DOI QR코드

DOI QR Code

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측

  • Received : 2017.01.17
  • Accepted : 2017.04.22
  • Published : 2017.08.01

Abstract

GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

Ni기 초내열합금인 GTD111 DS는 가스터빈 블레이드에 사용된다. 본 논문에서는 실제 운전조건과 유사한 조건을 설정하여 GTD111 DS의 저주기 피로시험을 실시하였다 상온, $760^{\circ}C$, $870^{\circ}C$의 온도범위와 다양한 변형률에서 저주기 피로시험을 수행하였다. 실험결과 총 변형률이 증가함에 따라 피로수명은 감소하였다. 상온 및 $760^{\circ}C$에서는 주기적 경화반응이 나타났으며 $870^{\circ}C$에서는 주기적 연화반응이 나타났다. $870^{\circ}C$에서 응력완화 현상은 유지시간에 따른 크리프의 영향으로 나타났다. 피로수명과 총 변형률의 관계는 Coffin-Manson 식을 통해 얻었다. 파단면은 SEM을 통해 초기균열 및 피로진전지역을 관찰하였다.

Keywords

Acknowledgement

Supported by : 한전 전력연구원

References

  1. Tomkins, B., 1981, Creep and Fatigue in High Temperature Alloys, Bresers J. (Ed.), Applied Science Publication.
  2. Runkle, J.C. and Pellous, R. M., 1978, Fatigue Mechanisms, ASTM STP 675.
  3. Hwang, K. T., Kim, J. H., Yoo, K. B., Lee, H. S. and Yoo, Y. S., 2010, "Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 10, pp. 1403-1409. https://doi.org/10.3795/KSME-A.2010.34.10.1403
  4. Yang, H. Y., Kim, J. H., Yoo, K. B., Lee, H. S. and You, Y. S., 2011, "Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 7, pp. 753-758. https://doi.org/10.3795/KSME-A.2011.35.7.753
  5. Chu, Z. K., Yu, J. J., Sun, X. F., Guan, H. R. and Hu, Z. G., 2010, "High Temperature Low Cycle Fatigue Behavior of a Directionally Solidified Ni-base Superalloy DZ951," Materials Science and Engineering, Vol. 488, pp. 389-397.
  6. Shi, Z. X., Wang, X. G. Liu, S. H. and Li, J. R., 2015, "Low Cycle Fatigue Properties and Microstructure Evolution at $760^{\circ}C$ of a Single Crystal Superalloy," Progress in Natural Science, Vol. 25, pp. 78-83. https://doi.org/10.1016/j.pnsc.2015.01.009
  7. Ibanez, A. R., Spinvasan, V. S. and Saxena, A., 2006, "Creep Deformation and Rupture Behaviour of Directionally Solidified GTD111 Superalloy," Fatigue & Fracture of Engineering Materials & Structures, Vol. 29, pp. 1010-1020. https://doi.org/10.1111/j.1460-2695.2006.01066.x
  8. Yang, S. H., Kim, M. Y., Park, S. Y. and Kim, S. H., 2009, "Effect of Heat Treatment on Microstructure and Mechanical Properties of the Nickel Base Superalloy GTD111DS," Journal of the Korean Society for Precision Engineering, Vol. 26, No. 3, pp. 19-24.
  9. EPRI, 2006, Gas Turbine Blade Superalloy Material Property Handbook, EPRI Technical Report, pp. 267-276.
  10. ASTM, 2004, Standard Practice for Strain -Controlled Fatigue Testing, ASTM Standards, ASTM E 606-04, pp. 1-16.
  11. Choe, B. H., Lee, J. H., Kim, H. M. and Lee, H. C., 1991, "Low Cycle Fatigue Properties of Polycrystalline and Directionally Solidified CM247LC Superalloy," Korean Journal of Metals and Materials, Vol. 29, No. 6.
  12. Hwang, K. T., 2011, "A Study on Low Cycle Fatigue Characteristics of Superalloy Used Turbine Blade," Department of Mechanical Design Engineering, Graduate School Chungnam National University.
  13. He, L.Z., Zheng, Q., Sun, X.F., Guan, H.R., Hu, Z.Q., Tieu, A.K., Lu, C. and Zhu, H.T., 2005, "High Temperature Low Cycle Fatigue Behavior of Ni-base Superalloy M963," Materials Science and Engineering A, Vol. 402, pp. 33-41. https://doi.org/10.1016/j.msea.2005.03.105