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GLOBAL ATTRACTOR FOR A SEMILINEAR

PSEUDOPARABOLIC EQUATION WITH INFINITE DELAY

Dang Thi Phuong Thanh

Abstract. In this paper we consider a semilinear pseudoparabolic equa-
tion with polynomial nonlinearity and infinite delay. We first prove the
existence and uniqueness of weak solutions by using the Galerkin method.
Then, we prove the existence of a compact global attractor for the contin-
uous semigroup associated to the equation. The existence and exponential
stability of weak stationary solutions are also investigated.

1. Introduction

Let Ω be a bounded domain in R
N (N ≥ 1) with smooth boundary ∂Ω. In

this paper, we consider the following semilinear pseudoparabolic equation with
infinite delay
(1.1)
{

∂tu(t, x)+A∂tu(t, x)+Au(t, x)+f(u(t, x))=g(ut)+h(x), t > 0, x ∈ Ω,

u(s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ Ω,

where the (unbounded) linear operator A, the nonlinearity f , the external force
h, the delay term g satisfy some certain conditions specified later, and φ(s) is
the initial datum in the interval of time (−∞, 0]. Here for a function u defined
on (−∞, T ), we denote by ut the function defined on (−∞, 0] by the relation
ut(s) = u(t+ s), s ∈ (−∞, 0].

In the special case A = −∆, the negative Laplacian, the equation (1.1)
without the delay term is the so-called nonclassical diffusion equation, which
was introduced as a model to describe some physical phenomena, such as
non-Newtonian flows, soil mechanics and heat conduction theory (see, e.g.,
[1,19,24]). In the past years, the existence and long-time behavior of solutions
to nonclassical diffusion equations has been studied extensively, in both au-
tonomous case [16,17,20,21,25,27–30] and non-autonomous case [2,6,21,26,31].
On the other hand, there are situations in which the model is better described
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if some terms containing delays appear in the equations. These delays may
appear, for instance, when one wants to control the system (in a certain sense)
by applying a force which takes into account not only the present state, but the
complete history of the solutions. However, to the best of our knowledge, all of
existing results for nonclassical diffusion equations with delays are in the case
of finite delay [7, 11, 32] and the infinite delay case has not been investigated
before. This is the main motivation of our work.

As we know, the choice of phase spaces plays an important role in studying
differential equations with infinite delay [13]. One possibility, and which we
will use here, is to consider for any γ > 0, the space

Cγ(V ) = {ϕ ∈ C((−∞, 0];V ) : ∃ lim
s→−∞

eγsϕ(s) ∈ V }, with V := D(A1/2),

which is a Banach space with the norm

‖ϕ‖Cγ(V ) := sup
s∈(−∞,0]

eγs‖ϕ(s)‖V .

In order to study problem (1.1), we make the following assumptions:

(H1) A is a densely-defined self-adjoint positive linear operator with the
domain D(A) ⊂ L2(Ω) and with compact resolvent, and we further-
more assume that either C∞

0 (Ω) or C∞(Ω) is contained and dense in
D(A1/2).

(H2) g : Cγ(V ) → L2(Ω) satisfies the following conditions:
(g1) g(0) = 0,
(g2) There exists a constant Lg > 0 such that for all ξ, η ∈ Cγ(V ),

‖g(ξ)− g(η)‖L2(Ω) ≤ Lg‖ξ − η‖Cγ(V ).

(H3) f : R → R is a continuously differentiable function satisfying

C1|u|
p − C0 ≤ f(u)u ≤ C2|u|

p + C0,(1.2)

f ′(u) ≥ −ℓ,(1.3)

for some p ≥ 2, where C0, C1, C2 and ℓ are positive constants.
(H4) h ∈ V ′ := D(A−1/2), the dual space of V .

Let us give some comments on the above assumptions. The operator A
contains a large class of elliptic operators with suitable boundary conditions,
for instance, the negative Laplace operator −∆ with homogeneous Dirich-
let/Neumann boundary conditions (see other examples in [12]), and even some
degenerate elliptic operators with homogeneous Dirichlet boundary condition
such as the Caldiroli-Musina operator −div(σ(x)∇) in [10] or the −∆λ-Laplace
operator in [14]. The assumption on D(A1/2) ensures the existence of a count-
able basis in D(A1/2)∩Lp(Ω), which is needed for the proof of the existence of
weak solutions by using the Galerkin method. Here the nonlinearity is assumed
to satisfy a dissipativity and growth condition of polynomial type; a typical
example of the nonlinear term is an odd order polynomial with the positive
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leading coefficient. The condition (g1) of the delay term is not really a restric-

tion, since otherwise, if g(0) ∈ L2(Ω), we could redefine ĥ(x) = h(x)+g(0) and

ĝ(·) = g(·)− g(0), then ĥ and ĝ will satisfy the required assumptions.
The appearance of the infinite delay term g(ut) and the term A∂tu in equa-

tion (1.1) introduces some essential difficulty when proving the existence of
solutions and existence of a global attractor. In particular, the corresponding
dynamical system is only weakly dissipative. To overcome this difficulty, in
this paper we try to combine the techniques dealing with infinite delays and
techniques used for studying the nonclassical diffusion equations. More pre-
cisely, when prove the existence of solutions by using the Galerkin method,
to pass to the limits in the nonlinear term and in the infinite delay term for
approximate solutions, we combine the compactness method [15] and the en-
ergy method used in [18]. While to prove the asymptotic compactness of the
associated semigroup, the most difficult step when proving the existence of a
compact global attractor, we exploit the energy method in [18]. It is noticed
that the existence and long-time behavior of solutions to abstract semilinear
parabolic equations with delays, i.e., equation in (1.1) without the term A∂tu,
has been extensively investigated in [3–5, 8, 9].

The paper is organized as follows. In Section 2, we prove the existence and
uniqueness of weak solutions to problem (1.1) by using the Galerkin method.
The existence of a compact global attractor for the continuous semigroup gen-
erated by weak solutions to the problem is proved in Section 3. To do this,
we show the existence of a bounded absorbing set and then the asymptotic
compactness of the semigroup. In the last section, we investigate the existence
and exponential stability of stationary solutions to the problem.

Hereafter, for the sake of brevity, we denote H = L2(Ω), V = D(A1/2),
V ′ = D(A−1/2), Cγ(V ) = Cγ(D(A1/2)), with the corresponding norms | · |,
‖ · ‖, ‖ · ‖∗, ‖ · ‖γ ; and (·, ·), ((·, ·)) are the scalar products in H,V , respectively.
We use the notation 〈·, ·〉 for the dual between V and V ′, and sometimes for

the dual between Lp(Ω) and Lp′

(Ω) (with 1/p+ 1/p′ = 1).
Noting that by the assumption (H1), the operatorA has a discrete spectrum

that only contains positive eigenvalues {λk}
∞

k=1 satisfying

0 < λ1 6 λ2 6 · · · , λk → ∞, as k → ∞,

and the corresponding eigenfunctions {ek}
∞

k=1 compose an orthonormal basis
of H such that

(ej , ek) = δjk and Aek = λkek, k = 1, 2, . . .

