IMT-2020 5G 서비스용 후보대역 결정을 위한 공유연구 동향

I. 서론

2015년 세계전파통신회의(WRC-15)는 24.25~86GHz에서 5G 주 파수 지정을 위한 WRC-19 의제(1.13)를 채택하고 후보대역으로서 24.25-27.5GHz, 31.8-33.4GHz, 37-40.5GHz 40.5-42.5GHz, 42.5-43.5GHz, 45.5-47GHz, 47-47.2GHz, 47.2-50.2GHz, 50.4-52.6GHz, 66-76GHz, 81-86GHz 등 총 11개 대역을 후보 대역으로 선정하였다^[1]. ITU는 의제1.13의 추진을 위해 2015년 12 월 ITU-R SG5 산하에 IMT 후보대역과 타 업무간 공유연구를 위한 Task Group 5/1 (TG 5/1)을 신설하였다^[2]. 〈표 1〉에서 확인할 수 있 듯이 해당 후보 대역 별로 매우 다양한 서비스가 복잡하게 할당되어 있다. 따라서 기존에 ITU에서 진행되었던 공유연구에 비해 의제 1.13 은 매우 복잡하고 다양한 공유 시나리오에 대한 연구가 요구되고 있는 상황이다.

현재 한국 ITU 연구위원회 산하 WP 5D 작업반과 TG 5/1 작업반 은 의제1.13을 대응하기 위한 연구를 진행하고 있다^[3]. 작업반은 전파 연구원을 중심으로 40 여명의 관련 산·학·연의 표준전문가들로 구성 되어 있다. WP 5D 작업반은 5G 비전, 기술성능 요구사항, 평가방법 론 표준화, IMT 주파수 표준화 (6GHz 이하 및 이상), IMT 기술을 활 용한 응용 서비스 보고서 (PPDR, IoT 등), 3G(IMT-2000), 4G(IMT-Advanced) 기술 진화 표준화 등의 업무를 담당하고 있다. TG 5/1 작 입반은 의제 1.13의 공유연구 및 CPM 테스트 작성관련 업무를 진행하 고 있다.

본고에서는 의제 1.13을 중심으로 한 IMT-2020 5G 서비스용 후보 대역 결정을 위한 공유연구 동향 및 기술적 사항 등에 대해 고찰하고자 한다. 2장에서는 의제 1.13 공유연구에 관련된 작업반의 진행상황 및

🙆 🕘 📵 🙆 🥘

▶ ▶ ▶ IMT-2020 5G 서비스용 후보대역 결정을 위한 공유연구 동향 🛽 🥑

주파수 대역	국제 주파수 할당		
24.25–27.5 GHz	FS, FSS, RNS (Regions 2 and 3)		
31.8-33.4GHz	FS, RNS, SRS		
37 – 40GHz	FS, FSS, Mobile, EESS (secondary)		
40.5 – 42.5GHz and 42.5 – 43.5GHz	FS, FSS, Mobile (secondary) Broadcasting satellite, Broadcasting		
47 - 47.2GHz	Amateur, Amateur satellite		
47.2 - 50.2GHz	FS, FSS, Mobile		
50.4 - 52.6GHz	FS, FSS, Mobile		
66 - 71GHz	Mobile, MSS, RNS, Radio navigation satellite		
71-76	FS, FSS, Mobile, MSS		
81-86GHz	FS, FSS, Mobile, MSS, Radio astronomy		

(표 1) WRC-19의제 1 13 후보대역 및 국제 주파수 할당 현황

※ SRS (Space research service, 우주연구), EESS (Earth exploration satellite service, 지구탐사), RNS (Radio-navigation service, 무선항행), FSS (Fixed satellite service, 고정위성서비스), MSS (Mobile satellite service, 이동위성서비스), FS (Fixed service, 고정서비스), ISS(Inter-satellite Service, 위성간 서비스)

 ※ Region 1 : 유럽, 아프리카, Region 2: 북/남아메리카, Region 3 :아시아, 오세아니아

향후일정을 설명한다. 3장에서는 ITU-R WP 5D에서 새 롭게 제안한 공유 및 양립성 연구를 위한 IMT 모델링 기 법에 대해 설명한다. 4장에서는 공유연구를 위한 ITU 전 파전파모델에 대해 설명한다. 5장에서는 대표적인 공유 시나리오 및 간섭계산 방법에 대해 설명한다.

Ⅱ. ITU 진행상황 및 향후일정

〈그림 1〉은 의제1.13 공유연구와 관련된 작업반 별 진 행상황 및 향후 일정을 나타낸다. 2016년 10월 25차 WP 5D회의에서 주파수 공유 및 양립성 연구를 위한 IMT 모 델링 및 시스템을 정의하는 권고안 ITU-R M.2101^[4]를

〈그림 1〉 WRC-19 의제 1.13관련 공유연구 일정

완성하였다. 그리고 2017년 2월 26차 WP 5D회의에서 공유연구를 위한 IMT 시스템 파라미터를 정의하였다. 한 편 전파모델을 담당하는 연구그룹인 SG3에서는 2017년 3월 전파채널모델 초안을 확정하였다. 이렇게 WP 5D와 SG3에서 결정된 모델링 기법, 시스템 파리미터, 채널모 델을 바탕으로 2017년 5월 TG 5/1 회의에서 공유연구를 위한 전반적인 방법론 변수 등을 논의하였다. 해당 논의 가 완료된 사항은 아니며 추후 계속 진행될 예정이다.

