DOI QR코드

DOI QR Code

Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films

ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성

  • Kang, Seong-Jun (Department of Electrical & Semiconductor Engineering, Chonnam National University) ;
  • Joung, Yang-Hee (Department of Electrical & Semiconductor Engineering, Chonnam National University)
  • Received : 2017.03.22
  • Accepted : 2017.05.22
  • Published : 2017.07.31

Abstract

We prepared ITZO thin films with various thicknesses on glass substrates using RF magnetron sputtering and investigated electrical, optical and structural properties of the thin film. Sheet resistance of ITZO thin film showed a decreasing trend on the increase of film thickness, but its resistivity exhibited a substantially constant value of $5.06{\pm}1.23{\times}10^{-4}{\Omega}-cm$. Transmittance of ITZO thin film moved to the long-wavelength with the increase of film thickness. Figure of merit in a visible light and an absorption area of P3HT:PCBM organic active layer of the 360nm-thick IZTO thin film was $8.21{\times}10^{-3}{\Omega}^{-1}$ and $9.29{\times}10^{-3}{\Omega}^{-1}$, respectively. Through XRD and AFM measurements, it was confirmed that all the ITZO thin films have amorphous structure and the surface roughness of films are very smooth in the range of 0.561 to 0.263 nm. In this study, it was found that amorphous ITZO thin film is a very promising material for organic solar cell.

본 연구에서는 고주파 마그네트론 스퍼터링 법으로 두께를 변화시켜가며 유리기판 위에 ITZO 박막을 제작하여 전기적, 광학적, 구조적 특성을 조사하였다. ITZO 박막의 두께가 증가함에 따라 면저항은 현저하게 감소하는 추세를 보였으나, 비저항은 ITZO 박막의 두께와 무관하게 $5.06{\pm}1.23{\times}10^{-4}{\Omega}{\cdot}cm$의 거의 일정한 값을 나타내었다. ITZO 박막의 두께가 증가할수록 투과도 곡선이 장파장 쪽으로 이동하였다. 두께 360 nm 인 ITZO 박막의 가시광 영역에서와 P3HT : PCBM 유기물 활성층의 흡수 영역에서의 재료평가지수는 각각 $8.21{\times}10^{-3}{\Omega}^{-1}$$9.29{\times}10^{-3}{\Omega}^{-1}$로 가장 우수한 값을 나타내었다. XRD와 AFM 측정을 통해, 두께에 상관없이 모든 ITZO 박막이 비정질 구조이며 표면 거칠기는 0.309에서 0.540 nm 범위로 매우 부드러운 표면을 가지고 있음을 확인할 수 있었다. 본 연구를 통해 비정질 ITZO 박막이 유기박막 태양전지에 매우 유망한 재료라는 것을 알 수 있었다.

Keywords

References

  1. H. F. Meng, Polymer Electronics, New York, CRC Press, 2012.
  2. M. Helgesen, R. Sondergaard, and F. C. Krebs, "Advanced Materials and Processes for Polymer Solar Cell Devices," Journal of Materials Chemistry, vol. 20, pp. 36-60, Jan. 2010. https://doi.org/10.1039/B913168J
  3. F. C. Krebs, S. A. Gevorgyan, and J. Apstrup, "A Roll-to-Roll Process to Flexible Polymer Solar Cells : Model Studies, Manufacture and Operational Stability Studies," Journal of Materials Chemistry, vol. 19, pp. 5442- 5451, Aug. 2009. https://doi.org/10.1039/b823001c
  4. L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, "Thickness Dependence of Structural, Electrical and Optical Properties of Indium Tin Oxide (ITO) Films Deposited on PET Substrate," Applied Surface Science, vol. 254, pp. 3504- 3508, Mar. 2008. https://doi.org/10.1016/j.apsusc.2007.11.063
  5. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Advanced Materials, vol. 20, pp. 4061-4067, Nov. 2008. https://doi.org/10.1002/adma.200800338
  6. R. Jackson and S. Graham, "Specific Contact Resistance at Metal/Carbon Nanotube Interfaces," Applied Physics Letters, vol. 94, pp. 012109-1-012109-3, Jan. 2009. https://doi.org/10.1063/1.3067819
  7. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic Solar Cells with Solution-Processed Grapheme Transparent Electrodes," Applied Physics Letters, vol. 92, pp. 263302-1-263302-3, Jul. 2008. https://doi.org/10.1063/1.2924771
  8. J. A. Jeong, H. K. Kim, and S. I. Na, "Low Resistance and High Transparent Amorphous ITZO Electrode Cosputtered by Linear Facing Target Sputtering for Organic Photovoltaics," Electrochemical and Solid-State Letters, vol. 12, pp. J80-J82, Jun. 2009. https://doi.org/10.1149/1.3158052
  9. J. H. Bae, J. M. Moon, S. W. Jeong, J. J. Kim, J. W. Kang, D. G. Kim, J. K. Kim, J. W. Park, and H. K. Kim, "Transparent Conducting Indium Zinc Tin Oxide Anode for Highly Efficient Phosphorescent Organic Light Emitting Diodes," Journal of Electrochemical Society, vol. 155, pp. J1-J6, Jan. 2008. https://doi.org/10.1149/1.2799745
  10. H. Kim, J. S. Horwitz, G. Kushto. A. Pique, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, "Effect of Film Thickness on the Properties of Indium Tin Oxide Thin Films," Journal of Applied Physics, vol. 88, pp. 6021-6025, Nov. 2000. https://doi.org/10.1063/1.1318368
  11. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, Optical, and Structural Properties of Indium- Tin-Oxide Thin Films for Organic Light-Emitting Devices," Journal of Applied Physics, vol. 86, pp. 6451-6461, Dec. 1999. https://doi.org/10.1063/1.371708
  12. J. Kim and Y. R. Park, "Large and Abrupt Optical Band Gap Variation in In-Doped ZnO," Applied Physics Letters, vol. 78, pp. 475-477, Jan. 2001. https://doi.org/10.1063/1.1342042
  13. G. Haacke, "New Figure of Merit for Transparent Conductors," Journal of Applied Physics, vol. 32, pp. 4086- 4089, Aug. 1976.