Hence we can define the fractional power spaces and operators as

Xα = D(Aα) = {u =

∞
∑

k=1

ckek ∈ H :

∞
∑

k=1

c2kλ
2α
k <∞},
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Aαu =

∞
∑

k=1

ckλ
α
k ek, where u =

∞
∑

k=1

ckek.

It is known (see e.g. [12]) that if α > β, then the space D(Aα) is compactly
embedded into D(Aβ). In particular

V := D(A1/2) →֒ L2(Ω) →֒ D(A−1/2) =: V ′,

where the injections are dense and compact.
In what follows, we will frequently use the following inequality

‖u‖2 ≥ λ1|u|
2, ∀u ∈ V,

where λ1 > 0 is the first eigenvalue of the operator A.

2. Existence and uniqueness of weak solutions

Definition 2.1. A weak solution on the interval (0, T ) of problem (1.1) with
initial datum φ ∈ Cγ(V ) is a function u ∈ C((−∞, T ];V ) ∩ Lp(0, T ;Lp(Ω))

such that u0(θ) = φ(θ) for all θ ≤ 0, du
dt

∈ L2(0, T ;V ), and

d

dt
u(t) +Au(t) +A(∂tu(t)) + f(u(t)) = g(ut) + h in V ′

in the distribution sense in (0, T ).

Theorem 2.1. Under the assumptions (H1)-(H4), then for any T > 0 and

φ ∈ Cγ(V ) given, problem (1.1) has a unique weak solution u on the interval

(0, T ).

Proof. (i) Uniqueness. Let u and v be two solutions of problem (1.1) with
the same initial datum φ ∈ Cγ(V ). Putting w = u− v, we have

(2.1) ∂tw +A∂tw +Aw + f(u)− f(v) = g(ut)− g(vt).

Multiplying (2.1) by w and integrating over Ω, we obtain

1

2

d

dt
(|w|2 + ‖w‖2) + ‖w‖2 +

∫

Ω

(f(u)− f(v))(u − v)dx = (g(ut)− g(vt), w).

Using assumptions (1.3) and (g2), we have

d

dt
(|w|2 + ‖w‖2) + 2‖w‖2 ≤ 2ℓ|w|2 + 2Lg‖wt‖γ |w|.

Noting that w(θ) = 0 if θ ≤ 0, we have

‖ws‖γ = sup
θ≤0

eγθ‖w(s+ θ)‖ ≤ sup
θ∈[−s,0]

‖w(s+ θ)‖ for 0 ≤ s ≤ T,

and therefore for t ∈ [0, T ],

|w|2 + ‖w‖2 ≤ 2ℓ

∫ t

0

|w(s)|2ds+ 2Lg

∫ t

0

‖ws‖γ |w(s)|ds

≤
2ℓ

λ1

∫ t

0

‖w(s)‖2ds+
2Lg
√
λ1

∫ t

0

sup
r∈[0,s]

‖w(r)‖2ds.
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Hence

sup
r∈[0,t]

‖w(r)‖2 ≤
( 2ℓ

λ1
+

2Lg√
λ1

)

∫ t

0

sup
r∈[0,s]

‖w(r)‖2ds,

whence the Gronwall lemma finishes the proof of uniqueness.
(ii) Existence. For the existence, we split the proof into several steps.
Step 1: A Galerkin scheme. We consider a basis {ej}

∞

j=1 ⊂ V ∩Lp(Ω), which
is orthonormal in H . The existence of such a basis follows from the assumption
that either C∞

0 (Ω) or C∞(Ω) is contained and dense in V := D(A1/2) (and the
fact that they are dense in Lp(Ω)).

We consider the approximate solution un(t) in the form

un(t) =

n
∑

j=1

γnj(t)ej ,

where the superscript n will be used instead of (n) for short since no confusion
is possible with powers of u, and the coefficients γnj are required to satisfy the
following system
(2.2)






d

dt
(un(t), ej)+(A∂tu

n(t), ej)+(Aun(t), ej)+〈f(un), ej〉=〈h, ej〉+(g(unt ), ej),

(un(s), ej) = (Pnφ(s), ej), s ∈ (−∞, 0], 1 ≤ j ≤ n.

The above system of ordinary functional differential equations with infinite
delay fulfills the conditions for the existence of local solutions in [13, Theorem
1.1, p. 36], so the approximate solutions un exist.

Next, we will derive a priori estimates that ensure that the solutions do
exist on the whole interval [0, T ].

Step 2: A priori estimates. Multiplying (2.2) by γnj and summing in j, we
obtain

1

2

d

dt
(|un|2 + ‖un‖2) + ‖un‖2 +

∫

Ω

f(un)undx =

∫

Ω

g(unt )u
ndx+ 〈h, un〉.

Using hypothesis (1.2) and the Cauchy inequality, we get

1

2

d

dt
(|un|2 + ‖un‖2) + ‖un‖2 + C1‖u

n‖p
Lp(Ω)

≤
1

2
‖un‖2 +

1

2
‖h‖2

∗
+ Lg‖u

n
t ‖γ |u

n|+ C0|Ω|,

and therefore

d

dt
(|un|2 + ‖un‖2) + ‖un‖2 + 2C1‖u

n‖p
Lp(Ω) ≤ ‖h‖2

∗
+

2Lg√
λ1

‖unt ‖
2
γ + 2C0|Ω|.

Integrating from 0 to t, we obtain

|un(t)|2 + ‖un(t)‖2 +

∫ t

0

‖un(s)‖2ds+ 2C1

∫ t

0

‖un(s)‖p
Lp(Ω)ds(2.3)
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≤

(

|un(0)|2 + ‖un(0)‖2
)

+

∫ t

0

(

‖h‖2
∗
+

2Lg√
λ1

‖uns ‖
2
γ + 2C0|Ω|

)

ds

≤

(

1

λ1
+ 1

)

‖un(0)‖2 +

∫ t

0

(

‖h‖2
∗
+

2Lg
√
λ1

‖uns ‖
2
γ + 2C0|Ω|

)

ds.

Furthermore,

‖unt ‖
2
γ ≤ max

{

sup
θ∈(−∞,−t]

e2γθ‖φ(t+ θ)‖2;

sup
θ∈[−t,0]

[

e2γθ
( 1

λ1
+1

)

‖un(0)‖2 + e2γθ
∫ t+θ

0

(

‖h‖2
∗
+

2Lg
√
λ1

‖uns ‖
2
γ + 2C0|Ω|

)

ds

]}

≤ max

{

sup
θ∈(−∞,−t]

e2γθ‖φ(t+ θ)‖2;

( 1

λ1
+ 1

)

‖un(0)‖2 +

∫ t

0

(

‖h‖2
∗
+

2Lg
√
λ1

‖uns ‖
2
γ + 2C0|Ω|

)

ds

}

.

