SIMPLY CONNECTED COMPLEX SURFACES OF GENERAL TYPE WITH $p_{g}=0$ AND $K^{2}=1,2$

Heesang Park, Jongil Park, Dongsoo Shin, and Ki-Heon Yun

Abstract

We construct various examples of simply connected minimal complex surfaces of general type with $p_{g}=0$ and $K^{2}=1,2$ using \mathbb{Q} Gorenstein smoothing method.

1. Introduction

In this paper we construct various examples of simply connected minimal complex surfaces of general type with $p_{g}=0$ and $K^{2}=1,2$. We apply the \mathbb{Q}-Gorenstein smoothing method used in $[3,4,5]$.

The examples of this paper would be useful for studying the Kollár-Shepherd-Barron-Alexeev (KSBA) compactification (developed in Kollár-ShepherdBarron [2]) of surfaces of general type with $\chi=1$ and $K^{2}=1,2$ because of the method of construction. The methods in $[3,4,5]$ are to find a rational surface Z which contains several disjoint linear chains of \mathbb{P}^{1} representing the resolution graphs of quotient surface singularities of class T. We contract these chains of \mathbb{P}^{1} from the rational surface Z to produce a projective singular surface X with singularities of class T. We then prove that the singular surface X has a \mathbb{Q}-Gorenstein smoothing and the general fiber X_{t} of the \mathbb{Q}-Gorenstein smoothing is a simply connected minimal surface of general type with $p_{g}=0$ and $K^{2}=1,2$.

Therefore each singular surface X in this paper determines a codimension one component of the boundary of the KSBA compactifications of moduli space of complex surfaces of general type with $\chi=1$ and $K_{X}^{2}=1,2$; cf. Hacking [1]. For instance Stern and Urzúa [6] identified the minimal models of the general surfaces of the KSBA divisors corresponding to each singular surfaces X in this paper.

It is a very interesting problem to determine whether these examples are diffeomorphic (or deformation equivalent) to each other or to already known surfaces. We leave it for further studies.

[^0]Acknowledgements. H. Park was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT \& Future Planning (NRF-2015R1C1A2A01054769). J. Park was supported by Excellence and Leading Research Grant funded by Seoul National University. He also holds a joint appointment at KIAS and in the Research Institute of Mathematics, SNU. D. Shin was supported by the research fund of Chungnam National University in 2016.

2. \mathbb{Q}-Gorenstein smoothing method

We review the method of constructions, so-called \mathbb{Q}-Gorenstein smoothing method. Since all the proofs are basically the same as the case of the main construction in Lee-Park [3, §3], we briefly sketch the method step by step and we recall some delicate parts of the method.

Procedure

At first we take a pencil of cubic curves in $\mathbb{C P}^{2}$. We resolve the base points (including infinitely near base points) of the pencil by blowing up 9 times along the base points so that we get a rational elliptic surface Y. We further blow up Y appropriately (explained below) to construct a rational surface Z that contains several special linear chains of rational curves. The linear chains can be contracted to special cyclic quotient singular points of type $\frac{1}{n^{2}}(1, n a-1)$ with $1 \leq a<n$ and $(n, a)=1$, which are called singularities of class T, on a singular surface X. Then a general fiber X_{t} of a \mathbb{Q}-Gorenstein smoothing of X will be a complex surface with the desired invariants.

Constraints

In order to guarantee that the singular surface X admits a \mathbb{Q}-Gorenstein smoothing and its general fiber X_{t} has the desired invariants, the rational surface Z should be constructed very carefully from Y. The below explains some constraints of the construction of Z.

Existence of $a \mathbb{Q}$-Gorenstein smoothing. Since every singularities of class T on the singular surface X has a local \mathbb{Q}-Gorenstein smoothing, it is enough to show that there is no obstruction to globalize the local smoothings. Indeed the obstruction lies in $H^{2}\left(X, \mathcal{T}_{X}\right)$ where \mathcal{T}_{X} is the tangent sheaf of X. One can prove the vanishing $H^{2}\left(X, \mathcal{T}_{X}\right)=0$ by a similar method in Lee-Park [3] if the rational surface Z is constructed according to the following constraints:
Constraint 1. At most two nodal singular fibers of Y (or their proper transforms on Z) are contained the exceptional divisors of the singularities of class T of X
Constraint 2. The exceptional divisors of the singularities of class T of X should not contain all components of any reducible singular fibers (including their proper transforms on Z) of Y.

