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CERTAIN GENERALIZED OSTROWSKI TYPE

INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

Junesang Choi, Erhan Set, and Muharrem Tomar

Abstract. We give a function associated with generalized Ostrowski
type inequality and its integral representation for local fractional cal-
culus. Then, using this function and its integral representation, we es-
tablish several inequalities of generalized Ostrowski type for twice local
fractional differentiable functions. We also consider some special cases of
the main results which are further applied to a concrete function to yield
two interesting inequalities associated with two generalized means.

1. Introduction and preliminaries

Throughout this paper, let R, R+, Q, Z and N be the sets of real and positive
real numbers, rational numbers, integers and positive integers, respectively, and

J := R \Q and N0 := N ∪ {0}.

In order to describe the definition of the local fractional derivative and local
fractional integral, recently, one has introduced to define the following sets (see,
e.g., [14, 15]): For 0 < α ≤ 1,

(i) the α-type set of integers Zα is defined by

Z
α := {0α} ∪ {±mα : m ∈ N} ;

(ii) the α-type set of rational numbers Qα is defined by

Q
α := {qα : q ∈ Q} =

{(m

n

)α

: m ∈ Z, n ∈ N

}

;

(iii) the α-type set of irrational numbers Jα is defined by

J
α := {rα : r ∈ J} =

{

rα 6=
(m

n

)α

: m ∈ Z, n ∈ N

}

;

(iv) the α-type set of real line numbers Rα is defined by R
α := Q

α ∪ J
α.
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Throughout this paper, whenever the α-type set Rα of real line numbers is
involved, the α is assumed to be tacitly 0 < α ≤ 1.

One has also defined two binary operations the addition + and the multi-
plication · (which is conventionally omitted) on the α-type set Rα of real line
numbers as follows (see, e.g., [14, 15]): For aα, bα ∈ R

α,

(1.1) aα + bα := (a+ b)α and aα · bα = aαbα := (ab)α.

Then one finds that

• (Rα, +) is a commutative group: For aα, bα, cα ∈ R
α,

(A1) aα + bα ∈ R
α;

(A2) aα + bα = bα + aα;
(A3) aα + (bα + cα) = (aα + bα) + cα;
(A4) 0α is the identity for (Rα, +): For any aα ∈ R

α, aα + 0α =
0α + aα = aα;

(A5) For each aα ∈ R
α, (−a)α is the inverse element of aα for

(Rα, +):
aα + (−a)α = (a+ (−a))α = 0α;

• (Rα \ {0α} , ·) is a commutative group: For aα, bα, cα ∈ R
α,

(M1) aαbα ∈ R
α;

(M2) aα bα = bα aα;
(M3) aα (bαcα) = (aα bα) cα;
(M4) 1α is the identity for (Rα, ·): For any aα ∈ R

α, aα1α = 1αaα =
aα;

(M5) For each aα ∈ R
α \ {0α}, (1/a)α is the inverse element of aα for

(Rα, ·):
aα(1/a)α = (a(1/a))α = 1α;

• Distributive law holds: aα (bα + cα) = aαbα + aαcα.

Furthermore we observe some additional properties for (Rα, +, ·) which are
stated in the following proposition.

Proposition 1. Each of the following statements holds true:

(i) Like the usual real number system (R, +, ·), (Rα, +, ·) is a field;
(ii) The additive identity 0α and the multiplicative identity 1α are unique,

respectively;
(iii) The additive inverse element and the multiplicative inverse element are

unique, respectively;
(iv) For each aα ∈ R

α, its inverse element (−a)α may be written as −aα;
for each bα ∈ R

α \ {0α}, its inverse element (1/b)α may be written as

1α/bα but not as 1/bα;
(v) If the order < is defined on (Rα, +, ·) as follows: aα < bα in R

α if

and only if a < b in R, then (Rα, +, ·, <) is an ordered field like

(R, +, ·, <).

Proof. We prove only (iv). For each aα ∈ R
α and each bα ∈ R

α \ {0α},
aα + (−aα) = 0α and bα (1α/bα) = 1α. Then, in view of uniqueness of inverse
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elements in (iii), we may identify (−a)α and (1/b)α with −aα and 1α/bα, re-
spectively. Yet, if 1α/bα = 1/bα for bα ∈ R

α \ {0α}, then, after multiplying bα

on each side, we have 1α = 1. If 1α = 1 is right, then we can write

2α = (1 + 1)α = 1α + 1α = 1 + 1 = 2,

which is obviously impossible when 0 < α < 1. �

In order to introduce the local fractional calculus on R
α, we begin with the

concept of the local fractional continuity as in Definition 1.

