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SIMPLY CONNECTED COMPLEX SURFACES OF GENERAL

TYPE WITH pg = 0 AND K2 = 1, 2

Heesang Park, Jongil Park, Dongsoo Shin, and Ki-Heon Yun

Abstract. We construct various examples of simply connected minimal

complex surfaces of general type with pg = 0 and K2 = 1, 2 using Q-
Gorenstein smoothing method.

1. Introduction

In this paper we construct various examples of simply connected minimal
complex surfaces of general type with pg = 0 and K2 = 1, 2. We apply the
Q-Gorenstein smoothing method used in [3, 4, 5].

The examples of this paper would be useful for studying the Kollár-Shepherd-
Barron-Alexeev (KSBA) compactification (developed in Kollár-Shepherd-
Barron [2]) of surfaces of general type with χ = 1 and K2 = 1, 2 because
of the method of construction. The methods in [3, 4, 5] are to find a rational
surface Z which contains several disjoint linear chains of P1 representing the
resolution graphs of quotient surface singularities of class T . We contract these
chains of P1 from the rational surface Z to produce a projective singular sur-
face X with singularities of class T . We then prove that the singular surface
X has a Q-Gorenstein smoothing and the general fiber Xt of the Q-Gorenstein
smoothing is a simply connected minimal surface of general type with pg = 0
and K2 = 1, 2.

Therefore each singular surface X in this paper determines a codimension
one component of the boundary of the KSBA compactifications of moduli space
of complex surfaces of general type with χ = 1 and K2

X = 1, 2; cf. Hacking [1].
For instance Stern and Urzúa [6] identified the minimal models of the general
surfaces of the KSBA divisors corresponding to each singular surfaces X in this
paper.

It is a very interesting problem to determine whether these examples are
diffeomorphic (or deformation equivalent) to each other or to already known
surfaces. We leave it for further studies.
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2. Q-Gorenstein smoothing method

We review the method of constructions, so-called Q-Gorenstein smoothing
method. Since all the proofs are basically the same as the case of the main
construction in Lee-Park [3, §3], we briefly sketch the method step by step and
we recall some delicate parts of the method.

Procedure

At first we take a pencil of cubic curves in CP2. We resolve the base points
(including infinitely near base points) of the pencil by blowing up 9 times along
the base points so that we get a rational elliptic surface Y . We further blow
up Y appropriately (explained below) to construct a rational surface Z that
contains several special linear chains of rational curves. The linear chains can
be contracted to special cyclic quotient singular points of type 1

n2 (1, na − 1)
with 1 ≤ a < n and (n, a) = 1, which are called singularities of class T , on a
singular surface X. Then a general fiber Xt of a Q-Gorenstein smoothing of X
will be a complex surface with the desired invariants.

Constraints

In order to guarantee that the singular surface X admits a Q-Gorenstein
smoothing and its general fiber Xt has the desired invariants, the rational
surface Z should be constructed very carefully from Y . The below explains
some constraints of the construction of Z.

Existence of a Q-Gorenstein smoothing. Since every singularities of class T on
the singular surface X has a local Q-Gorenstein smoothing, it is enough to
show that there is no obstruction to globalize the local smoothings. Indeed the
obstruction lies in H2(X, TX) where TX is the tangent sheaf of X. One can
prove the vanishing H2(X, TX) = 0 by a similar method in Lee–Park [3] if the
rational surface Z is constructed according to the following constraints:

Constraint 1. At most two nodal singular fibers of Y (or their proper trans-
forms on Z) are contained the exceptional divisors of the singu-
larities of class T of X

Constraint 2. The exceptional divisors of the singularities of class T of X
should not contain all components of any reducible singular fibers
(including their proper transforms on Z) of Y .
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The desired invariants. At first, the geometric genus pg(Xt) is zero because
X is constructed from a rational surface Z. It is not difficult to show that
Xt is simply connected by van Kampen theorem. Indeed if Z0 is an open
4-manifold obtained by deleting a small open neighborhood of the singular
points of X, then it is enough to show that Z0 is simply connected in order to
show that Xt is simply connected. One can show by van Kampen theorem that
π1(Z0) is generated by (roughly speaking) normal circles around the exceptional
divisors of the singularities of class T . But the normal circles lie on (−1)-spheres
connecting the exceptional divisors. Hence there are relations on the generators
of π1(Z0) and one can show that they should be zero by solving the relations.
The self-intersection number K2 can be computed by the formula

K2 = 9− the number of blowing-ups needed to construct Z from Y

+ the number of irreducible components

of the exceptional divisors of the singularities of class T of X.