향후 2017년 9월 회의부터 공유결과 제안 및 논의가 본격적으로 이루어 질 예정이다. 2018년 1월 회의까지 총 2회에 걸쳐 본격적인 연구결과가 논의될 예정이며, 이 러한 논의결과를 바탕으로 2018년 5월 회의에서 CPM 보고서 초안이 완성될 예정이다. 끝으로 2018년 9월 회 의에서 CPM 보고서 작성이 완료될 예정이다.

Ⅲ. 공유분석을 위한 IMT 모델링

ITU-R WP5D는 지난 2016년 10월 25차 회의에서 주 파수 공유 및 양립성 연구를 위한 IMT 모델링 및 시스템 을 정의하는 M.2101문서^[4]를 완성하였고 이를 바탕으로 TG5/1의 공유연구를 진행하고 있다. 권고안 M.2101는 IMT 시스템과 다른 시스템과의 주파수 공유 및 양립성 연구를 위한 IMT 네트워크의 모델링 및 시뮬레이션 방법 을 제안하고 있으며, 다른 시스템의 모델링 및 변수와 전 파 모델 선택에 관한 내용은 다루고 있지 않음을 명시하

고 있다. 본 장에서는 M.2101 권고안을 기반으로 한 공 유분석을 위한 IMT 모델링 기법을 설명한다. 〈그림 2〉 는 IMT모델링 기법의 실제 구현과정을 나타낸다. 이를 토대로 모델링을 진행하며 마지막으로 SINR을 계산하여 3GPP에 가입되어 있는 다른 기업들이 제시한 결과와 비 교분석 후 IMT모델링의 타당성을 검증한다.

1. 기지국 및 이동국 분포

IMT네트워크는 〈그림 3〉와 같이 19개의 기지국과 57 개의 매크로 셀로 구성되어 있으며 〈그림 4〉과 같이 실제 네트워크 주위를 가상의 클러스터가 둘러싸고 있다. 그 이유는 〈그림 3〉에서 중심 셀에 존재하는 이동국과 가장 자리 셀에 존재하는 이동국의 간섭량이 서로 다르기 때문 에 간섭의 비대칭성이 발생한다. 따라서 〈그림 4〉와 같이 가상의 클러스터를 구현하여 이동국의 위치와 관계없이 모든 이동국의 2-tier 네트워크에 대한 간섭 조건을 동일 하게 설정한다.

Base station antenna boresight pointing directions

〈그림 3〉 IMT-2020의 네트워크 형태

〈그림 4〉 실제 네트워크와 가상의 클러스터 형태

〈그림 5〉는 IMT 모델링의 셀의 형태와 기지국의 분포 시나리오이다. 마이크로 셀은 육각형 모양의 고정된 셀 로 이루어져있고 하나의 매크로 셀 안에는 3개의 마이크 로 셀이 원 모양으로 분포되어 있다. 기지국은 원주상에, 이동국은 기지국과 3m이상 떨어지면서 원 안에 들어오 도록 랜덤하게 분포시켰다, 기지국의 안테나 방향은 셀의 중심을 향하고 있으며 이동국의 안테나는 2섹터로 하나 는 랜덤한 방향으로, 다른 하나는 첫 번째 안테나 180도 각도를 이루고 있다.

분포시킨 이동국은 〈그림 6〉과 같이 indoor 또는 outdoor 환경에서 통신하며, outdoor에서는 이동국의 높이가 모두 1.5m로 같고 경로손실이 하나의 식으로 이

〈그림 5〉 매크로/마이크로 셀의 형태 및 기지국 분포 시나리오

〈그림 6〉 indoor/outdoor 시나리오

〈표 2〉 매질에 따른 침투 손실

매질	침투 손실[dB]
유리	$L_{glass} = 2 + 0.2 \bullet f$
IRR 유리	$L_{IRRglass} = 23 + 0.3 \bullet f$
콘크리트	$L_{concrete} = 5 + 4 ullet f$
나무	$L_{wood} = 4.85 \pm 0.12 \bullet f$

〈표 3〉 Indoor 환경에서의 추가 손실

	외벽 경로손실 $PL_{tw}[dB]$	Indoor 손실 $PL_{in}[dB]$	표준 편차 $\sigma_p[dB]$
Low loss	$ \begin{array}{c} 5\!-\!10 {\log_{10}} \left(0.3 \bullet 10^{-L_{\rm obss}/10} \right. \\ \left. + 0.7 \bullet 10^{-L_{\rm correct}/10} \right) \end{array} $	$0.5d_{2D-in}$	4.4
High loss	$\begin{array}{c} 5\!-\!10 {\log_{10}} \left(0.7 \bullet 10^{-L_{\rm IRGs}/10} \right. \\ \left. + 0.3 \bullet 10^{-L_{\rm correct}/10} \right) \end{array}$	$0.5d_{2D-in}$	6.5