The desired invariants. At first, the geometric genus $p_{g}\left(X_{t}\right)$ is zero because X is constructed from a rational surface Z. It is not difficult to show that X_{t} is simply connected by van Kampen theorem. Indeed if Z_{0} is an open 4-manifold obtained by deleting a small open neighborhood of the singular points of X, then it is enough to show that Z_{0} is simply connected in order to show that X_{t} is simply connected. One can show by van Kampen theorem that $\pi_{1}\left(Z_{0}\right)$ is generated by (roughly speaking) normal circles around the exceptional divisors of the singularities of class T. But the normal circles lie on (-1)-spheres connecting the exceptional divisors. Hence there are relations on the generators of $\pi_{1}\left(Z_{0}\right)$ and one can show that they should be zero by solving the relations. The self-intersection number K^{2} can be computed by the formula

$$
\begin{aligned}
K^{2}=9 & - \text { the number of blowing-ups needed to construct } Z \text { from } Y \\
& + \text { the number of irreducible components } \\
& \text { of the exceptional divisors of the singularities of class } T \text { of } X .
\end{aligned}
$$

Finally, one of the main constraints arises because X_{t} should be of general type. For this it is enough to show that K_{X} is nef. One can easily show that its pull-back $f^{*} K_{X}$ on Z is effective. Therefore it is needed to show that the intersection number of $f^{*} K_{X}$ with the (-1)-curves on Z are nonnegative. Since every (-1)-curve on Z intersects the exceptional divisor of the singularities of class T, the nefness of K_{X} follows from the following final constraints.
Constraint 3. Every (-1)-curve on Z should intersect at least two components of the exceptional divisors of the singularities of class T and the sum of the discrepancies of the components of the exceptional divisors intersecting a given (-1)-curve should be not less that one.
Here a discrepancy is defined as follows. Let $(X, 0)$ be a normal surface singularity with the minimal good resolution $f:(V, E) \rightarrow(X, 0)$. Let $E=$ $\sum_{i=1}^{n} E_{i}$ be the decomposition of the exceptional divisor E with irreducible components E_{i}. Then

$$
K_{V}=f^{*} K_{X}+\sum_{i=1}^{n} a_{i} E_{i}
$$

for some $a_{i} \in \mathbb{Z}$. The coefficients a_{i} is called the discrepancy of E_{i}.

3. Various examples

In the following we list pencils of cubics in $\mathbb{C P}^{2}$, elliptic fibrations Y obtained from the pencils, and the rational surfaces Z obtained by blowing-up Y several times appropriately. In the rational surfaces Z, we indicate the configurations of linear chains of \mathbb{P}^{1} which will be contracted so that we obtain a singular surface X which has a \mathbb{Q}-Gorenstein smoothing.
Type of singular fibers. The index, for example $I_{9}+3 I_{1}$, denotes the type of singular fibers of elliptic fibrations.

Pencils of cubics. The pencils of cubic curves are presented by two plane cubic curves Γ and Γ^{\prime} which give rise to the special singular fibers indicated in the index. We describe how they intersect as follows: In the figure of the pencil, the pair $(k, 1)$ denotes the intersection numbers of a curve with the two branches of another curve at a node. We denote by Γ and Γ^{\prime} the solid curve and the dotted curve, respectively.

Sections. Blowing up several times at each intersection points of two cubic curves, we get a rational elliptic surface Y admitting an elliptic fibration $Y \rightarrow$ $\mathbb{C P}^{1}$. We describe the way how sections S_{i} of $Y \rightarrow \mathbb{C P}^{1}$ intersect with special singular fibers of the elliptic fibrations. We indicate on Z which sections are used to construct the rational surface Z. We abbreviate S_{i} to i.

Rational surfaces Z. The number n in $Z=E(1) \# n \mathbb{C P}^{2}$ indicates how many times we blow up to get Z from Y. The numbers in the figures of Z indicate the self-intersection numbers of each curves and all rational curves without self-intersection numbers are - 2 -curves.

The exceptional divisors. On the dual graphs of the exceptional divisors of the singularities of class T in Z, we denote the discrepancies.