Finally, one of the main constraints arises because Xt should be of general
type. For this it is enough to show that KX is nef. One can easily show that
its pull-back f∗KX on Z is effective. Therefore it is needed to show that the
intersection number of f∗KX with the (−1)-curves on Z are nonnegative. Since
every (−1)-curve on Z intersects the exceptional divisor of the singularities of
class T , the nefness of KX follows from the following final constraints.

Constraint 3. Every (−1)-curve on Z should intersect at least two components
of the exceptional divisors of the singularities of class T and the
sum of the discrepancies of the components of the exceptional
divisors intersecting a given (−1)-curve should be not less that
one.

Here a discrepancy is defined as follows. Let (X, 0) be a normal surface
singularity with the minimal good resolution f : (V,E) → (X, 0). Let E =∑n

i=1Ei be the decomposition of the exceptional divisor E with irreducible
components Ei. Then

KV = f∗KX +

n∑
i=1

aiEi

for some ai ∈ Z. The coefficients ai is called the discrepancy of Ei.

3. Various examples

In the following we list pencils of cubics in CP2, elliptic fibrations Y obtained
from the pencils, and the rational surfaces Z obtained by blowing-up Y several
times appropriately. In the rational surfaces Z, we indicate the configurations
of linear chains of P1 which will be contracted so that we obtain a singular
surface X which has a Q-Gorenstein smoothing.

Type of singular fibers. The index, for example I9 + 3I1, denotes the type of
singular fibers of elliptic fibrations.
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Pencils of cubics. The pencils of cubic curves are presented by two plane cubic
curves Γ and Γ′ which give rise to the special singular fibers indicated in the
index. We describe how they intersect as follows: In the figure of the pencil, the
pair (k, 1) denotes the intersection numbers of a curve with the two branches
of another curve at a node. We denote by Γ and Γ′ the solid curve and the
dotted curve, respectively.

Sections. Blowing up several times at each intersection points of two cubic
curves, we get a rational elliptic surface Y admitting an elliptic fibration Y →
CP1. We describe the way how sections Si of Y → CP1 intersect with special
singular fibers of the elliptic fibrations. We indicate on Z which sections are
used to construct the rational surface Z. We abbreviate Si to i.

Rational surfaces Z. The number n in Z = E(1)#nCP2 indicates how many
times we blow up to get Z from Y . The numbers in the figures of Z indicate
the self-intersection numbers of each curves and all rational curves without
self-intersection numbers are −2-curves.

The exceptional divisors. On the dual graphs of the exceptional divisors of the
singularities of class T in Z, we denote the discrepancies.

3.1. Examples with K2 = 1

Example 3.1. • Types of singular fibers: I8 + 4I1
• Pencils of cubics

(1,1)

(2,1)

(2,1)

1

• Sections

4 3

2

1

• Rational surfaces Z = CP2]13CP2

S_1

S_2

−7
−6 −3

−1
−1

−1 −1

−1−1
−3

−8

• The exceptional divisors

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2
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C9,5 :
4/9
◦
−2
−

8/9
◦
−7
−

7/9
◦
−2
−

6/9
◦
−2
−

5/9
◦
−3

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3

Example 3.2. • Types of singular fibers: I7 + III + 2I1
• Pencils of cubics

(2,1)

(2,1)

1

1

1

• Sections

3
5

2

1
4

1

2

3

4

5

• Rational surfaces Z = CP2]10CP2

S_3

−1−1

−1−1

−1−1

−7

−3

−6−6

S_4

• The exceptional divisors

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C9,5 :
4/9
◦
−2
−

8/9
◦
−7
−

7/9
◦
−2
−

6/9
◦
−2
−

5/9
◦
−3

Example 3.3. • Types of singular fibers: I5 + I3 + I2 + 2I1
• Pencils of cubics
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C

1

1

1
1(1,1)

1

(1,1)

D

1

1
(1,1)

1
(1,1)

1

1

Q_3

Q_2

Q_1

L_3

L_2

L_1

• Sections

Q_3 Q_2

15

6

7 2

Q_1
43

1

C

7 6
5

4

3

2

D

L_2

L_3

4

5

1

6

3

7
2

L_1

• Rational surfaces Z = CP2]12CP2

S_2

S_3

−6

−6
−1 −1 −1

−1 −1 −1

−1 −1

−6 −6
−4

• The exceptional divisors

C2,1 :
1/2
◦
−4

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

Example 3.4. • Types of singular fibers: I∗2 + I2 + 2I1
• Pencils of cubics



SIMPLY CONNECTED SURFACES OF GENERAL TYPE 485

(3,1,1)

