanofiber composite membrane with Fe3O4 functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  5. S. J. Park, S. H. In, J. M. Rhee, S. Y. Park, and H. J. Kim, "Prepartion of polyacrylonitrile-based carbon nanofibers by electrospinning and their capacitance characteristics", J. Korean Ind. Eng. Chem., 18, 205 (2007).
  6. Y. J. Cho, D. R. Chang, G. S. Heo, and C. N. Choi, "The characterizations of nanofibers from electrospinning of PAN/DMF at various kinds and contents of additives", Applied Chemistry, 9, 5 (2005).
  7. F. M. Fernandes, R. Arauho, M. F. Proenca, C. J. R. Silva, and M. C. Paiva, "Functionalization of carbon nanofibers by a diels-alder addition reaction", J. Nanosci. Nanotechnol., 7, 3514 (2007). https://doi.org/10.1166/jnn.2007.818
  8. K. M. Park, Y. S. An, Y. B. Kwon, W. B. Shim, and W. R. Yu, "Fabrication of reduced graphene oxide-incorporated carbon nanofibers with improved electrical conductivities by electrospinning", Text. Sci. Eng., 52, 379 (2015). https://doi.org/10.12772/TSE.2015.52.379
  9. S. B. Yang, W. S. Choi, J. M. Hyun, J. C. Shin, J. H. Choi, and J. H. Yeum, "Electrospinning fabrication of poly(vinyl alcohol)/Pullulan/$TiO_2$ nanofibers", J. Korean Soc. Dye. And Finish., 26, 195 (2014).
  10. J. Buchheim, R. M. Wyss, C. M. Kim, M. M. Deng, and H. G. Park, "Architecture and transport properties of membranes out of graphene", Membr. J., 26, 239 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.239
  11. J. H. Song, J. Y. Choi, and Y. J. Kim, "Mechanical properties of carbon fiber nano composites for nano-fiber additives and fabric orientation", Korean J. Met. Mater., 50, 93 (2012). https://doi.org/10.3365/KJMM.2012.50.2.093
  12. S. J. Eduardo, P. Maxime, P. Robert, M. Tonya, and C. Mark, "Activated carbon, carbon nanofiber and carbon nanotube supported molybdenum carbide catalysts for the hydrodeoxygenation of guaiacol", Catalysts, 5, 424 (2015). https://doi.org/10.3390/catal5010424
  13. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials" Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  14. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slearev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of grapheme oxide", ACS NANO, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  15. J. Chen, B. Yao, C. Li, and G. Q. Shi, "An improved hummers method for eco-fiendly synrhesis of grapheme oxide", Carbon, 64, 225 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
  16. C. L. Tan, X. Huang, and H. Zhang, "Synthesis and applications of graphene-based noble metal nanostructures", Materials Today, 16, 29 (2013). https://doi.org/10.1016/j.mattod.2013.01.021
  17. Z. M. Wang, W. D. Wang, N. Coombs, N. Sohelinia, and G. A. Ozin, "Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels", ACS NANO, 4, 7437 (2010). https://doi.org/10.1021/nn102618n
  18. L. L. Zhang, S. Y. Zhao. X. N. Tian, and X. S. Zhao, "Layered graphene oxide nanostructures with sandwihched conducting polymers as supercapacitor electrodes", Langmuir, 26, 17624 (2010). https://doi.org/10.1021/la103413s
  19. D. L. Han, L. F. Yan, W. F. Chen, and W. Li, "Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state", Carbohydrate Polymers, 83, 653 (2011). https://doi.org/10.1016/j.carbpol.2010.08.038