▶ ▶ ▶ IMT-2020 5G 서비스용 후보대역 결정을 위한 공유연구 동향 📵 🄇

〈그림 7〉 LOS/NLOS 시나리오

루어지지만 indoor의 경우에는 이동국의 높이가 랜덤하 며 이동국이 있는 건물을 통과 할 때 건물 벽의 매질에 따 른 추가적인 손실이 발생한다. 〈표 2〉는 indoor에서 발생 하는 건물 벽의 매질에 따른 투과 손실을 나타낸다. 〈표 3〉은 〈표 2〉의 투과 손실을 바탕으로 low-loss와 highloss일 때의 외벽 경로손실 모델을 구하고 indoor 환경에 서 추가되는 경로손실의 모델이다^[5].

indoor/outdoor 환경을 정하고 이동국과 각 기지국 간 LOS 또는 NLOS 환경을 결정한다. 〈그림 7〉은 LOS/ NLOS 시나리오이다. LOS는 Line-of-sight의 약자로 서 〈그림 7〉의 파란색 화살표와 같이 송신 안테나와 수 신기 사이에 장애물이 없는 상태를 말하며 NLOS는 Non line-of-sight로 〈그림 7〉의 붉은색 화살표와 같이 송신

$$P_{LOS} = \min(18/d_{2D}, 1)(1 - e^{(-\frac{d_{2D}}{36})}) + e^{(-\frac{d_{2D}}{36})}$$
(1)

indoor의 경우에는 d_{2D} 대신 $d_{2D_{out}}$ 을 대입하여 P_{LOS} 를 계산한다. P_{LOS} 는 d_{2D} 또는 $d_{2D_{out}}$ 에 의해 결정되므로 기 지국과 이동국의 거리가 멀어질수록 LOS일 확률이 낮아 진다. 이동국과 기지국이 식 (1)에 의해 LOS 또는 NLOS 로 결정되었을 때 LOS환경의 경로손실은 식 (2)와 같으 며 NLOS에서의 경로손실은 식 (2)와 식 (3)중 손실이 큰 값을 사용한다^[5].

$$PL_{LOS} = 32.4 + 20\log_{10}(d_{3D}) + 20\log_{10}(f_c)$$
⁽²⁾

PL_{NLOS}= 13.54 + 39.08 log₁₀(d_{3D}) + 20log₁₀(f_c) - 0.6(h_{UT}-1.5) (3)
 따라서 경로손실은 하나의 이동국이 다른 기지국과의
 LOS/NLOS 상황에 따라 멀리 있는 기지국과의 경로 손실이 더 작은 경우도 생기게 된다.

〈그림 10〉 매크로 셀에서의 coupling loss에 따른 기지국 연결

〈그림 11〉 마이크로 셀에서의 coupling loss에 따른 기지국 연결

n ange so 0 150 100 42 Azimut

〈그림 9〉 Element gain 3차원 패턴

〈그림 12〉 Array gain 3차원 패턴

2. 안테나 element gain 및 기지국 선택

기지국과 이동국의 주빔과 이루는 각도에 따라 결정되 는 안테나 element gain $A_E(\phi, \theta)$ 는 식 (6)과 같다^[4].

$$A_{E,H}(\phi) = -\min\left[12\left(\frac{\phi}{\phi_{3dB}}\right)^2, A_m\right] [dB]$$
(4)

$$A_{E,V}(\theta) = -\min\left[12\left(\frac{\theta - 90}{\theta_{3dB}}\right)^2, SLA_v\right] [dB]$$
(5)

$$A_{E}(\phi, \theta) = G_{E, \max} - \min\{-|A_{E,H}(\phi) + A_{E,V}(\theta)|, A_{m}\} \qquad (6)$$

식 (4)와 식 (5)에서 ϕ 와 θ 는 〈그림 8〉와 같이 수신기가 송신 안테나의 주범방향과 이루는 수평각과 수직각이며 ϕ_{3dB} 와 θ_{3dB} 는 $A_{E,H}(\phi)$ 와 $A_{E,V}(\theta)$ 의 값이 -3dB 이상인 수평 각, 수직각의 범위이다. 〈그림 9〉는 주범 방향이 0°, ϕ_{3dB} 와 θ_{3dB} 가 65°, G_{max} 가 5dB 일 때의 element gain을 보여 주며 주범 방향일 때 최대 이득 G_{max} 를 가진다. i번째 이동 국에서 각 기지국과의 coupling loss 은 식 (7)과 같이 나 타내며, 이 중 coupling loss가 가장 작은 기지국과 통신 한다.

$$CL_{i} = \sum_{j=1}^{BS} PL[i,j] + A_{E,BS}(\phi, \theta)[i,j] + A_{E,UE}(\phi, \theta)[i,j]$$
(7)

〈그림 10, 11〉은 식 (7)을 이용하여 매크로 셀과 마이 크로 셀의 상황에서 이동국과 결합손실이 가장 작은 기지 국이 연결되었을 때의 그림이다. 〈그림 10, 11〉을 분석 해보면 이동국은 주로 가까운 기지국과 연결되지만 몇몇 이동국은 LOS/NLOS환경, 안테나 element gain에 따라 멀리 있는 기지국과 연결되는 상황이 발생한다.