Since

sup
θ∈(−∞,−t]

eγθ‖φ(θ + t)‖ = sup
θ≤0

eγ(θ−t)‖φ(θ)‖ = e−γt‖φ‖γ ≤ ‖φ‖γ ,

and ‖u(0)‖ ≤ ‖φ‖γ , we deduce that

‖unt ‖
2
γ ≤

( 1

λ1
+ 1

)

‖φ‖2γ + T (‖h‖2
∗
+ 2C0|Ω|) +

2Lg
√
λ1

∫ t

0

‖uns ‖
2
γds.

Using the Gronwall lemma, we have

‖unt ‖
2
γ ≤

[

( 1

λ1
+ 1

)

‖φ‖2γ + T (‖h‖2
∗
+ 2C0|Ω|)

](

1 +
2Lgt
√
λ1
e

2Lg
√

λ1

t
)

.

Then we obtain the following estimates: There exists a constant C, depending
on some constants of the problem (namely, λ1, T, Lg and h) and R > 0, such
that

(2.4) ‖unt ‖
2
γ ≤ C, ∀ t ∈ [0, T ], ‖φ‖γ ≤ R.

In particular, this implies that

{un} is bounded in L∞(0, T ;V ).

From (2.3) and (2.4), we get

(2.5) ‖un‖Lp(0,T ;Lp(Ω)) ≤ C.

Using (1.2) we get

(2.6) {f(un)} is bounded in Lp′

(0, T ;Lp′

(Ω)),

where p′ is the conjugate of p.
Now, multiplying (1.1) by ∂tu and then integrating over Ω, we get

|∂tu
n|2 + ‖∂tu

n‖2 +
1

2

d

dt

(

‖un‖2 + 2

∫

Ω

F (un)dx

)
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≤ 〈h, ∂tu
n〉+ Lg‖u

n
t ‖γ |∂tu

n|,

where F (u) =
∫ u

0 f(s)ds is a primitive of f(u). Hence

|∂tu
n|2 + ‖∂tu

n‖2 +
d

dt

(

‖un‖2 + 2

∫

Ω

F (un)dx

)

≤ ‖h‖2
∗
+ L2

g‖u
n
t ‖

2
γ .

Integrating this inequality from 0 to t and using (2.4), (2.5), we deduce that

{∂tu
n} is bounded in L2(0, T ;V ).

Step 3: Convergence in Cγ(V ) and existence of a weak solution. We will
prove that

unt → ut in Cγ(V ), ∀t ∈ (−∞, T ],

by showing that

(2.7) Pnφ→ φ in Cγ(V ),

(2.8) un → u in C([0, T ];V ).

First, we check the convergence claimed in (2.7). Indeed, if not, there would
exist ε > 0 and a subsequence, that we still denote the same, such that

(2.9) eγθn‖Pnφ(θn)− φ(θn)‖ > ε.

One can assume that θn → −∞, otherwise if θn → θ, then Pn(θn) → φ(θ),
since

‖Pnφ(θn)− φ(θ)‖ ≤ ‖Pnφ(θn)− Pnφ(θ)‖ + ‖Pnφ(θ) − φ(θ)‖ → 0 as n→ +∞.

But, with θn → −∞ as n→ +∞, denoting χ = lim
θ→−∞

eγθφ(θ), we obtain

eγθn‖Pnφ(θn)− φ(θn)‖ = ‖Pn(e
γθnφ(θn))− eγθnφ(θn)‖

≤ ‖Pn(e
γθnφ(θn))− Pnχ‖+ ‖Pnχ− χ‖+ ‖χ− eγθnφ(θn)‖ → 0.

This is a contradiction with (2.9), so (2.7) holds.
Now, we combine some well-known compactness results with an energy

method to pass to the limits in a subsequence of {un} to obtain a solution
of (1.1).

From the estimates in Step 2, we deduce that there exist a subsequence
(which we relabel the same) {un}, an element u ∈ L∞(0, T ;V )∩Lp(0, T ;Lp(Ω))
with u′ ∈ L2(0, T ;V ), and ξ ∈ L2(0, T ;H) such that

(2.10)

un ⇀ u weakly-star in L∞(0, T ;V ),

un ⇀ u weakly in Lp(0, T ;Lp(Ω)),

∂tu
n ⇀ ∂tu weakly in L2(0, T ;V ),

f(un)⇀ ζ weakly in Lp′

(0, T ;Lp′

(Ω)),

g(unt )⇀ ξg weakly in L2(0, T ;H).

Applying the Aubin-Lions lemma in [15], we can conclude that un → u strongly
in L2(0, T ;H), up to a subsequence. Hence un → u a.e. in Ω× [0, T ]. Since f
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is continuous, it follows that f(un) → f(u) a.e. in Ω× [0, T ]. Thanks to (2.6)
and Lemma 1.3 in [15, Chapter 1], one has

f(un)⇀ f(u) weakly in Lp′

(0, T ;Lp′

(Ω)).

Hence ζ = f(u).
From the convergence of {un} to u in L∞(0, T ;V ), we deduce that

un(t) → u(t) in V a.e. t ∈ (0, T ).

Since

un(t)− un(s) =

∫ t

s

(un)
′

(r)dr in H, ∀s, t ∈ [0, T ],

from (2.10) we have that {un} is equi-continuous on [0, T ] with values in H . By
the compactness of the embedding V ⊂ H , from (2.4) and the equi-continuity
in H , using the Ascoli-Arzela theorem we have

(2.11) un → u in C([0, T ];H).

Again from (2.10) we obtain that for any sequence {tn} ⊂ [0, T ] with tn → t,

(2.12) un(tn)⇀ u(t) weakly in V,

where we have used (2.11) in order to identify which is the weak limit.
Now, we are ready to prove (2.8) by a contradiction argument. If it would

not be so, then taking into account that u ∈ C([0, T ];V ), there would exist
ǫ > 0, a value t0 ∈ [0, T ] and subsequences (relabeled the same) {un} and
{tn} ⊂ [0, T ] with lim

n→+∞

tn = t0 such that

‖un(tn)− u(t0)‖ ≥ ǫ.

To prove that this is absurd, we will use an energy method. Observe that the
following energy inequality holds for all un:

1

2
|un(t)|2 +

1

2
‖un(t)‖2 +

∫ t

s

‖un(r)‖2dr +

∫ t

s

(f(un(r)), un(r))dr(2.13)

≤

∫ t

s

〈h, un(r)〉dr +
1

2
|un(s)|2 +

1

2
‖un(s)‖2 + C3(t− s), ∀ s, t ∈ [0, T ],

where C3 is a constant such that
∫ t

s

|g(unr )|
2dr ≤ C3(t− s) ∀ 0 ≤ s < t ≤ T.

