CORRIGENDUM TO "ON PARTITION CONGRUENCES FOR OVERCUBIC PARTITION PAIRS" [COMMUN. KOREAN MATH. SOC. 27 (2012), NO. 3, 477-482]

Byungchan Kim

Abstract

An error in the proof of Theorem 1 of "On partition congruences for overcubic partition pairs" [Commun. Korean Math. Soc. 27 (2012), no. 3, 477-482] is corrected.

Here we correct an error in the proof of [1, Theorem 1]. Let $R\left(n, Q\left(x_{1}, x_{2}\right.\right.$, $\left.\ldots, x_{k}\right)$ be the number of representations of n by the polynomial $Q\left(x_{1}, x_{2}, \ldots\right.$, x_{k}), where x_{1}, \ldots, x_{k} are positive integers. During the proof of [1, Theorem 1], the author claimed that

$$
R\left(8 n+7, x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}\right) \equiv 0 \quad(\bmod 4)
$$

which should be corrected to

$$
R\left(8 n+7, x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}\right)=2 R\left(n,\binom{x_{1}}{2}+2\binom{x_{2}}{2}+4\binom{x_{3}}{2}\right) .
$$

As a consequence, [1, Theorem 1] should be corrected as follows.
Theorem 1. For all nonnegative integers n,

$$
\overline{c p}(8 n+7) \equiv 0 \quad(\bmod 32) .
$$

The author claimed the congruence in Theorem 1 held for the modulus 64 instead of 32 . For the modulus 64 , we find that

$$
\overline{c p}(8 n+7) \equiv 32 R\left(n,\binom{x_{1}}{2}+2\binom{x_{2}}{2}+4\binom{x_{3}}{2}\right) \quad(\bmod 64) .
$$

Consequently, the modulus in [1, Corollary 3] should be 96 instead of 192.
Corollary 2. For all nonnegative integer n,

$$
\overline{c p}(72 n+39) \equiv 0 \quad(\bmod 96)
$$

Received May 14, 2017; Accepted June 14, 2017.
2010 Mathematics Subject Classification. Primary 11P83.
Key words and phrases. partition, cubic partition, overcubic partition pair.

References

[1] B. Kim, On partition congruences for overcubic partition pairs, Commun. Korean Math. Soc. 27 (2012), no. 3, 477-482.

Byungchan Kim
School of Liberal Arts
Seoul National University of Science and Technology Seoul 01811, Korea
E-mail address: bkim4@seoultech.ac.kr