3.1. Examples with $K^{2}=1$

Example 3.1. - Types of singular fibers: $I_{8}+4 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 13 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
C_{4,1}: \stackrel{3 / 4}{\underset{-6}{3 / 4}}-\underset{-2}{2 / 4}-\underset{-2}{\substack{1 / 4 \\-2}}
$$

Example 3.2. - Types of singular fibers: $I_{7}+I I I+2 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 10 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{4,1}: \begin{array}{c}
3 / 4 \\
{ }_{-6}^{0}
\end{array}-\begin{array}{c}
2 / 4 \\
-2
\end{array}-\begin{array}{c}
1 / 4 \\
-2
\end{array}
\end{aligned}
$$

Example 3.3. - Types of singular fibers: $I_{5}+I_{3}+I_{2}+2 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 12 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \begin{array}{c}
1 / 2 \\
{ }_{-4} \\
-4 / 4
\end{array}
\end{aligned}
$$

Example 3.4.

- Types of singular fibers: $I_{2}^{*}+I_{2}+2 I_{1}$
- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 16 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \begin{array}{c}
1 / 2 \\
-4 \\
-4
\end{array} \\
& C_{2,1}: \begin{array}{c}
1 / 2 \\
-4
\end{array} \\
& C_{2,1}: \begin{array}{c}
1 / 2 \\
-4 \\
-4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& C_{5,1}: \begin{array}{c}
4 / 5 \\
0 \\
-7
\end{array}-\begin{array}{c}
3 / 5 \\
0 \\
-2
\end{array}-\begin{array}{c}
2 / 5 \\
0 \\
-2
\end{array}-\begin{array}{c}
1 / 5 \\
0 \\
-2
\end{array}
\end{aligned}
$$

3.2. Examples with $K^{2}=2$

Example 3.5.

- Types of singular fibers: $I_{7}+I I I+2 I_{1}$
- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 19 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors
$C_{2,1}: \begin{gathered}1 / 2 \\ { }_{-4}^{0} \\ 1 / 2\end{gathered}$
$C_{2,1}: \begin{gathered}1 / 2 \\ { }_{-4}^{0}\end{gathered}$

Example 3.6. - Types of singular fibers: $I_{7}+I_{2}+3 I_{1}$
- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 22 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \stackrel{1 / 2}{\circ} \\
& C_{2,1}: \begin{array}{c}
1 / 2 \\
-4 \\
-4
\end{array}
\end{aligned}
$$

Example 3.7. - Types of singular fibers: $I_{6}+I V+2 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 15 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{3,1}: \stackrel{\begin{array}{c}
2 / 3 \\
-5
\end{array}}{\underset{-5}{1 / 3}} \begin{array}{c}
1 / 3 \\
-2
\end{array}
\end{aligned}
$$

Example 3.8. - Types of singular fibers: $I_{6}+I I I+3 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 15 \overline{\mathbb{P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \begin{array}{c}
1 / 2 \\
0 \\
-4
\end{array}
\end{aligned}
$$

Example 3.9. - Types of singular fibers: $I_{6}+I_{3}+3 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 19 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors
$C_{2,1}: \stackrel{1 / 2}{\stackrel{1}{0}} \underset{-4}{ }$
$C_{2,1}: \begin{gathered}1 / 2 \\ -4 \\ -4\end{gathered}$

Example 3.10.
- Types of singular fibers: $I_{6}+2 I_{2}+2 I_{1}$
- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 15 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \stackrel{1 / 2}{\circ} \\
& C_{3,1}: \underset{-5}{2 / 3}-\begin{array}{c}
1 / 3 \\
-2
\end{array} \\
& C_{4,1}: \begin{array}{ccc}
3 / 4 \\
\bigcirc & -6 & \begin{array}{c}
2 / 4 \\
\bigcirc \\
-2
\end{array} \\
\hline-2
\end{array} \begin{array}{c}
1 / 4 \\
\bigcirc \\
-2
\end{array}
\end{aligned}
$$

Example 3.11. - Types of singular fibers: $I_{5}+I_{4}+3 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 16 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{3,1}: \stackrel{2 / 3}{\bigcirc} \underset{-5}{\circ}-\begin{array}{c}
1 / 3 \\
\hline-2
\end{array} \\
& C_{4,1}: \underset{-6}{3 / 4}-\underset{-2}{2 / 4}-\begin{array}{c}
1 / 4 \\
-2
\end{array} \\
& C_{4,1}: \underset{-6}{3 / 4}-\underset{-2}{2 / 4}-\begin{array}{c}
1 / 4 \\
-2
\end{array} \\
& C_{5,3}: \underset{-2}{2 / 5}-\underset{-5}{\mathrm{O}_{-}^{2 / 5}}-\begin{array}{c}
3 / 5 \\
-3
\end{array}
\end{aligned}
$$