On the other hand, by (2.4) and (H2), there exists ξg ∈ L2(0, T ;H) such that
{g(unt )} converges weakly to ξg in L2(0, T ;H). Thus, we can pass to the limits
to deduce that u satisfies the following equality for all v ∈ V ∩ Lp(Ω),

d

dt

(

(u, v) + (∇u,∇v)
)

+ (∇u,∇v) + 〈f(u), v〉 = 〈h, v〉+ (ξg, v).
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Therefore, u satisfies the energy equality

|u(t)|2 + ‖u(t)‖2 + 2

∫ t

s

‖u(r)‖2dr + 2

∫ t

s

〈f(u(r)), u(r)〉dr

= |u(s)|2 + ‖u(s)‖2 + 2

∫ t

s

(

〈h, u(r)〉 + (ξg, u(r))
)

dr, ∀ 0 ≤ s < t ≤ T,

and for the weak limit ξg we have the estimate
∫ t

s

|ξg|
2dr ≤ lim inf

n→+∞

∫ t

s

|g(unr )|
2dr ≤ C3(t− s), ∀ 0 ≤ s ≤ t ≤ T.

So, we have that u also satisfies inequality (2.13) with the same constant C3.
Now, consider two functions Jn, J : [0, T ] → R defined by

Jn(t) =
1

2
(|un(t)|2+‖un(t)‖2)+

∫ t

0

〈f(un(r)), un(r)〉dr−

∫ t

0

〈h, un(r)〉dr−C3t,

J(t) =
1

2
(|u(t)|2+‖u(t)‖2)+

∫ t

0

〈f(u(r)), u(r)〉dr−

∫ t

0

〈h, u(r)〉dr−C3t.

It is clear that Jn and J are non-increasing and continuous functions. Moreover,
by the convergence of un to u a.e. in time with value in V , and weakly in
L2(0, T ;V ), it holds that

(2.14) Jn(t) → J(t) for a.e. t ∈ [0, T ].

Now, observe that the case t0 = 0 follows directly from (2.13) with s = 0 and
the definition of un(0) = Pnφ(0). So, we may assume that t0 > 0. This is
important, since we will approach this value t0 from the left by a sequence
{t′k}, i.e., lim

k→+∞

t′k ր t0. Since u(·) is continuous at t0, there is kǫ such that

|J(t′k)− J(t0)| <
ǫ

2
, ∀ k ≥ kǫ.

On the other hand, taking n ≥ n(kǫ) such that tn > t′kǫ
, as Jn is non-increasing

and for all t′k the convergence (2.14) holds, one has

|Jn(tn)− J(t0)| ≤ |Jn(t
′

kǫ
)− J(t′kǫ

)|+ |J(t′kǫ
)− J(t0)|,

and obviously, taking n ≥ n′(kǫ), it is possible to obtain |Jn(t
′

kǫ
)−J(t′kǫ

)| < ǫ
2 .

Hence

(2.15) lim sup
n→+∞

‖un(tn)‖ ≤ ‖u(t0)‖.

Furthermore, from (2.12) we get

un(tn)⇀ u(t0) weakly in V.

So, we have

(2.16) ‖u(t0)‖ ≤ lim inf
n→+∞

‖un(tn)‖.
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Combining (2.16) and (2.15), we get

un(tn) → u(t0) in V.

Finally, we have to show that g(unt ) → g(ut) in L
2(0, T ;H). We have

‖unt − ut‖γ

= sup
θ≤0

eγθ‖un(t+ θ)− u(t+ θ)‖

= max

{

sup
θ∈(−∞,−t]

eγθ‖Pnφ(θ + t)− φ(θ + t)‖, sup
θ∈[−t,0]

eγθ‖un(t+θ)−u(t+θ)‖

}

≤ max

{

e−γt‖Pnφ− φ‖γ , max
θ∈[0,t]

‖un(θ)− u(θ)‖

}

→ 0.

Hence, unt → ut in Cγ(V ), ∀ t ≤ T .
On the other hand, we identify the weak limit ξ from (2.10). So, we have

that

g(unt ) → g(ut) in L
2(0, T ;H).

Therefore, u is a weak solution of problem (1.1). �

3. Existence of a global attractor

Thanks to Theorem 2.1, we can define a semigroup S(t) : Cγ(V ) → Cγ(V ),
by the formula

S(t)φ := ut,

where u(t) is the unique weak solution of (1.1) with the initial datum φ ∈
Cγ(V ).

First, we prove the continuity of the semigroup S(t).

Proposition 3.1. Under the assumptions (H1)-(H4), the semigroup S(t) is

continuous on Cγ(V ).

Proof. Denoting by ui, for i = 1, 2, the corresponding solutions to (1.1) with
initial data φi ∈ Cγ(V ), respectively. Consider the equations satisfied by ui for
i = 1, 2, acting on the element u1 − u2 and taking the difference, we obtain

1

2

d

dt

(

|u1(t)− u2(t)|2 + ‖u1(t)− u2(t)‖2
)

+ ‖u1(t)− u2(t)‖2

+ 〈f(u1)− f(u2), u1 − u2〉 =
(

g(u1t )− g(u2t ), u
1 − u2

)

.

From (1.3) and (g2), we get

d

dt

(

|u1(t)− u2(t)|2 + ‖u1(t)− u2(t)‖2
)

+ 2‖u1(t)− u2(t)‖2(3.1)

− 2ℓ|u1(t)− u2(t)|2

≤ 2Lg‖u
1
t − u2t‖γ |u

1(t)− u2(t)|.
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For all s ∈ [0, t], one has

‖u1s − u2s‖γ = sup
θ≤0

eγθ‖u1(s+ θ)− u2(s+ θ)‖

= max

{

sup
θ∈(−∞,−s]

eγθ‖φ1(s+ θ)− φ2(s+ θ)‖;

sup
θ∈[−s,0]

eγθ‖u1(s+ θ)− u2(s+ θ)‖

}

≤ max

{

e−γs‖φ1 − φ2‖γ ; max
θ∈[0,s]

‖u1(θ)− u2(θ)‖

}

.

(3.2)

From (3.1) and (3.2), for all t ∈ [0, T ], we get

|u1(t)− u2(t)|2 + ‖u1(t)− u2(t))‖2

≤ |φ1(0)− φ2(0)|2 + ‖φ1(0)− φ2(0)‖2 + 2ℓ

∫ t

0

|u1(s)− u2(s)|2ds

+ 2Lg‖φ
1 − φ2‖γ

∫ t

0

e−γs|u1(s)− u2(s)|ds

+ 2Lg

∫ t

0

|u1(s)− u2(s)| max
θ∈[0,s]

‖u1(θ) − u2(θ)‖ds.