(1,1)

1
1

• Sections
3

4

2

1

1
3

4

2

• Rational surfaces Z = CP2]16CP2

S_2

S_4

S_3

−7 −7
−4

−4

−4

−9

−1 −1

−1 −1

−1

−1

−1 −1

−1 −1

• The exceptional divisors

C2,1 :
1/2
◦
−4

C2,1 :
1/2
◦
−4

C2,1 :
1/2
◦
−4

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C7,1 :
6/7
◦
−9
−

5/7
◦
−2
−

4/7
◦
−2
−

3/7
◦
−2
−

2/7
◦
−2
−

1/7
◦
−2

3.2. Examples with K2 = 2

Example 3.5. • Types of singular fibers: I7 + III + 2I1
• Pencils of cubics

(2,1)

(2,1)

1

1

1

• Sections
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3
5

2

1
4

1

2

3

4

5

• Rational surfaces Z = CP2]19CP2

−11

S_3

S_2

S_1

−1

−3

−4

−8
−7 −1

−1

−1

−1

−1−1

−1

−1

−1

−4

−3

• The exceptional divisors

C2,1 :
1/2
◦
−4

C2,1 :
1/2
◦
−4

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3

C17,9 :
8/17
◦
−2
−

16/17
◦
−11
−

15/17
◦
−2
−

14/17
◦
−2
−

13/17
◦
−2
−

12/17
◦
−2
−

11/17
◦
−2
−

10/17
◦
−2
−

9/17
◦
−3

Example 3.6. • Types of singular fibers: I7 + I2 + 3I1
• Pencils of cubics

1

(5,1) (1,1)

• Sections

3

2
1

3

1

2

• Rational surfaces Z = CP2]22CP2
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−4

−1

−1

−11

−4

−4

−7
−9 −4

−1−1

−1 −1

−1

−1

S_3

S_1

S_2

−1

−1

• The exceptional divisors

C2,1 :
1/2
◦
−4

C2,1 :
1/2
◦
−4

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C19,4 :
6/19
◦
−2
−

12/19
◦
−2
−

18/19
◦
−9
−

17/19
◦
−2
−

16/19
◦
−2
−

15/19
◦
−2
−

14/19
◦
−2
−

13/19
◦
−4

C25,8 :
8/25
◦
−2
−

16/25
◦
−2
−

24/25
◦
−11
−

23/25
◦
−2
−

22/25
◦
−2
−

21/25
◦
−2
−

20/25
◦
−2
−

19/25
◦
−2
−

18/25
◦
−2
−

17/25
◦
−4

Example 3.7. • Types of singular fibers: I6 + IV + 2I1
• Pencils of cubics

(4,1)

(1,1)

1
1

• Sections

2

1

43

2

4

3
1

• Rational surfaces Z = CP2]15CP2

−1

−1

−1
−1 −1

−1
−1−1

−1

−3

−5

−7
−4

−3

−5

−6−6

S_2

S_1
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• The exceptional divisors

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C19,5 :
14/19
◦
−4
−

18/19
◦
−7
−

17/19
◦
−2
−

16/19
◦
−2
−

15/19
◦
−3
−

10/19
◦
−2
−

5/19
◦
−2

Example 3.8. • Types of singular fibers: I6 + III + 3I1
• Pencils of cubics

1 1

(1,1)

(2,1)
1

1

• Sections
3 1

6

52

4

1
6

2

3
4
5

• Rational surfaces Z = CP2]15CP2

−3

−7−5

−9
−1

−3

−1

−1

−4
−1

−1

−1

−1

−1

−4

S_2

S_1

• The exceptional divisors

C2,1 :
1/2
◦
−4

C7,2 :
5/7
◦
−4
−

6/7
◦
−5
−

4/7
◦
−2
−

2/7
◦
−2

C9,5 :
4/9
◦
−2
−

8/9
◦
−7
−

7/9
◦
−2
−

6/9
◦
−2
−

5/9
◦
−3

C13,7 :
6/13
◦
−2
−

12/13
◦
−9
−

11/13
◦
−2
−

10/13
◦
−2
−

9/13
◦
−2
−

8/13
◦
−2
−

7/13
◦
−3

Example 3.9. • Types of singular fibers: I6 + I3 + 3I1
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• Pencils of cubics

(1,1)

(1,1)

(1,1)

