Commun. Korean Math. Soc. **32** (2017), No. 3, pp. 535–542 https://doi.org/10.4134/CKMS.c160203 pISSN: 1225-1763 / eISSN: 2234-3024

REMARKS ON GENERALIZED (α, β) -DERIVATIONS IN SEMIPRIME RINGS

Motoshi Hongan and Nadeem ur Rehman

ABSTRACT. Let R be an associative ring and $\alpha, \beta : R \to R$ ring homomorphisms. An additive mapping $d : R \to R$ is called an (α, β) -derivation of R if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ is fulfilled for any $x, y \in R$, and an additive mapping $D : R \to R$ is called a generalized (α, β) -derivation of R associated with an (α, β) -derivation d if $D(xy) = D(x)\alpha(y) + \beta(x)d(y)$ is fulfilled for all $x, y \in R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

1. Introduction

Throughout this paper, R will represent an associative ring with center Z(R)and $\alpha, \beta : R \to R$ ring homomorphisms. Given an integer $n \ge 2$, a ring R is said to be *n*-torsion free, if for $x \in R$, nx = 0 implies x = 0. An additive mapping $d : R \to R$ is called an (α, β) -derivation of R if $d(xy) = d(x)\alpha(y) + \beta(x)d(y)$ is fulfilled for any $x, y \in R$, and an additive mapping $D : R \to R$ is called a generalized (α, β) -derivation of R associated with an (α, β) -derivation d if $D(xy) = D(x)\alpha(y) + \beta(x)d(y)$ is fulfilled for all $x, y \in R$, we denote this generalized (α, β) -derivation as (D, d). Now we call an additive mapping F : $R \to R$ an (α, β) -derivation as (D, d). Now we call an additive mapping F is an identity map of R, then we call a (1, 1)-derivation (D, d). If $\alpha = \beta$ is an identity map of R, then we call a (1, 1)-derivation associated a derivation d, and we call a (1, 1)-G-mapping F a G-mapping.

Example 1.1. Let S be a semiprime ring, and let $R = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} | x, y, z \in S \right\}$. Now, we define maps $F, D, d : R \to R$ by

$$F\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}, D\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}$$

O2017Korean Mathematical Society

Received September 29, 2016; Revised January 10, 2017; Accepted February 2, 2017. 2010 Mathematics Subject Classification. 16W25, 16N60.

Key words and phrases. semiprime rings, Lie ideals, (α, β) -derivations, generalized (α, β) -derivations, Jordan (α, β) -derivations, generalized Jordan (α, β) -derivations.

and

$$d\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then, it can be verified that R is a ring which is not semiprime, d is a derivation of R, (D, d) is a generalized derivation and (F, D) is a G-mapping which is not a generalized derivation.

An additive mapping $D : R \to R$ is called a Jordan (α, β) -derivation if $D(x^2) = D(x)\alpha(x) + \beta(x)D(x)$ is fulfilled for all $x \in R$. An additive mapping $D : R \to R$ is called a generalized (α, β) -Jordan derivation if $D(x^2) = D(x)\alpha(x) + \beta(x)d(x)$ for all $x \in R$ and for some (α, β) -derivation d. We call a generalized (1, 1)-Jordan derivation a generalized Jordan derivation.

In [5], J. Vukman introduced additive mappings $F : R \to R$ such that F(xyx) = F(xy)x + xyF(x) for all $x, y \in R$, and $G : R \to R$ such that G(xyx) = G(x)yx + xG(yx) for all $x, y \in R$. We call this additive mappings F (resp. G) a left (resp. right) V-derivation. In [5], Vukman obtained the following result:

Theorem A. Let R be a 2-torsion free semiprime ring and let $D : R \to R$ be an additive mapping. Suppose that either D(xyx) = D(xy)x + xyD(x) or D(xyx) = D(x)yx + xD(xy) holds for all pairs $x, y \in R$. In both cases D is a derivation.

Further, in [2], M. N. Daif and M. N. Tammam El-Sayiad introduced an additive mapping $G: R \to R$ such that G(xyx) = G(x)yx + xD(yx) is fulfilled for all $x, y \in R$ and for some derivation D, and we call this additive mapping G a DS-derivation. And, Daif and Tammam El-Sayiad [2] proved the following result.