If we now substitute t by r ∈ [0, t] and consider the maximum when varying
this r, from the above inequality we can conclude that

max
r∈[0,t]

‖u(r)1 − u(r)2‖2 ≤
λ1 + 1

λ1
‖φ1(0)− φ2(0)‖2 +

Lg

2γ
‖φ1 − φ2‖2γ

+
2
(

Lg(
√
λ1 + 1) + ℓ

)

λ1

∫ t

0

max
r∈[0,s]

‖u1(r)− u2(r)‖2ds,

where we have used the following estimates

2Lg‖φ
1 − φ2‖γ

∫ t

0

e−γs|u1(s)− u2(s)|ds

≤ Lg‖φ
1 − φ2‖2γ

∫ t

0

e−2γsds+ Lg

∫ t

0

|u1(s)− u2(s)|2ds

≤
Lg

2γ
‖φ1 − φ2‖2γ +

Lg

λ1

∫ t

0

‖u1(s)− u2(s)‖2ds,

and

2Lg

∫ t

0

|u1(s)− u2(s)| max
θ∈[0,s]

‖u1(θ)− u2(θ)‖ds

≤
2Lg
√
λ1

∫ t

0

max
r∈[0,s]

‖u1(r) − u2(r)‖2ds.



590 D. T. P. THANH

Hence, by the Gronwall lemma, we obtain

max
r∈[0,t]

‖u1(r)− u2(r)‖2 ≤

(

λ1 + 1

λ1
‖φ1(0)− φ2(0)‖2 +

Lg

2γ
‖φ1 − φ2‖2γ

)

×

[

1 +
2(Lg(

√
λ1 + 1) + ℓ)t

λ1
e

2(Lg(
√

λ1+1)+ℓ)

λ1
t

]

.

Combining with (3.2), we get

‖u1t − u2t‖
2
γ

≤

(

λ1 + 1

λ1
+
Lg

2γ

)

‖φ1 − φ2‖2γ

[

1 +
2(Lg(

√
λ1 + 1) + ℓ)t

λ1
e

2(Lg(
√

λ1+1)+ℓ)

λ1
t

]

.

This completes the proof. �

Lemma 3.2. Let the assumptions (H1)-(H4) hold and let

2Lg√
λ1

<
λ1

1 + λ1
< 2γ.

Then the ball

B =







v ∈ Cγ(V ) : ‖v‖γ ≤

√

√

√

√

4‖h‖2
∗
+ 4C0|Ω|

λ1

1+λ1
−

2Lg
√

λ1







is a bounded absorbing set in Cγ(V ) for the semigroup S(t).

Proof. Multiplying the first equation of (1.1) by u, we obtain

1

2

d

dt
(|u(t)|2 + ‖u(t)‖2) + ‖u(t)‖2 + 〈f(u), u(t)〉 = (g(ut), u(t)) + 〈h, u(t)〉.

Using (1.2), (g2) and the Cauchy inequality, we have

C1‖u‖
p

Lp(Ω) − C0|Ω| ≤ 〈f(u), u(t)〉,

(g(ut), u(t)) ≤ |g(ut)||u(t)| ≤ Lg‖ut‖γ |u(t)|,

〈h, u(t)〉 ≤ ‖h‖2
∗
+

1

4
‖u(t)‖2.

Hence

d

dt

(

|u(t)|2 + ‖u(t)‖2
)

+
3

2
‖u(t)‖2 + 2C1‖u‖

p

Lp(Ω)

≤ 2‖h‖2
∗
+ 2Lg‖ut‖γ |u(t)|+ 2C0|Ω|.

Because |u(t)| ≤ 1
√

λ1
‖u(t)‖ ≤ 1

√

λ1
‖ut‖γ , we conclude that

d

dt

(

|u(t)|2 + ‖u(t)‖2
)

+
3

2
‖u(t)‖2 + 2C1‖u‖

p

Lp(Ω)

≤ 2‖h‖2
∗
+

2Lg
√
λ1

‖ut‖
2
γ + 2C0|Ω|.
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Multiplying this inequality by e
λ1

1+λ1
s and integrating from 0 to t, we obtain

e
λ1

1+λ1
t(|u(t)|2 + ‖u(t)‖2)−

∫ t

0

λ1

1 + λ1
e

λ1
1+λ1

s(|u(s)|2 + ‖u(s)‖2)ds(3.3)

+

∫ t

0

e
λ1

1+λ1
s
(3

2
‖u(s)‖2 + 2C1‖u(s)‖

p

Lp(Ω)

)

ds

≤ |u(0)|2 + ‖u(0)‖2 +

∫ t

0

e
λ1

1+λ1
s

(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds.

Multiplying (3.3) by e
−

λ1
1+λ1

t
and noting that |u|2+‖u‖2 ≤ 1+λ1

λ1
‖u‖2, we obtain

|u(t)|2+‖u(t)‖2+

∫ t

0

e
−

λ1
1+λ1

(t−s)
(1

2
‖u(s)‖2+2C1‖u(s)‖

p

Lp(Ω)

)

ds

(3.4)

≤ e
−

λ1
1+λ1

t(|u(0)|2+‖u(0)‖2)+

∫ t

0

e
−

λ1
1+λ1

(t−s)

(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ+2C0|Ω|

)

ds,

and therefore

‖u(t)‖2 ≤
1 + λ1

λ1
e
−

λ1
1+λ1

t
‖u(0)‖2

+

∫ t

0

e
−

λ1
1+λ1

(t−s)
(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds.

Furthermore,

‖ut‖
2
γ = sup

θ≤0
e2γθ‖u(t+θ)‖2

≤ max

{

sup
θ∈(−∞,−t]

e2γθ‖u(t+θ)‖2, sup
θ∈[−t,0]

e2γθ‖u(t+θ)‖2
}

≤ max
{

sup
θ∈(−∞,−t]

e2γθ‖φ(θ+t)‖2; sup
θ∈[−t,0]

[1+λ1
λ1

e
2γθ−

λ1
1+λ1

(t+θ)
‖u(0)‖2

+ e2γθ
∫ t+θ

0

e
−

λ1
1+λ1

(t+θ−s)
(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds
]}

.

By the assumption 2γ > λ1

1+λ1
, we get

sup
θ∈[−t,0]

e2γθ
∫ t+θ

0

e
−

λ1
1+λ1

(t+θ−s)
(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds

≤ sup
θ∈[−t,0]

∫ t+θ

0

e
−

λ1
1+λ1

(t−s)
(

2‖h‖2
∗
+

2Lg√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds
]}

.

Hence

‖ut‖
2
γ ≤ max

{

sup
θ∈(−∞,−t]

e2γθ‖φ(θ + t)‖2; sup
θ∈[−t,0]

[1 + λ1

λ1
e
−

λ1
1+λ1

t
‖u(0)‖2
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+

∫ t+θ

0

e
−

λ1
1+λ1

(t−s)
(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ + 2C0|Ω|

)

ds
]}

.