각 기지국과 통신할 이동국이 결정되면 라운드로빈 스 케줄링을 이용하여 각각의 기지국에서 단위시간마다 하

〈그림 13〉 이동국에서 받는 신호 S와 간섭신호

〈표 4〉 IMT 모델링 파라미터

파라미터	매크로 셀	마이크로 셀	
중심 주파수	27GHz		
대역폭	200MHz		
기지국간 거리	500m	uniform	
기지국 안테나 높이	25m	10m	
이통국의 indoor 비율	80%		
Low/High loss 비율	50%/50%		
최소 이격 거리(d_{2D})	35m	Зm	
기지국 안테나 배열	16x8		
이동국 안테나 배열	4x4		
기지국 최대 송신전력	43dBm	33dBm	

나의 이동국과 통신하도록 샘플링 한다. 예를 들어 A기 지국은 3개의 이동국과 연결되고, B기지국은 2개의 이동 국과 연결된다고 가정한다면 A기지국은 단위 시간마다 A1-A2-A3-A1-A2-A3 과 같은 순서로 연결되며 B기 지국은 B1-B2-B1-B2-B1-B2 와 같은 순서로 연결된 다. 따라서 기지국에 연결된 이동국이 상대적으로 적은 곳은 다른 기지국에 연결된 이동국보다 더 많은 통신이 이루어진다.

3. Beam forming 및 SINR 계산

24.5-27.5GHz 주파수 대역에서는 파장이 짧아 공간 전송에서의 경로손실이 큰 특징이 있다. 차세대 5G 이 동통신에서는 높은 경로손실을 상쇄시키기 위해 기지국 과 이동국간 beam forming을 이용하여 통신한다. 〈그림 8〉에서 볼 수 있듯이 안테나 배열을 기준으로 수평각(φ), 수직각(φ), 안테나 배열의 개수 (*N_H*, *N_V*), 안테나 배열간의 간격(*χ*) 그리고 식 (8)과 식 (9)를 이용하여 안테나 array gain 식 (10)을 계산한다^[4]

$$w_{i,n,m} = \frac{1}{\sqrt{N_H N_V}} \times \left(\frac{1}{2\pi \left((n-1) \frac{d_V}{\lambda} sin(\theta_{iobl}) - (m-1) \frac{d_H}{\lambda} cos(\theta_{iobl}) sin(\phi_{ioscon}) \right)}{e^{\left(j2\pi \left((n-1) \frac{d_V}{\lambda} sin(\theta_{iobl}) - (m-1) \frac{d_H}{\lambda} cos(\theta_{iobl}) sin(\phi_{ioscon}) \right)} \right)} \right)$$
(8)

$$v_{i,n,m} = e^{\left(j2\pi \cdot \left((n-1)\frac{d_V}{\lambda} \cdot \cos\left(\theta\right) - (m-1)\frac{d_H}{\lambda} \cdot \sin\left(\theta\right)\sin\left(\phi\right)\right)\right)}$$
(9)

$$A_{array} = 10 \log 10 \left(\left| \sum_{m=1}^{N_{H}} \sum_{n=1}^{N_{V}} w_{i,n} \cdot v_{n,m} \right|^{2} \right)$$
(10)

식 (10)을 이용하여 〈그림 12〉에서는 기지국과 이동국 이 이루는 각을 중심으로 안테나 배열에 따른 이득 값을 3차원 패턴으로 표현하였다. 이를 통해 기지국과 통신하 는 이동국의 각도에서는 최대 이득을 갖게 되어 송신전력 을 증가시킬 수 있다.

〈그림 13〉은 각 이동국의 SINR (signal to interference plus noise ratio)을 도식화 한 그림이다. 통신하는 기지국으로부터 받는 수신전력과 다른 기지국 으로부터 받는 누적간섭전력은 각각 식 (11)과 식 (12)와 같으며, 이를 바탕으로 식 (13)을 이용하여 SINR을 계산 한다.