Theorem B. Let R be a 2-torsion free semiprime ring and let $G : R \to R$ be an additive mapping. If G(xyx) = F(x)yx + xD(yx) for all $x, y \in R$ for some derivation D of R, then G is a generalized Jordan derivation.

We call an additive mapping $F : R \to R$ a left (resp. right) Vukman- (α, β) -derivation if $F(xyx) = F(xy)\alpha(x) + \beta(xy)F(x)$ (resp. $F(x)\alpha(yx) + \beta(x)F(yx)$) for all $x, y \in R$ (abbreviated as V- (α, β) -derivation). And we call an additive mapping F a generalized left (resp. right) Vukman- (α, β) -derivation (abbreviated as GV- (α, β) -derivation) if $F(xyx) = F(xy)\alpha(x) + \beta(xy)D(x)$ (resp. $F(x)\alpha(yx) + \beta(x)D(yx)$) for all $x, y \in R$ and for some left (resp. right) Vukman- (α, β) -derivation D.

Now, we denote the relationships of above various derivations as follows:

$V-(\alpha, \beta)$ -derivations \Leftarrow	(α, β) -derivations $=$	\longrightarrow Jordan (α, β) -derivation
\downarrow	\downarrow	Ļ
$GV-(\alpha, \beta)$ -derivations =	\implies generalized (α, β) -derivations \implies	\Rightarrow generalized Jordan (α, β)-derivations

 (α, β) *G*-mappings

In this note, we intend to generalize above theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

2. Results

We will prepare a few lemmas which are essential for developing the proof of our main result.

Lemma 2.1 ([3] Corollary 2.1(1)). Let R be a 2-torsion free semiprime ring, L be a square-closed Lie ideal of R such that $L \nsubseteq Z(R)$ and let $a \in L$. If aLa = 0, then a = 0.

Lemma 2.2 ([4] Theorem 2). Let R be a 2-torsion-free semiprime ring and D a Jordan (α, β) -derivation of R with α or β an automorphism of R. Then D is an (α, β) -derivation of R.

Lemma 2.3 ([1] Theorem 3.1). Let R be a 2-torsion free semiprime ring, α an automorphism of R and β an endmorphism of R. If F is a generalized Jordan (α, β) -derivation with some Jordan (α, β) -derivation D, then F is a generalized (α, β) -derivation associated with D.

We shall start our investigations with the following proposition concerning (α, β) -G-mappings.

Proposition 2.1. Let R be a semiprime ring, and β an epimorphism. If F is an (α, β) -G-mapping of R associated with a generalized (α, β) -derivation (D, d), then D = d, and so F is a generalized (α, β) -derivation of R associated with an (α, β) -derivation d.

Proof. By our hypothesis on F,

 $F(xyx) = F(x)\alpha(yx) + \beta(x)D(yx) = F(x)\alpha(yx) + \beta(x)D(y)\alpha(x) + \beta(xy)d(x)$

for all $x, y \in R$. While, we have

 $F(xyx) = F(xy)\alpha(x) + \beta(xy)D(x) = F(x)\alpha(yx) + \beta(x)D(y)\alpha(x) + \beta(xy)D(x)$

for all $x, y \in R$. Comparing above two equations, we get

(2.1) $\beta(xy)(D-d)(x) = 0 \text{ for all } x, y \in R.$

Hence, we obtain that $(D - d)(x)\beta(x)\beta(y)(D - d)(x)\beta(x) = 0$ for all $y \in R$. Since β is an epimorphism and R is semiprime, we have $(D - d)(x)\beta(x) = 0$. While,

$$\beta(x)(D-d)(x)\beta(y)\beta(x)(D-d)(x) = 0 \text{ for all } y \in R$$

by (2.1). So, we have $\beta(x)(D-d)(x) = 0$. By linearizing,

$$\beta(x)(D-d)(z) + \beta(z)(D-d)(x) = 0 \text{ for all } x, z \in R.$$

Multiplying (D-d)(x) from the left, we have

$$0 = (D - x)(x)\beta(x)(D - d)(z) + (D - d)(x)\beta(z)(D - d)(x)$$

= $(D - d)(x)\beta(z)(D - d)(x)$

for all $z \in R$. By semiprimeness of R, we have (D - d)(x) = 0 for all $x \in R$. And so, D = d, that is, F is a generalized derivation associated with d.