Since

sup
θ∈(−∞,−t]

eγθ‖φ(θ + t)‖ = sup
θ≤0

eγ(θ−t)‖φ(θ)‖ = e−γt‖φ‖γ

and ‖u(0)‖ ≤ ‖φ‖γ , we deduce that

‖ut‖
2
γ ≤

1 + λ1

λ1
e
−

λ1
1+λ1

t‖φ‖2γ+

∫ t

0

e
−

λ1
1+λ1

(t−s)
(

2‖h‖2
∗
+

2Lg
√
λ1

‖us‖
2
γ+2C0|Ω|

)

ds.

By the Gronwall lemma, we have

‖ut‖
2
γ ≤

1+λ1
λ1

e
−(

λ1
1+λ1

−

2Lg
√

λ1

)t
‖φ‖2γ +

∫ t

0

e
−(

λ1
1+λ1

−

2Lg
√

λ1

)(t−s)
(2‖h‖2

∗
+ 2C0|Ω|)ds

(3.5)

=
1+λ1
λ1

e
−(

λ1
1+λ1

−

2Lg
√

λ1

)t
‖φ‖2γ +

2‖h‖2
∗
+ 2C0|Ω|

λ1

1+λ1
−

2Lg
√

λ1

.

Since
2Lg
√

λ1
< λ1

1+λ1
, this inequality implies that the set B defined above is a

bounded absorbing set in Cγ(V ) for the semigroup S(t). �

To show the existence of a global attractor, it remains to prove the asymp-
totic compactness of the semigroup S(t).

Lemma 3.3. Under the assumptions of Lemma 3.2, the semigroup S(t) is

asymptotically compact.

Proof. Let B be a bounded set in Cγ(V ) and un(·) be a sequence of solutions in
[0,+∞) with initial data φn ∈ B. Consider the sequence ξn = S(tn)φ

n, where
tn → +∞ as n → +∞. We will prove that this sequence is relatively compact
in Cγ(V ).

Step 1 : Consider an arbitrary value T > 0. We will prove that ξn|[−T,0] is
relatively compact in C([−T, 0];V ). It follows from (3.5) that there exists n0

such that tn ≥ T for all n > n0 and

(3.6) ‖ξn‖γ ≤ R,

where R =
√

4‖h‖2
∗

+4C0|Ω|

λ1
1+λ1

−

2Lg
√

λ1

.

Let yn(·) = untn−T (·) = un(·+tn−T ). Then for each n ≥ 1 such that tn ≥ T ,
the function yn is a solution on [0, T ] of a similar problem to (1.1), namely,

(3.7)
d

dt
yn(t) +A∂ty

n(t) +Ayn(t) + f(yn(t)) = g(ynt ) + h,

with yn0 = untn−T , y
n
T = ξn. Then yn0 satisfies the estimate in (3.6) for all

n > n0. Using arguments as in the proof of Theorem 2.1, we can prove that
{yn} is bounded in L∞(0, T ;V )∩Lp(0, T ;Lp(Ω)), and that {(yn)′}n is bounded
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in L2(0, T ;V ). Thus, up to a subsequence (relabeled the same), for some
function y(·) we have

yn ⇀ y weakly star in L∞(0, T ;V ),

(yn)′ ⇀ y weakly in L2(0, T ;V ),

f(yn)⇀ f(y) weakly in Lp′

(0, T ;Lp′

(Ω)).

Applying the Aubin-Lions lemma (see [15]), we can assume that yn → y

strongly in L2(0, T ;H). Hence yn(t) → y(t) for a.e. t ∈ (0, T ).
Moreover, reasoning as in the proof of Theorem 2.1, we obtain

yn(tn)⇀ y(t0) weakly in V if tn → t0 ∈ [0, T ].

Also, by (H2) we have
∫ t

0

|g(yns )|
2ds ≤ Ct, ∀ 0 ≤ t ≤ T,

where C > 0 does not depend either on n or t. Since g(yn. )⇀ ξ in L2(0, T ;V ),
we get

∫ t

s

|ξ|2dr ≤ lim inf
n→+∞

∫ t

s

|g(ynr )|
2dr ≤ C(t− s), ∀ 0 ≤ s ≤ t ≤ T.

Thus, we can pass to the limits and prove that y is a solution of a similar
problem to (1.1), that is

d

dt
(y(t), v) +

d

dt
((y(t), v)) + ((y(t), v)) +

∫

Ω

〈f(y(t)), v〉dx = (ξ, v) + 〈h, v〉,

for all v ∈ L∞(0, T ;V ) ∩ Lp(0, T ;Lp(Ω)). Since
∫ t

s

∫

Ω

g(zr)zrdxdr ≤
1

2λ1

∫ t

s

|g(zr)|
2dr +

λ1

2

∫ t

s

|z(r)|2dr,

we obtain the energy inequality

|z(t)|2 + ‖z(t)‖2 +

∫ t

s

‖z(r)‖2dr + 2

∫ t

0

〈f(z(r)), z(r)〉dr

= |z(s)|2 + ‖z(s)‖2 + 2

∫ t

s

〈h, z(r)〉dr + 2C(t− s), ∀ 0 ≤ s ≤ t ≤ T,

where z = yn or z = y.
Now, consider two functions Jn, J : [0, T ] → R defined by

Jn(t) =
1

2
(|yn(t)|2 + ‖yn(t)‖2) +

∫ t

0

〈f(yn(r)), yn(r)〉dr

−

∫ t

0

〈h, yn(r)〉dr − Ct,

J(t) =
1

2
(|y(t)|2 + ‖y(t)‖2) +

∫ t

0

〈f(y(r)), y(r)〉dr −

∫ t

0

〈h, y(r)〉dr − Ct.
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It is clear that Jn and J are non-increasing and continuous functions.
Since yn(t) converges to y(t) for a.e. t ∈ (0, T ), we obtain that

Jn(t) → J(t) for a.e. t ∈ [0, T ].

Analogously as we did in Step 4 in the proof of Theorem 2.1, for a fixed t0 > 0,
using a sequence {t̃k} with t̃k ր t0, we are able to establish the convergence of
the norms

lim
n→∞

‖yn(tn)‖ = ‖y(t0)‖.

And therefore, jointly with the weak convergence already proved, we deduce
that yn → y in C([δ, T ];V ), for any δ ≥ 0.

Now, as we had T > 0, and yn → y in C([0, T ];V ), we obtain that ξn → ψ

in C([−T, 0];V ), where ψ(s) = y(s + T ), for s ∈ [−T, 0]. Repeating the same
procedure for 2T, 3T , etc., for a diagonal subsequence (relabeled the same) we
can obtain a continuous function ψ : (−∞, 0] → V and a subsequence such
that ξn → ψ in C([−T, 0];V ) on every interval [−T, 0].