Definition 1. A non-differentiable function f : R → R
α, x 7→ f(x), is called

to be local fractional continuous at x0 if for any ε ∈ R
+, there exists δ ∈ R

+

such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ. If a function f is local continuous on the interval (a, b),
we denote f ∈ Cα(a, b).

Among several attempts to have defined local fractional derivative and lo-
cal fractional integral (see [14, Section 2.1]), we choose to recall the following
definitions of local fractional calculus (see, e.g., [3, 14, 15]):

Definition 2. The local fractional derivative of f(x) of order α at x = x0 is
defined by

f (α)(x0) = x0
Dα

xf(x) =
dαf(x)

dxα

∣

∣

∣

∣

x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)
α ,

where ∆α (f(x)− f(x0)) =̃Γ(α+1) (f(x)− f(x0)) and Γ is the familiar Gamma
function (see, e.g., [12, Section 1.1]).

Let f (α)(x) = Dα
xf(x). If there exists f (k+1)α(x) =

k+1 times
︷ ︸︸ ︷

Dα
x · · ·Dα

x f(x) for any
x ∈ I ⊆ R, then we denote f ∈ D(k+1)α(I) (k ∈ N0).

Definition 3. Let f ∈ Cα [a, b]. Also let P = {t0, . . . , tN} (N ∈ N) be a
partition of the interval [a, b] which satisfies a = t0 < t1 < · · · < tN−1 < tN = b.
Further, for this partition P , let ∆t := max

0≤j≤N−1
∆tj where ∆tj := tj+1 − tj ,

j = 0, . . . , N − 1. Then the local fractional integral of f on the interval [a, b]

of order α (denoted by aI
(α)
b f) is defined by

(1.2) aI
(α)
b f =

1

Γ(α+ 1)

∫ b

a

f(t)(dt)α :=
1

Γ(α+ 1)
lim

∆t→0

N−1
∑

j=0

f(tj)(∆tj)
α,

provided the limit exists (in fact, this limit exists if f ∈ Cα [a, b]).

Here, it follows that aI
(α)
b f = 0 if a = b and aI

(α)
b f = −bI

(α)
a f if a < b.

If aI
(α)
x g exists for any x ∈ [a, b] and a function g : [a, b] → R

α, then we

denote g ∈ I
(α)
x [a, b].
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Remark 2. Let f and g be two bounded real-valued functions defined on the
interval [a, b]. Let, for simplicity, us use the notations in Definition 3. Then the
Riemann-Stieltjes integral of f on [a, b] with respect to the function g (denoted

by
∫ b

a
f dg) can be defined by

(1.3)

∫ b

a

f dg := lim
∆t→0

N−1
∑

j=0

f(tj) (g(tj+1)− g(tj)) ,

provided the limit exists.
Here, if we choose the function g(t) = tα, then, by noticing

(∆tj)
α = (tj+1)

α − (tj)
α = g(tj+1)− g(tj),

where the first equality follows from the operation in R
α, in a sense of the

formality, the local fractional integral in (1.2) may be considered as a special
case of the Riemann-Stieltjes integral in (1.3), except for the auxiliary constant
1/Γ(α+ 1).

For the present investigation, we recall some properties for the local frac-
tional calculus given in Lemma 3 (see, e.g., [3, 14, 15]).

Lemma 3. The following formulas hold true:

(1) (α-local fractional derivative)

dαxkα

dxα
=

Γ(1 + kα)

Γ(1 + (k − 1)α)
x(k−1)α (k ∈ R) ;

(2) (Local fractional integration is anti-differentiation)
Suppose that f = g(α) ∈ Cα [a, b]. Then we have

aI
(α)
b f = g(b)− g(a);

(3) (Local fractional integration by parts)
Suppose that f, g ∈ Dα [a, b] and f (α), g(α) ∈ Cα [a, b]. Then we

have

aI
(α)
b

(

fg(α)
)

= f g|ba − aI
(α)
b

(

f (α) g
)

;

(4) (Local fractional definite integrals of xkα)

1

Γ(1 + α)

∫ b

a

xkα(dx)α =
Γ(1 + kα)

Γ(1 + (k + 1)α)

(

b(k+1)α − a(k+1)α
)

(k ∈ R).