Now, we prove our main theorem.

Theorem 2.1. Let R be a 2-torsion free semiprime ring and $L \nsubseteq Z(R)$ be a square-closed Lie ideal of R. Let $F, D : R \to R$ be additive mappings such that $F(L) \subseteq L$ and $D(L) \subseteq L$, and let α, β be ring homomorphisms of R such that $\alpha(L) \subseteq L$ and $\beta(L) \subseteq L$.

- (i) If $F(xyx) = F(xy)\alpha(x) + \beta(xy)D(x)$ holds for all $x, y \in L$ and $\beta(L) = L$, then D is a Jordan (α, β) -derivation on L.
- (ii) If F(xyx) = F(x)α(yx) + β(x)D(yx) and D(xyx) = D(x)α(yx) + β(x)D(yx) hold for all x, y ∈ L and α(L) = L, then F is a generalized Jordan (α, β)-derivation associated with a Jordan (α, β)-derivation D on L.
- (iii) If $F(xyx) = \alpha(x)F(yx) + D(x)\beta(yx)$ holds for all $x, y \in L$ and $\beta(L) = L$, then D is a Jordan (β, α) -derivation on L.
- (iv) If $F(xyx) = \alpha(xy)F(x) + D(xy)\beta(x)$ and $D(xyx) = \alpha(xy)D(x) + D(xy)\beta(x)$ hold for all $x, y \in L$ and $\alpha(L) = L$, then F is a generalized Jordan (β, α) -derivation associated with a Jordan (β, α) -derivation D on L.

Proof. (i) We have

(2.2)
$$F(xyx) = F(xy)\alpha(x) + \beta(xy)D(x)$$

for all $x, y \in L$. Linearizing above relation, we have

(2.3)
$$F(xyz + zyx) = F(xy)\alpha(z) + F(zy)\alpha(x) + \beta(xy)D(z) + \beta(zy)D(x)$$

for all $x, y \in L$. Replacing z by x^2 in (2.3), we get

$$(2.4) \ F(xyx^2 + x^2yx) = F(xy)\alpha(x^2) + F(x^2y)\alpha(x) + \beta(xy)D(x^2) + \beta(x^2y)D(x).$$

On the other hand, in (2.2), substituting xy + yx for y, we obtain that

(2.5)
$$F(x^2yx + xyx^2) = F(x^2y + xyx)\alpha(x) + \beta(x^2y + xyx)D(x)$$
$$= F(x^2y)\alpha(x) + F(xy)\alpha(x^2) + \beta(xy)D(x)\alpha(x)$$
$$+ \beta(x^2y + xyx)D(x).$$

Comparing (2.4) with (2.5), we have

$$\beta(x)\beta(y)\{D(x^2) - D(x)\alpha(x) - \beta(x)D(x)\} = 0$$

for all $x, y \in L$. Since β is a ring homomorphism and $\beta(L) = L$, we find that

$$\beta(x)z\{D(x^2) - D(x)\alpha(x) - \beta(x)D(x)\} = 0$$

for all $x, z \in L$. Now, we set $A(x) = D(x^2) - D(x)\alpha(x) - \beta(x)D(x)$. Since $D(L) \subseteq L$, $\alpha(L) \subseteq L$ and $\beta(L) \subseteq L$, we find that

$$\beta(x)A(x)z\beta(x)A(x) = 0$$

and

$$A(x)\beta(x)zA(x)\beta(x) = 0.$$

Since R is semiprime, we have

$$\beta(x)A(x) = 0$$

by Lemma 2.1. In (2.6), substituting x + z for x, we have

(2.8)
$$A(x)\beta(z) + A(z)\beta(x) + B(x,z)\beta(x) + B(x,z)\beta(z) = 0,$$

where

$$B(x,z) = D(xz + zx) - D(x)\alpha(z) - D(z)\alpha(x) - \beta(x)D(z) - \beta(z)D(x).$$