$$S_{i} = P_{t,i} - C\!L_{i} + A_{array,BS}(\theta_{i},\phi_{i}) + A_{array,UE}(\theta_{i},\phi_{i}) \qquad (11)$$

$$I_{i} = \sum_{j \neq i}^{57} \left[P_{t,j} - CL_{j} + A_{array,BS}(\theta_{j},\phi_{j}) + A_{array,UE}(\theta_{j},\phi_{j}) \right]$$
(12)
S

$$SINR = \frac{S}{I + N_o} \tag{13}$$

Ⅳ. 경로손실 모델

M.2101문서는 공유분석을 위한 경로손실 모델을 정 의하고 있지 않다. 이는 간섭 대상 시스템 및 환경에 따 라 다양한 모델의 적용이 가능하기 때문이다. 일반적으 로 대상 간섭분석 시스템을 담당하는 ITU 연구그룹의 의 견에 기반하여 경로손실 모델을 적용하게 된다. 2017년 3월 TG5/1은 위성과의 공유 연구를 위해 SG3(WP3K, 3J, 3M)으로부터 WRC-19의제 1.13 공유연구를 위한 ITU-R 경로소실모델적용에 관한 안내 문서^[6]를 받았으 며 이를 기반으로 공유연구를 수행 중이다. 〈표 5〉는 공 유 시나리오 및 주파수 대역 별 사용 가능한 경로손실 모 델을 정리한 결과이다.

1. 주요 모델

SG3 안내문서를 기반으로 향후 공유연구에 적용할 가 능성이 높은 모델로 P.452, P.619, P.2041을 고려할 수 있다. 〈표 6〉은 대표적인 경로손실 모델의 특징을 정리하 였다.

(1) P.452모델^[7]

간섭원과 피간섭원 모두 지상에 있는 경우 적용할 수 있 다. 의제 1.13 주파수 대역내의 위성지구국과 지상 IMT시 스템 간의 간섭분석계산에 주로 적용 가능한 모델이다. 또 한 의제 1.13의 모든 주파수 대역에 적용가능하다. 지상 전파에서 발생하는 모든 전과현상을 반영할 수 있으며, 크

田	5>	공유환경	볔	적용	가능	경로손실	모델 ^[6]
/	\cup	01120			10		

공유 시나리오	ITU–R reference	24.25- 27.5 GHz	31.8– 33.4 GHz	37–52.6 GHz	66–76 GHz	81 86 GHz		
일반	Handbook on interference	일반적인 정보 제공						
	P.1144	전파모델 권고안에 대한 전반적인 정보 제공				트 제공		
	P.[BEL]	YES	YES	YES	YES	YES		
클러터 환경	P.[Clutter_ Loss]	YES	YES	YES	YES	YES		
우주국과 지구국간	P.619	YES	YES	YES	YES	YES		
비행체와	P.2041	YES	YES	YES	YES	YES		
지상간	P.1409	YES	YES	YES	YES	YES		
	P.452	YES	YES	YES	YES	YES		
	P.2001	YES	YES	YES	YES	YES		
시경선	P.1411	YES	YES	YES	YES	YES		
	P.1238	YES	YES	YES	YES	YES		

(표 6)	대표	경로손실	모델	특징비교
-------	----	------	----	------

모델명	Rec. ITU–R P.452	Rec. ITU–R P.2041	Rec. ITU–R P.619
적용대상	지구 표면에 위치하는 시스템	항공기	우주국(인공위성)
산출지표	경로손실(dB)	경로손실(dB)	경로손실(dB)
주파수	100 MHz \sim 50 GHz	1 to 55 GHz	100 MHz \sim 100 GHz
거리	제한없음	제한없음	제한없음
% 시간	0.001-50	0.001-50	0.001-50
% 위치	적용불가능	적용불가능	적용가능
높이	지표상이면 제한없음	지표면우주	지표면-우주

게 장시간 전파 현상과 단시간 전파현상으로 구분하여 각 전파현상을 반영한 경로손실 모델을 제공한다.

장시간 전파현상으로 가시영역전파, 회절, 대류권 산 란의 영향을 반영한다. 회절은 지표면의 장애물에 의한 전파의 회절이 발생하는 경우 고려한다. 대류권산란은 100-150 km 이상 경로에서 회절에 의한 전파의 세기가 미약할 경우 배경 간섭 전력 요인으로 작용한다. 일반적 으로는 다른 현상에 비해 무시할 수 있을 정도로 전파의 세기가 약하다.

단시간 전파현상은 강우 및 특정 기상 현상이 발생하는 단시간 동안 만 발생하는 이례적 전파현상을 의미한다. 해당 현상으로 다중경로 가시영역전파, 강수산란, 대기 상층부의 반사 및 굴절, 표면 덕팅이 있다. 가시영역 전파 의 경우 다중경로현상에 의해 전파가 집중되는 현상으로 인하여 단시간 동안 수신 전파의 세기가 증가할 수 있다. 강수산란의 경우 비, 눈, 안개 등에 의한 산란현상에 의해 전방향으로 전파가 퍼지는 현상을 고려하며 전파의 세기 가 매우 미약하여 일반적으로 잘 고려되지 않는다. 대기 권 상층부의 반사 및 굴절은 250-300 km 까지 영향을 줄 수 있다. 표면 덕팅은 수면이나 해안 상의 전파 경로 에서 단기간 간섭현상을 야기하는 매우 중요한 요인이다. 해수면 상의 전파 경로인 경우 500 km 이상의 거리에서 도 매우 큰 간섭을 야기하여 자유공간 전파 신호보다 더 강한 값을 가질 수 도 있다.