Moreover, for a fixed T > 0, we also have

‖ψ(s)‖ ≤ R, ∀ s ∈ [−T, 0], ∀ T > 0.

Step 2 : We claim that ξn converges to ψ in Cγ(V ). Indeed, we have to prove
that for every ǫ > 0 there exists nǫ such that

(3.8) sup
s∈(−∞,0]

‖ξn(s)− ψ(s)‖2e2γs ≤ ǫ, ∀ n ≥ nǫ.

Fix Tǫ > 0 such that e−2γTǫR2 ≤ ǫ
4 .

In Step 1, we proved that ξn → ψ in C([−Tǫ, 0];V ), so there exists nǫ =
nǫ(Tǫ) such that for all n ≥ nǫ, we have

sup
s∈[−Tǫ,0]

‖ξn(s)− ψ(s)‖2e2γs ≤ ǫ, ∀ tn ≥ Tǫ.

(This is possible since the convergence of ξn to ψ holds in compact intervals of
time.) So, in order to prove (3.8) we only have to check that

sup
s∈(−∞,Tǫ)

‖ξn(s)− ψ(s)‖2e2γs ≤ ǫ, ∀ n ≥ nǫ.

Because of (3.6) and the choice of Tǫ, we can check that for all k ∈ N∪{0} and
s ∈ [−(Tǫ + k + 1),−(Tǫ + k)], it holds that

sup
s∈[−(Tǫ+k+1),−(Tǫ+k)]

e2γs‖ψ(s)‖2 ≤ sup
s∈[−1,0]

e2γ(s−Tǫ−k)‖ψ(s− Tǫ − k)‖2

≤ e−2γ(Tǫ+k)R2

≤
ǫ

4
.

Thus, it suffices to prove the following

sup
s∈(−∞,−Tǫ]

e2γs‖ξn(s)‖2 ≤ ǫ/4, ∀ n ≥ nǫ.
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We have

ξn(s) =

{

φn(s+ tn), if s ∈ (−∞,−tn],

un(s+ tn), if s ∈ [−tn, 0].

So, the proof is finished if we prove that

max

{

sup
s∈(−∞,−tn]

e2γs‖φn(s+ tn)‖
2, sup

s∈[−tn,−Tǫ]

e2γs‖un(s+ tn)‖
2

}

≤ ǫ/4.

The first term above can be estimated as follows

sup
s≤−tn

e2γs‖φn(s+ tn)‖
2 = sup

s≤−tn

e2γ(s+tn)e−2γtn‖φn(s+ tn)‖
2

= e−2γtn‖φn‖2γ

≤ ǫ/4,

thanks to the choice of nǫ. And finally, for the second term, we have

sup
s∈[−tn,−Tǫ]

e2γs‖un(s+ tn)‖
2 = sup

s∈[−tn+Tǫ,0]

e2γ(s−Tǫ)‖un(tn − Tǫ + s)‖2

≤ e−2γTǫ ||untn−Tǫ
||2γ

≤ e−2γTǫR2

≤ ǫ/4,

where we have used (3.7) with T = Tǫ. �

From Lemmas 3.2 and 3.3, by the classical abstract results on existence of
global attractors (see e.g. Theorem 1.1 in [23]), we get the main result of this
section.

Theorem 3.4. Under the assumptions of Lemma 3.2, the semigroup S(t) has
a compact global attractor in the space Cγ(V ).

4. Existence and stability of stationary solutions

A stationary solution to problem (1.1) is an element u∗ ∈ V ∩ Lp(Ω) such
that

(4.1) ((u∗, v)) + 〈f(u∗), v〉 = (g(u∗), v) + 〈h, v〉,

for all test functions v ∈ V ∩ Lp(Ω).

Theorem 4.1. Suppose that (H1)-(H4) hold. Then

(a) There exists at least one stationary solution to (1.1);
(b) If the following condition holds

(4.2) λ1 − ℓ− Lg

√

λ1 > 0,

then the stationary solution of (1.1) is unique.
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Proof. Let {ej : j ≥ 1} be a basis of V ∩ Lp(Ω). For each integer n ≥ 1, let
us denote Vn = span{e1, . . . , en} and we would like to define an approximate
solution un of (1.1) by

(4.3) un =
n
∑

j=1

γnjej ,

where

(4.4) ((un, ej)) + 〈f(un), ej〉 = (g(un), ej) + 〈h, ej〉, j = 1, . . . , n.

To prove the existence of un, we define operators Rn : Vn → Vn by

((Rnu, v)) := ((u, v)) + 〈f(u), v〉 − (g(u), v)− 〈h, v〉, ∀ u, v ∈ Vn.

For all u ∈ Vn, we have

((Rnu, u)) ≥ ‖u‖2 + C1‖u‖
p

Lp(Ω) − C0|Ω| − ‖h‖∗‖u‖ − Lg‖u‖|u|

≥
1

2
‖u‖2 + C1‖u‖

p

Lp(Ω) − C0|Ω| − ‖h‖2
∗
− L2

g|u|
2.

Using Young’s inequality, we get

L2
g|u|

2 ≤
C1

2
‖u‖p

Lp(Ω) +
p− 2

p

(C1p

4

)
−2

p−2

L
2p

p−2

g |Ω|.

So, we have

(4.5)

((Rnu, u)) ≥
1

2
‖u‖2 +

C1

2
‖u‖p

Lp(Ω) − C0|Ω| − ‖h‖2
∗

−
p− 2

p

(C1p

4

)

−2

p−2

L
2p

p−2

g |Ω|.

Thus, if we take

β > 2C0|Ω|+ 2‖h‖2
∗
+

2p− 4

p

(C1p

4

)
−2

p−2

L
2p

p−2

g |Ω|,

we obtain ((Rnu, u)) ≥ 0 ∀u ∈ Vn with ‖u‖2 = β. Consequently, by a corollary
of the Brouwer fixed point (see e.g. [22, Chapter 2, Lemma 1.4]), for each
n ≥ 1, there exists un ∈ Vn such that Rn(un) = 0, with ‖un‖ ≤ β.

Multiplying (4.4) by γnj and adding corresponding equalities for j = 1, . . . , n,
we have

‖un‖2 = (g(un), un) + 〈h, un〉 − 〈f(un), un〉

≤
p− 2

p

(C1p

4

)
−2

p−2

L
2p

p−2

g |Ω|+ C0|Ω|+ ‖h‖2
∗
+

1

2
‖un‖2 −

C1

2
‖un‖p

Lp(Ω).

Hence, we obtain a priori estimate

‖un‖2 + C1‖u
n‖p

Lp(Ω) ≤ 2C0|Ω|+ 2‖h‖2
∗
+

2p− 4

p

(C1p

4

)

−2

p−2

L
2p

p−2

g |Ω|.
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Since the sequence {un} is bounded in V ∩ Lp(Ω), there exist some u∗ in
V ∩ Lp(Ω) and a subsequence (still denoted the same) such that

un ⇀ u∗ weakly in V ∩ Lp(Ω).