For more and detailed properties about local fractional calculus, one may
refer to such works as (for example) [14, 15, 16, 17, 18, 19].

A function f : I ⊆ R → R, x 7→ f(x), is said to be convex on the interval I
if the following inequality

(1.4) f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for every x, y ∈ I and t ∈ [0, 1].



OSTROWSKI TYPE INEQUALITIES VIA LOCAL FRACTIONAL INTEGRALS 605

The following inequality gives an estimate of the (integral) mean value of
convex functions: Let f : I ⊆ R → R be a convex function and a, b ∈ I with
a < b. Then

(1.5) f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f (x) dx ≤
f (a) + f (b)

2
,

which is known as Hermite-Hadamard inequality.
Mo et al. [7] introduced to investigate the following generalized convex func-

tion:

Definition 4. Let f : I ⊆ R → R
α. If the following inequality

(1.6) f (λx1 + (1 − λ)x2) ≤ λαf(x1) + (1− λ)
α
f(x2)

holds for any x1, x2 ∈ I and λ ∈ [0, 1], then f is said to be a generalized
convex function on I. If the inequality in (1.6) is reversed, then f is called a
generalized concave function on I.

Example 1. Two generalized convex functions are recalled (see [7, p. 3]): The
one elementary function is

(1.7) f(x) = xαp (x ≥ 0; p > 1).

The Mittag-Leffler function Eα(x) is defined by

(1.8) Eα(x) :=
∞
∑

k=0

xk

Γ(1 + kα)

(

x ∈ R; α ∈ R
+
)

(for various generalizations, see, e.g., [2]). It is easy to see that E1(x) = exp (x),
since Γ(n+1) = n! (n ∈ N0). Hence the Mittag-Leffler function in (1.8) is often
referred to as a generalized exponential.

Here the other one is given by

(1.9) g(x) := Eα (xα) =

∞
∑

k=0

xkα

Γ(1 + kα)
(x ∈ R; 0 < α ≤ 1),

which may be considered as the exponential function in the α-type set Rα (see,
e.g., [14, Section 1.14]).

Mo et al. [7, Theorem 14] proved the following generalized Hermite-Hada-

mard inequality for local fractional integral: Let f ∈ I
(α)
x [a, b] be a generalized

convex function on [a, b] with a < b. Then

(1.10) f

(

a+ b

2

)

≤
Γ(1 + α)

(b− a)α
aI

(α)
b f ≤

f (a) + f (b)

2α
.

Remark 4. Some of the classical inequalities for integral means can be derived
from (1.10) by appropriately choosing the involved function f . Both inequali-
ties in (1.10) hold in the reverse direction if f is generalized concave. For some
new results which generalize, improve and extend the inequalities (1.10), one
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may refer to such works as (for example) [1, 3, 5, 6, 9, 10, 11, 13] and references
therein.

Recently an attention has been paid on an interesting Hölder’s inequality for
the local fractional integral, which was established by Yang [15], as in following
lemma:

Lemma 5. Let f, g ∈ Cα [a, b] and p, q > 1 with 1
p
+ 1

q
= 1. Then

(1.11)

1

Γ(α+ 1)

∫ b

a

|f(x)g(x)| (dx)α

≤

(

1

Γ(α+ 1)

∫ b

a

|f(x)|
p
(dx)α

)
1
p
(

1

Γ(α+ 1)

∫ b

a

|g(x)|
q
(dx)α

)
1
q

.

Ostrowski [8] established an integral inequality which is now classical and
given in Theorem 6.

Theorem 6. Let f : [a, b] → R be a differentiable function whose derivative

f ′ : [a, b] → R is bounded on (a, b), i.e., ‖f ′‖∞ = supt∈(a,b) |f
′(t)| < ∞. Then

the following inequality holds true:

(1.12)

∣

∣

∣

∣

∣

f(x)−
1

b− a

∫ b

a

f(t) dt

∣

∣

∣

∣

∣

≤

[

1

4
+

(

x− a+b
2

)2

(b− a)2

]

(b− a) ‖f ′‖∞

for all x ∈ [a, b]. The constant 1
4 is best possible.

The inequality (1.12) has been paid considerable attention by mathemati-
cians and other researchers due mainly to its wide and various applications in
such areas as (for example) numerical analysis and the theory of certain spe-
cial means (see, e.g., [3]). Very recently, Sarikaya and Budak [9] obtained a
generalized Ostrowski inequality for local fractional integral, which is recalled
in Theorem 7.