(2) P.619 모델^[8]

의제 1.13 주파수 대역내의 위성우주국과 지상 IMT시 스템 간의 간섭분석계산에 주로 적용 가능한 모델이다. 간섭원이 단수인 경우와 복수인 경우에 각기 다른 모델을 제공한다. 단수인 경우의 경로손실 수식은 다음과 같다.

$$L_{b} = L_{bfs} + A_{xp} + A_{g}(p_{1}) + A_{bs} + A_{s}(p_{2}) + L_{dtb}(p_{1})$$
(14)

위 식에서 L_{bfs}는 자유공간 손실, A_{xp}는 탈편파 손실, A_g(p₁)은 p₁%를 초과하지 않는 대기가스손실, A_{bs}는 빔 확산 손실, A_g(p₂)은 p₂%를 초과하지 않는 대류권 또는 전리층 신틸레이션에 의한 손실, L_{dtb}(p₁)은 덕팅 및 회절 에 의한 손실을 의미한다. 이에 추가하여 빌딩투과손실과

〈그림 14〉 P.2041모델 적용 시나리오^[8]

클러터 손실을 고려할 수 있다. 빌딩투과 손실은 권고초 안인 ITU-R P.[BEL]의 모델^[9]을 이용하며 클러터 손실 또한 권고초안인 ITU-R P.[Clutter]의 모델^[10]을 이용한 다. 다수의 간섭원이 존재하는 경우 식(14) *p_{Lbe}%를* 초과 하지 않는 빌딩 투과 손실 *L_{dtb}*(*p_{Lbe}*)을 추가적으로 고려 한다.

(3) P.2041 모델^[11]

본 모델은 〈그림 14〉에서 볼 수 있듯이 항공기와 위성 간의 전파현상과 항공기와 지구국간의 전파현상에 대한 두 개의 시나리오에 대한 경로손실 계산과정을 제공한다. 항공기내에 탑재된 레이더 및 위성 송수신 시스템과 지상 IMT시스템 간의 간섭분석계산에 주로 적용 가능한 모델 이다. 유사한 시나리오에 활용되어온 기존의 대표적인 모 델로 P.528모델이 있다. P.528모델은 125 MHz ~ 15.5 GHz 대역에 한정하여 적용 가능하며, 대륙성 온대기후에 서 측정된 데이터를 기반으로 하고 있기 때문에 강우 및 대기 감쇄가 심한환경에 적용하기 어려운 단점이 있다^[12].

〈그림 15〉 각 환경과 안테나 높이에 따른 clutter 손실의 변화

P.2041는 이러한 P.528의 단점을 해결한 모델로 1 ~ 55 GHz 대역에 적용가능하며 강우 및 가스감쇄를 매우 구체 적으로 고려하고 있다. 예를 들어 다음 식은 비행기와 인 공위성 간의 전파환경에 대한 강우 및 가스감쇄를 계산하 기 위해 정의된다.

$$A_T^{AS}(p) = A_G^{AS}(p) + \sqrt{(A_R^{AS}(p) + A_C^{AS}(p))^2 + (A_S^{AS}(p))^2} \quad (15)$$

위 식의 우변은 다양한 감쇄를 의미하여 아래첨자로 구 분되어 있다. 아래첨자 기준 G는 산소와 수증기에 의한 감쇄, R은 강우감쇄, C는 구름감쇄, S는 대기권 신틸레 이션(scintillation)에 의한 페이딩을 의미한다. 신틸레이 션 페이딩은 ITU-R P.618 권고안^[13]에 자세히 설명되어 있다.

2. 클러터 모델

(1) P.452 클러터 모델

기존에는 P.452 모델에서 정의하고 있는 클러터 모델 이 주로 사용되어 왔으며 다음 수식을 이용하여 클러터 손실을 정의한다^[7].

〈그림 16〉 지상 경로에 적용되는 거리에 따른 클러터 손실의 평균값¹⁰

〈그림 17〉 지상-우주 또는 지상-항공기 경로에 적용되는 30 GHz 클러 터 손실의 누적확률분포^[10]

$$A_{h} = 10.25 \times e^{-d_{k}} \left(1 - \tanh\left[6 \left(\frac{h}{h_{a}} - 0.625 \right) \right] \right) - 0.33 \quad (16)$$

위 식에서 d_k 는 클러터 거리로서 km 단위이고 h_a 는 m 단위의 클러터 높이이다. 또한 b는 클러터 내에 위치하는 간섭원 또는 피간섭원의 안테나 높이를 나타낸다. 〈그림 15〉는 식 (16)를 이용하여 각 전파 환경과 안테나 높이에 따른 클러터 손실의 변화를 나타낸다. 모든 전파 환경에 대해 안테나 높이가 증가할수록 클러터 손실은 감소하며 안테나의 높이가 클러터 높이보다 높아지면 클러터 손실 은 더 이상 감소하지 않는다. 이는 송수신 안테나의 높이 가 클러터 높이보다 높은 경우 간섭원과 피간섭원간에 장 애물이 존재하지 않게 되기 때문이다. 한편 dense urban 과 urban에 대해 클러터 손실의 최대값은 약 20 dB로 동 일하지만 rural 환경의 경우 최대 클러터 손실은 약 18 dB 임을 알 수 있다. 이러한 현상이 발생하는 이유는 식 (16)에 의해 안테나 높이가 0인 경우 클러터 손실은 클러 터 거리에만 영향을 받으며 클러터 거리가 증가 할수록 클러터 손실은 감소하기 때문이다.