On the other hand, using (1.2) we get

(4.6) {f(un)} is bounded in Lp′

(Ω),

where p′ is the conjugate of p. Thus,

f(un)⇀ ξ weakly in Lp′

(Ω).

Using the compactness of the embedding V →֒ H , we can assume that un → u∗

strongly in H . Hence un → u∗ a.e. in Ω. Since f is continuous, it follows that
f(un) → f(u∗) a.e. in Ω. Thanks to (4.6) and Lemma 1.3 in [15, Chapter 1],
one has

f(un)⇀ f(u∗) weakly in Lp′

(Ω).

Thus, ξ = f(u∗). On the other hand, using (g2) we can check that

g(un)⇀ g(u∗) weakly in H.

Thus, we conclude that u∗ is a stationary solution of (1.1).
Finally, we verify the uniqueness. Let u∗ and v∗ be two stationary solutions

to (1.1). Denote w = u∗ − v∗, we have

Aw + f(u∗)− f(v∗) = g(u∗)− g(v∗) in (V ∩ Lp(Ω))′ = V ′ + Lp′

(Ω).

Hence, choosing the test function v = u∗ − v∗, we get

‖u∗ − v∗‖2 + 〈f(u∗)− f(v∗), u∗ − v∗〉 = (g(u∗)− g(v∗), u∗ − v∗).

Using (g2) and (1.3), we get

‖u∗ − v∗‖2 ≤ ℓλ−1
1 ‖u∗ − v∗‖2 + Lgλ

−1/2
1 ‖u∗ − v∗‖2.

Thus,

(1− ℓλ−1
1 − Lgλ

−1/2
1 )‖u∗ − v∗‖2 ≤ 0,

and since λ1 − ℓ− Lg

√
λ1 > 0, this completes the proof. �

Theorem 4.2. Assume (H1)-(H4) and (4.2) are satisfied. Then there exists

a value 0 < λ < 2γ such that for the solution u(·) of (1.1) with φ ∈ Cγ(V ), and
w(t) = u(t) − u∗, with u∗ is the unique stationary solution given by Theorem

4.1, the following estimates hold for all t ≥ 0:

‖w(t)‖2 ≤ e−λt

(

|w(0)|2 + ‖w(0)‖2 +
2L2

g

λ1(2γ−λ)‖φ− u∗‖2γ

)

,

(4.7)

‖wt‖
2
γ ≤ max

{

e−2γt‖φ−u∗‖2γ , e
−λt

(

|w(0)|2+‖w(0)‖2+
2L2

g

λ1(2γ−λ)
‖φ−u∗‖2γ

)}

.

(4.8)
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Proof. For w(t) = u(t)− u∗, we have

(∂tw(t), w(t)) + (A∂tw(t), w(t)) + (Aw(t), w(t)) + 〈f(u(t))− f(u∗), w(t)〉

= (g(ut)− g(u∗), w(t)).

Using (1.3), (H2), and introducing an exponential term eλt with a positive
value λ to be fixed, we obtain

d

dt

(

eλt(|w(t)|2 + ‖w(t)‖2)

)

+ 2eλt‖w(t)‖2

≤ eλt
(

λ(|w(t)|2 + ‖w(t)‖2) + 2ℓ|w(t)|2 + 2Lg‖wt‖γ |w(t)|

)

.

Hence, using Young’s inequality with δ > 0 to be fixed later, we conclude that

d

dt

(

eλt(|w(t)|2 + ‖w(t)‖2)

)

≤ eλt
(

λ(λ−1
1 + 1) + 2ℓλ−1

1 + δLgλ
−1
1 − 2

)

‖w(t)‖2 +
Lg

δ
eλt‖wt‖

2
γ .

Therefore, integrating from 0 to t, we have

(4.9)

eλt(|w(t)|2 + ‖w(t)‖2)

≤ |w(0)|2 + ‖w(0)‖2 +
Lg

δ

∫ t

0

eλs‖ws‖
2
γds

+

(

λ(λ−1
1 + 1) + 2ℓλ−1

1 + δLgλ
−1
1 − 2

)
∫ t

0

eλs‖w(s)‖2ds.

In order to control the term
∫ t

0 e
λs‖ws‖

2
γds, we proceed as follows

∫ t

0

eλs sup
θ≤0

e2γθ‖w(s+ θ)‖2ds

=

∫ t

0

eλs max

{

sup
θ≤−s

e2γθ‖w(s+ θ)‖2, sup
θ∈[−s,0]

e2γθ‖w(s+ θ)‖2
}

ds

=

∫ t

0

max

{

e−(2γ−λ)s‖φ− u∗‖2γ , sup
θ∈[−s,0]

e(2γ−λ)θeλ(s+θ)‖w(s+ θ)‖2
}

ds.

So, if λ < 2γ, using the above equality in (4.9), we obtain

eλt(|w(t)|2 + ‖w(t)‖2)

≤ |w(0)|2 + ‖w(0)‖2 +
Lg

δ
‖φ− u∗‖2γ

∫ t

0

e(λ−2γ)sds

+

(

λ(λ−1
1 + 1) + 2ℓλ−1

1 + δLgλ
−1
1 − 2 +

Lg

δ

)
∫ t

0

max
r∈[0,s]

(eλr‖w(r)‖2)ds.
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Observe that the (optimal) choice of δ =
√
λ1 makes that δLgλ

−1
1 − 2 +

Lg

δ
is

minimal and the coefficient of the last integral becomes

(4.10) λ(λ−1
1 + 1) + 2ℓλ−1

1 + 2Lgλ
−1/2
1 − 2.

Using the hypothesis λ1 − ℓ− Lg

√
λ1 > 0, we can choose λ ∈ (0, 2γ) such that

(4.10) is negative. So, we can deduce that

eλt(|w(t)|2+‖w(t)‖2)≤(|w(0)|2+‖w(0)‖2)+
Lg

√
λ1(2γ−λ)

(1−e(λ−2γ)t)‖φ−u∗‖2γ ,

whence (4.7) follows.
Finally, (4.8) can be deduced as follows

‖wt‖
2
γ ≤ sup

θ≤0
e2γθ‖w(t+ θ)‖2

= max

{

sup
θ∈(−∞,−t]

e2γθ‖φ(t+ θ)− u∗‖2, max
θ∈[−t,0]

e2γθ‖w(t+ θ)‖2
}

= max

{

e−2γt‖φ− u∗‖2, max
θ∈[−t,0]

e2γθ‖w(t+ θ)‖2
}

and the second term can be estimated using (4.8) and the fact that e(2γ−λ)θ ≤ 1
when θ ≤ 0. �
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