Example 3.12. \quad Types of singular fibers: $I_{5}+I_{3}+I_{2}+2 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 14 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{3,1}: \begin{array}{cc}
2 / 3 \\
\mathrm{O}_{-5} \\
-2
\end{array} \begin{array}{c}
1 / 3 \\
\mathrm{O} \\
-2
\end{array} \\
& C_{3,1}: \underset{-5}{2 / 3}-\begin{array}{c}
1 / 3 \\
\hline-2
\end{array} \\
& C_{4,1}: \begin{array}{c}
3 / 4 \\
\bigcirc-6
\end{array}-\begin{array}{c}
2 / 4 \\
\bigcirc-2
\end{array}-\begin{array}{c}
1 / 4 \\
\bigcirc \\
-2
\end{array} \\
& C_{4,1}: \underset{\bigcirc}{3 / 4}-\begin{array}{c}
2 / 4 \\
\bigcirc \\
-2
\end{array}-\begin{array}{c}
1 / 4 \\
\bigcirc \\
-2
\end{array}
\end{aligned}
$$

Example 3.13. - Types of singular fibers: $I_{5}+I_{3}+4 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 13 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{3,1}: \stackrel{2 / 3}{\bigcirc} \underset{-5}{\circ}-\begin{array}{c}
1 / 3 \\
\bigcirc \\
-2
\end{array} \\
& C_{4,1}: \underset{-6}{3 / 4}-\begin{array}{c}
2 / 4 \\
\bigcirc-2
\end{array}-\begin{array}{c}
1 / 4 \\
-2 \\
-2
\end{array}
\end{aligned}
$$

Example 3.14. • Types of singular fibers: $I_{2}^{*}+I_{2}+2 I_{1}$

- Pencils of cubics

- Sections

- Rational surfaces $Z=\mathbb{C P}^{2} \sharp 19 \overline{\mathbb{C P}}^{2}$

- The exceptional divisors

$$
\begin{aligned}
& C_{2,1}: \begin{array}{c}
1 / 2 \\
-4 \\
-4 / 5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& C_{5,1}: \begin{array}{c}
4 / 5 \\
-7
\end{array}-\begin{array}{c}
3 / 5 \\
-2
\end{array}-\begin{array}{c}
2 / 5 \\
-2
\end{array}-\begin{array}{c}
1 / 5 \\
-2
\end{array}
\end{aligned}
$$

References

[1] P. Hacking, Compact moduli spaces of surfaces of general type, Compact moduli spaces and vector bundles, 1-18, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012.
[2] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338.
[3] Y. Lee and J. Park, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=2$, Invent. Math. 170 (2007), no. 3, 483-505.
[4] H. Park, J. Park, and D. Shin, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=3$, Geom. Topol. 13 (2009), no. 2, 743-767.
[5] , A simply connected surface of general type with $p_{g}=0$ and $K^{2}=4$, Geom. Topol. 13 (2009), no. 3, 1483-1494.
[6] A. Stern and G. Urzúa, KSBA surfaces with elliptic quotient singularities, $\pi_{1}=1, p_{g}=0$, and $K^{2}=1,2$, Israel J. Math. 214 (2016), no. 2, 651-673.

Heesang Park
Department of Mathematics
Konkuk University
Seoul 05029, Korea
E-mail address: HeesangPark@konkuk.ac.kr
Jongil Park
Department of Mathematical Sciences
Seoul National University
Seoul 08826, Korea
AND
Korea Institute for Advanced Study
Seoul 02455, Korea
E-mail address: jipark@snu.ac.kr
Dongsoo Shin
Department of Mathematics
Chungnam National University
Daejeon 34134, Korea
E-mail address: dsshin@cnu.ac.kr
Ki-Heon Yun
Department of mathematics
Sungshin Women's University
Seoul 02844, Korea
E-mail address: kyun@sungshin.ac.kr

[^0]: Received July 1, 2016; Revised December 27, 2016; Accepted January 25, 2017.
 2010 Mathematics Subject Classification. 14J29, 14J10, 14J17, 53D05.
 Key words and phrases. \mathbb{Q}-Gorenstein smoothing, rational blow-down, surface of general type.