(2) 새로운 클러터 모델^[10]

기존의 P.452 모델에서 클러서 손실은 20 dB 이하로 한정된다. 그러나 밀리미터파 대역에서 측정에 의하면 20 dB이상의 클러터 손실이 발생가능하다. 이러한 문제 를 해결하기 위해 ITU-R SG3에서 P.[Clutter]라는 명 칭으로 새로운 클러터 모델 권고초안이 완성되었다. 해당 모델은 주파수, 주변 클러터 환경, 전파경로 형태에 따라 3가지 세부 모델을 제공한다. 첫째, 시스템이 대표 클러 터 높이보다 낮은 경우에 적용하는 모델이다. 본 모델은 0.03~3 GHz 주파수 대역에 적용가능하며, 기존 P.452

〈그림 18〉 FSS 간섭 시나리오^[14]

모델과 동일한 방식인 기본 전송 손실의 양 끝단 (송신기, 수신기)에 클러터 손실을 더하는 형태로 적용된다. 두 번 째 모델은 2~67 GHz 대역에 적용되며 송,수신기 모두 도심 및 부도심 환경에 위치하는 경우에 대한 통계적인 클러터 손실값을 제공한다. 〈그림 16〉는 해당 모델에 의 한 평균 클러터 손실을 나타낸다. 20 dB 이상의 클러터 손실이 가능함을 확인할 수 있다. 셋째, 지상-우주, 지 상-비행기경로에 적용 가능한 클러터 손실모델이다. 〈그 림 17〉에서 볼 수 있듯이 통계적 모델로 앙각에 따라 클 러터 손실의 누적밀도함수를 제공한다.

Ⅴ. 예상되는 공유분석 시나리오 및 방법

의제 1.13에 제시된 후보대역은 현재 전파규칙에 의해 다양한 타 서비스를 위해 할당되어 있다. 본 논문에서는 대표적 공유 시나리오로인 고정위성서비스와 IMT-2020 간 공유시나리오와 위성간 서비스와 IMT-2020간 공유 시나리오에 대해 설명한다. 또한 각 시나리오에 적용가능 한 간섭분석 기법에 대해 제시한다.

1. 24.25-27.5 GHz 대역 고정위성서비스

〈그림 18〉은 IMT와 FSS간의 동일 주파수 대역 간섭 시나리오이다. FSS와 지구국이 상향링크로 통신할 때 FSS가 상대적으로 먼 거리에 있고 서비스하는 면적이 넓 어 IMT의 기지국 또는 이동국으로부터 간섭을 받게 된 다. 이때의 IMT 기지국이나 이동국으로부터 받는 간섭을 구하여 I/N을 계산한다. FSS에서 하나의 IMT 기지국 또 는 이동국으로부터 받는 간섭 /는 다음과 같다.

$$I[dB] = P_t - PL + G_{IMT.E} + G_{IMT.array} + G_{FSS}$$
(17)

FSS와 통신하는 지구국이 IMT 영역 안에 있으며 FSS 안테나의 주빔방향이 지구국이라고 가정하면 FSS와 IMT 가 이루는 각도도 주빔방향과 거의 같기 때문에 식 (17) 에서 *G_{FSS}*는 FSS 수신안테나의 최대 이득을 사용한다. 전 체 간섭 *I*_{aqq}는 다음과 같이 나타낼 수 있다.

$$I_{agg} = \sum_{i=1}^{n} I_i \times R_a \times R_b \times L_{array} \div S_{IMT}$$
(18)

〈그림 19〉 시나리오: ISS 상향링크 상황에서의 간섭^[15]

위 식에서 R_b 는 outdoor urban hotspot 서비스 환경에 서의 거주지역비율, R_a 는 거주지역중 핫스팟 영역비율이 며 L_{array} 는 네트워크 부하 계수(Network loading factor) 이다. S_{IMT} 는 IMT의 면적으로서, L_{agg} 를 면적으로 나누어 IMT영역에서 받는 전체 간섭량을 km²당 받는 간섭량으 로 환산하였다.최종적으로 허용간섭기준을 만족하는 최 대 IMT 네트워크 영역 $S_{avverage}$ 는 다음과 같다.

$$S_{coverage}[km^2] = 10^{(I/N_{th}[dB] - I/N_{99}[dB/km^2])/10}$$
(19)

위 식에서 *I*/*N*은 I/N CDF 곡선에서 F(x) = 0.99를 만 족하는 x 값이다. 최대 커버리지 영역이란 간섭 허용 기 준을 만족하는 서비스 가능 영역의 최댓값을 의미한다.