1

1
1

• Sections
1

2

3

4

5

6

1
4

6

3

2 5

• Rational surfaces Z = CP2]19CP2

−3
−1

−10

−3

−6

−8
−4

−4−3 −3

−1
−1

−1

−1

−1
−1

−1

−1
−1

S_1

S_2

S_3

• The exceptional divisors

C2,1 :
1/2
◦
−4

C2,1 :
1/2
◦
−4

C6,1 :
5/6
◦
−8
−

4/6
◦
−2
−

3/6
◦
−2
−

2/6
◦
−2
−

1/6
◦
−2

C11,4 :
7/11
◦
−3
−

10/11
◦
−6
−

9/11
◦
−2
−

8/11
◦
−3
−

4/11
◦
−2

C23,8 :
13/23
◦
−3
−

22/23
◦
−10
−

21/23
◦
−2
−

20/23
◦
−2
−

19/23
◦
−2
−

18/23
◦
−2
−

17/23
◦
−2
−

16/23
◦
−3
−

8/23
◦
−2

Example 3.10. • Types of singular fibers: I6 + 2I2 + 2I1
• Pencils of cubics

E
1

(3,1) (1,1)

1

1F

(3,1)

1

(1,1)

1

1

A

B

C

D

• Sections
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1

4
4
2

F

1

3

5 E

5
3

C

2

D

4

1

5

32

A

B

• Rational surfaces Z = CP2]15CP2

−1

−1−1

−1 −4−6−7

−1−1

−1−1−1

−3

−5

−9

S_2

S_1

• The exceptional divisors

C2,1 :
1/2
◦
−4

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C13,7 :
6/13
◦
−2
−

12/13
◦
−9
−

11/13
◦
−2
−

10/13
◦
−2
−

9/13
◦
−2
−

8/13
◦
−2
−

7/13
◦
−3

Example 3.11. • Types of singular fibers: I5 + I4 + 3I1
• Pencils of cubics

(1,1)

(1,1)

(1,1)

1
(1,1)

• Sections

3

4

5

2

1

5

3

2

4

1

• Rational surfaces Z = CP2]16CP2
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−4

S_1

S_2

−5

−8 −6 −6 −5

−3

−1−1−1

−1 −1−1

−1 −1

−1

• The exceptional divisors

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C5,3 :
2/5
◦
−2
−

4/5
◦
−5
−

3/5
◦
−3

C16,5 :
5/16
◦
−2
−

10/16
◦
−2
−

15/16
◦
−8
−

14/16
◦
−2
−

13/16
◦
−2
−

12/16
◦
−2
−

11/16
◦
−4

Example 3.12. • Types of singular fibers: I5 + I3 + I2 + 2I1
• Pencils of cubics

C

1

1

1
1(1,1)

1

(1,1)

D

1

1
(1,1)

1
(1,1)

1

1

Q_3

Q_2

Q_1

L_3

L_2

L_1

• Sections

Q_3 Q_2

15

6

7 2

Q_1
43

1

C

7 6
5

4

3

2

D

L_2

L_3

4

5

1

6

3

7
2

L_1

• Rational surfaces Z = CP2]14CP2
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S_1

S_2

−8

−5

−3
−6 −6

−5

−1
−1 −1

−1 −1

−1 −1 −1−1

• The exceptional divisors

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3

Example 3.13. • Types of singular fibers: I5 + I3 + 4I1
• Pencils of cubics

1

1
1

(1,1)

1

(2,1)

• Sections

25

4 3

1

6

1

2

356

4

• Rational surfaces Z = CP2]13CP2

S_1

S_3

−1

−1

−5

−4

−8

−3

−5 −6

−1

−1 −1

−1−1

−1

• The exceptional divisors

C3,1 :
2/3
◦
−5
−

1/3
◦
−2

C4,1 :
3/4
◦
−6
−

2/4
◦
−2
−

1/4
◦
−2
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C7,2 :
5/7
◦
−4
−

6/7
◦
−5
−

4/7
◦
−2
−

2/7
◦
−2

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3

Example 3.14. • Types of singular fibers: I∗2 + I2 + 2I1
• Pencils of cubics

(3,1,1)

(1,1)

1
1

• Sections

3
4

2

1

1
3

4

2

• Rational surfaces Z = CP2]19CP2

−1−1 −1

−1

−1−1

−7

−3

−8

−1

−7

−8 −4

−3

−1
−1

−1

S_1

S_2

S_3

• The exceptional divisors

C2,1 :
1/2
◦
−4

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C5,1 :
4/5
◦
−7
−

3/5
◦
−2
−

2/5
◦
−2
−

1/5
◦
−2

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3

C11,6 :
5/11
◦
−2
−

10/11
◦
−8
−

9/11
◦
−2
−

8/11
◦
−2
−

7/11
◦
−2
−

6/11
◦
−3
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