In (2.8), substituting -x for x, we get

(2.9)
$$A(x)\beta(z) - A(z)\beta(x) + B(x,z)\beta(x) - B(x,z)\beta(z) = 0$$

By comparing (2.8) and (2.9), we get

$$2\{A(x)\beta(z) + B(x,z)\beta(x)\} = 0.$$

Since R is 2-torsion free, we have

$$A(x)\beta(z) + B(x,z)\beta(x) = 0.$$

And so we have

$$0 = A(x)\beta(z)A(x) + B(x,z)\beta(x)A(x) = A(x)\beta(z)A(x)$$

by (2.7). Since $\beta(L) = L$, we get

$$A(x)yA(x) = 0$$
 for all $x, y \in L$.

By semiprimeness of R, we obtain that A(x) = 0 for all $x \in L$ by Lemma 2.1 and hence, D is a Jordan (α, β) -derivation on L.

(ii) Now, assume that

(2.10)
$$F(xyx) = F(x)\alpha(yx) + \beta(x)D(yx)$$

and

(2.11)
$$D(xyx) = D(x)\alpha(yx) + \beta(x)D(yx)$$

for all $x, y \in L$. In (2.10), by linearizing, we have

$$F(xyz + zyx) = F(x)\alpha(yz) + F(z)\alpha(yx) + \beta(x)D(yz) + \beta(z)D(yx)$$

Now, substituting x^2 for z, we have (2.12)

$$F(xyx^{2} + x^{2}yx) = F(x)\alpha(yx^{2}) + F(x^{2})\alpha(yx) + \beta(x)D(yx^{2}) + \beta(x^{2})D(yx).$$

In (2.10), substituting xy + yx for y, we have

(2.13)

$$F(x^2yx + xyx^2) = F(x)\alpha(xyx + yx^2) + \beta(x)D(xyx + yx^2)$$

$$= F(x)\alpha(xyx) + F(x)\alpha(yx^2)$$

$$+ \beta(x)\{D(x)\alpha(yx) + \beta(x)D(yx) + D(yx^2)\}.$$

By comparing (2.12) with (2.13), we get

$$\{F(x^2) - F(x)\alpha(x) - \beta(x)D(x)\}\alpha(y)\alpha(x) = 0$$

for all $x \in L$. Now, we set

$$E(x) = F(x^2) - F(x)\alpha(x) - \beta(x)D(x).$$

Since $\alpha(L) = L$, we have $E(x)z\alpha(x) = 0$ for all $x, z \in L$. As a similar way to the proof of (i), we obtain E(x) = 0, that is,

$$F(x^2) = F(x)\alpha(x) + \beta(x)D(x)$$
 for all $x \in L$.

In the case of $D(xyx) = D(x)\alpha(yx) + \beta(x)D(yx)$, D is a Jordan (α, β) derivation on L by the similar arguments to the above arguments, and so Fis a generalized Jordan (α, β) -derivation on L associated with a Jordan (α, β) derivation D on L.

- (iii) The proof is similar to that of (i).
- (iv) The proof is similar to that of (ii).

In the following there are some immediate consequences of the above theorem.

Corollary 2.1. Let R be a 2-torsion free semiprime ring, α, β endomorphisms of R, and let $F, D : R \to R$ be additive mappings.

- (i) If $F(xyx) = F(xy)\alpha(x) + \beta(xy)D(x)$ holds for all $x, y \in R$, and β is an automorphism of R, then D is an (α, β) -derivation.
- (ii) If F(xyx) = F(x)α(yx) + β(x)D(yx) and D(xyx) = D(x)α(yx) + β(x)D(yx) hold for all x, y ∈ R and α is an automorphism of R, then F is a generalized (α, β)-derivation associated with an (α, β)-derivation D.
- (iii) If $F(xyx) = \alpha(x)F(yx) + D(x)\beta(yx)$ holds for all $x, y \in R$, and β is an automorphism of R, then D is a (β, α) -derivation.
- (iv) If $F(xyx) = \alpha(xy)F(x) + D(xy)\beta(x)$ and $D(xyx) = \alpha(xy)D(x) + D(xy)\beta(x)$ hold for all $x, y \in R$, and α is an automorphism of R, then F is a generalized (β, α) -derivation associated with a (β, α) -derivation D.