2. 24.25-27.5 GHz 대역 위성 간 서비스

〈그림 19〉은 IMT가 저궤도 위성과 Tracking and Data Relay Satellite (TDRS) 간 ISS 상향링크에 미치는 간섭전력을 계산하는 시나리오를 나타낸다. 최악의 상황 을 고려하여 5G 기지국이 TDRS 수신안테나의 최대 이 득 방향에 위치한다고 가정했을 경우의 IMT 간섭전력이 TDRS의 간섭 기준 허용치를 만족한다면 실제 환경에서 도 허용기준을 만족하게 될 것이다. TDRS가 수신하는 누 적간섭전력은 위의 FSS 경우와 동일한 연산을 수행하여 계산가능하다.

Ⅵ. 전망과 결론

WRC-19 의제 1.13은 차세대 5G 이동통신 시스템 용 국제 공용 주파수 확보를 위한 매우 중요한 내용을 다루 고 있다. 이는 향후 대한민국의 5G 이동통신을 위한 주 파수 정책 및 관련 산업에 매우 큰 영향을 미칠 수 있다. 정부 및 산,학,연 전문가로 구성된 한국ITU연구위원회는 이러한 중요성을 인지하고 적극적으로 대응하고 있다. 이 러한 진행 상황 및 표준현황의 공유를 통해 WRC-19에 서 국가 및 산업차원의 목적을 성공적으로 달성할 수 있 기를 기대한다.

참고문헌

- [1] RESOLUTION 238 (WRC-15), "Studies on frequencyrelated matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portion(s) of the frequency range between 24.25 and 86 GHz for the future development of International Mobile Telecommunications for 2020 and beyond", 2015.
- [2] ITU-R Preparatory Studies for WRC-19, http://www.itu.int/en/ ITU-R/study-groups/rcpm/Pages/wrc-19-studies.aspx
- [3] 한국ITU연구위원회 WP 5D 연구반, https://www.koreaitu.or.kr/ itur/summary.itu?rpi=10&rci=81.
- [4] "Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies" Rec. ITU-R M.2101-0, Feb, 2017.
- [5] 3GPP TR 38,900 Technical Specification Group Radio Access Network "Study on channel model for frequency spectrum above 6 GHz" (Dec/2016)
- [6] Working Parties 3K, 3J and 3M (JDG-3), "DRAFT LIAISON STATEMENT TO TASK GROUP 5/1," ITU-R Document 3K/ TEMP/32-E, March 2017.
- [7] Prediction procedure for the evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.7GHz, ITU-R Recommendation P.452–12.
- [8] Working Party 3M, "WORKING DOCUMENT TOWARD A PRELIMINARY DRAFT REVISION OF RECOMMENDATION ITU-R P.619–1," ITU-R Document 3M/TEMP/44–E March 2017.
- [9] Working Party 3K, "DRAFT NEW RECOMMENDATION ITU-R P.[BEL] Prediction of Building Entry Loss," ITU-R Document

3K/TEMP/42-E March 2017.

- [10] Joint Sub–Working Groups 3K–3M Clutter, "PRELIMINARY DRAFT NEW RECOMMENDATION ITU–R P.[CLUTTER]," ITU–R Document 3K/TEMP/45–E March 2017.
- [11] Prediction of path attenuation on links between an airborne platform and Space and between an airborne platform and the surface of the Earth, ITU-R Recommendation P.2041.
- [12] Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands, ITU-R Recommendation P.528-3.
- [13] Propagation data and prediction methods required for the design of Earth-space telecommunication systems, ITU-R Recommendation P.618–12.
- [14] Japan, "Proposal on sharing study of IMT systems with fixed satellite service (Earth-to-space) in the 27-27.5 GHz band," ITU-R Document 5-1/83-E, May, 2017.
- [15] UK, "Sharing and compatibility studies of IMT systems in the 25,25–27,5 GHz frequency range with the inter-satellite service", ITU-R Document 5–1/79–E, May 2017

 2002년 연세대학교 기계전자공학부 졸업(학사)
 2004년 연세대학교 대학원 전기전자공학과 졸업(석사)
 2009년 연세대학교 대학원 전기전자학과 졸업(박사)
 2009년~2011년 University of Texas at Austin, Postdoctoral Fellow
 2011년~2012년 삼성전자 네트워크사업부 책임연구원

- 2012년~2015년 국립 한밭대학교 전자·제어공학과
- 조교수 • 2015년~현재 국립 한밭대학교 전자 · 제어공학과 부교수
- 2016년~현재 한국 ITU연구위원회 WP5D 위원
- 2016년~현재 한국 WRC-19 준비단 WG2(이동) 위원

〈관심분야〉 이기종 무선네트워크, 무선통신 시스템간의 주파수공유 및 양립성, 학률기하이론