Corollary 2.2. Let R be a 2-torsion free semiprime ring, $D : R \to R$ an additive mapping. Then the followings are equivalent:

- (1) $D(xyx) = D(xy)x + xy(D(x) \text{ for all } x, y \in R.$
- (2) D(xyx) = D(x)yx + xD(yx) for all $x, y \in R$.

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS 541

- (3) D(xyx) = D(xy)x + xyD(x) or D(xyx) = D(x)yx + xyD(x) for all $x, y \in R$.
- (4) D is a derivation.

Proof. (1) \Rightarrow (4). In Corollary 1, by putting F = D, D is a derivation. Similarly, (2) \Rightarrow (4) is proved.

 $(3) \Rightarrow (4). We put R_x = \{y \in R \mid D(xyx) = D(xy)x + xD(x) \text{ for all } x \in R\}$ and $R_x^* = \{y \in R \mid D(xyx) = D(x)yx + xD(yx) \text{ for all } x \in R\}$. Then we have $R = R_x \cup R_x^*$. Since R_x and R_x^* are additive groups, $R = R_x$ or $R = R_x^*$ by Brauer's Trick. By the same method, we have $R = \{x \in R \mid R = R_x\}$ or $R = \{R = R_x^*\}$. Therefore, by (1) and (2), D is a derivation. (4) \Rightarrow (1), (4) \Rightarrow (2) and (4) \Rightarrow (3) are clear.

Corollary 2.3. Let R be a 2-torsion free semiprime ring, and let $F, D : R \to R$ be additive mappings.

- (i) If one of the following conditions is fulfilled, then F is a generalized derivation associated with a derivation D.
 - (1) F(xyx) = F(x)yx + xD(yx) and D(xyx) = D(x)yx + xD(yx) for all $x, y \in R$.
 - (2) F(xyx) = xyF(x) + D(xy)x and D(xyx) = xyD(x) + D(xy)x for all $x, y \in R$.
 - (3) F(xyx) = F(x)yx + xD(yx) and D(xyx) = D(x)yx + xD(yx), or F(xyx) = xyF(x) + D(xy)x and D(xyx) = xyD(x) + D(xy)x for all $x, y \in R$.
- (ii) If one of the following conditions is fulfilled, then D is a derivation.
 - (4) F(xyx) = F(xy)x + xyD(x) for all $x, y \in R$. (5) F(xyx) = xF(yx) + D(x)yx for all $x, y \in R$.
 - (6) F(xyx) = F(xy)x + xyD(x) or F(xyx) = xF(yx) + D(x)yx for all $x, y \in R$.

Proof. By the similar method of Corollary 2.2, this corollary is proved. \Box

Acknowledgements. The authors are greatly indebted to the referee for his/her serval useful suggestions and valuable comments.

References

- S. Ali and C. Haetinger, Jordan α-centralizer in rings and some aplications, Bol. Soc. Paran. Mat. 26 (2008), no. 1-2, 71–80.
- M. N. Daif and M. S. Tammam El-Sayiad, An Identity related to generalized derivations, Int. J. Algebra 1 (2007), no. 9-12, 547–550.
- [3] M. Hongan, N. Rehman, and R. Al-Omary, Lie ideals and Jordan Triple derivations in rings, Rend. Sem. Mat. Univ. Padova 125 (2011), 147–156.
- [4] C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (2007), no. 11, 3660–3672.
- [5] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glas. Mat. Ser. III 46 (2011), no. 1, 43–48.

Motoshi Hongan Seki 772, Maniwa, Okayama 719-3156, Japan *E-mail address*: hongan0061@gmail.com

NADEEM UR REHMAN DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address*: rehman100@gmail.com