Theorem 7. Let I ⊆ R be an interval, f : I◦ ⊆ R → R
α (I◦ is the interior of

I) such that f (α) ∈ Dα(I
◦) and f (2α) ∈ Cα[a, b] for a, b ∈ I◦ with a < b. Also

assume that

‖f (α)‖∞ := sup
t∈[a,b]

|f (α)(t)| < ∞.

Then, for all x ∈ [a, b],
∣

∣

∣

∣

f(x)−
Γ(1 + α)

(b− a)α
aI

(α)
b f

∣

∣

∣

∣

≤ 2α
Γ(1 + α)

Γ(1 + 2α)





1

4α
+

(

x− a+b
2

b − a

)2α


 (b− a)α ‖f (α)‖∞.(1.13)
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Here, in this paper, we give a function and its integral representation asso-
ciated with local fractional calculus. Then, using this function and its integral
representation, we establish several inequalities of generalized Ostrowski type
(see, e.g., [3, Theorem 9]) for twice local fractional differentiable functions. We
also consider some special cases of the main results which are further applied
to a concrete function to yield two interesting inequalities associated with the
generalized means in (3.1) and (3.2).

2. Main results

In order to establish further inequalities of generalized Ostrowski type for
twice local fractional differentiable functions, we begin by introducing a func-
tion and its integral representation for twice local fractional differentiable func-
tions asserted by the following lemma.

Lemma 8. Let I ⊆ R be an interval, f : I◦ ⊆ R → R
α (I◦ is the interior of I)

such that f, f (α) ∈ Dα(I
◦) and f (2α) ∈ Cα[a, b] for a, b ∈ I◦ with a < b. Then

the following equality holds true: For any x ∈ [a+b
2 , b],

(2.1) L(α; a, b;x) =
(b− a)2α

Γ(1 + α)Γ(1 + 2α)

∫ 1

0

k(t)f (2α) (ta+ (1− t)b) (dt)α,

where

(2.2)

L(α; a, b;x) :=
1

(b− a)α
aI

(α)
b f

−
1

Γ(1 + α)Γ(1 + 2α)
[f(x) + f(a+ b− x)]

+
1

2αΓ(1 + α)

(

x−
a+ 3b

4

)α
[

f (α)(x)− f (α)(a+ b− x)
]

and

(2.3) k(t) :=











t2α if 0 ≤ t ≤ b−x
b−a

,

(t− 1
2 )

2α if b−x
b−a

< t < x−a
b−a

,

(t− 1)2α if x−a
b−a

≤ t ≤ 1.

Proof. Let I be the following integral:

I :=
1

Γ(1 + α)

∫ 1

0

k(t)f (2α) (ta+ (1 − t)b) (dt)α.

Then, in view of k(t), we have

(2.4) I = I1 + I2 + I3,

where

I1 :=
1

Γ(1 + α)

∫
b−x
b−a

0

t2αf (2α) (ta+ (1 − t)b) (dt)α,
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I2 :=
1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2α

f (2α) (ta+ (1 − t)b) (dt)α

and

I3 :=
1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)
2α

f (2α) (ta+ (1− t)b) (dt)α.

Applying the local fractional integration by parts, we have

I1 =
t2α

(a− b)α
f (α) (ta+ (1− t)b)

∣

∣

∣

b−x
b−a

0

−
Γ(1 + 2α)

Γ(1 + α)(a− b)α

∫
b−x
b−a

0

tαf (α) (ta+ (1− t)b) (dt)α.

Again, applying the local fractional integration by parts, we obtain

I1 =
1

(a− b)α

(

b− x

b− a

)2α

f (α)(x)

−
Γ(1 + 2α)

Γ(1 + α)(a − b)α

[

tα

(a− b)α
f (ta+ (1− t)b)

∣

∣

∣

b−x
b−a

0

−
Γ(1 + α)

(a− b)α
1

Γ(1 + α)

∫
b−x
b−a

0

f (ta+ (1− t)b) (dt)α

]

.

Then, after a little simplification, we get

(2.5)

I1 = −
(b− x)2α

(b− a)3α
f (α)(x)−

Γ(1 + 2α)(b − x)α

Γ(1 + α)(b − a)3α
f(x)

+
Γ(1 + 2α)

(b− a)2α
1

Γ(1 + α)

∫
b−x
b−a

0

f (ta+ (1− t)b) (dt)α.

Similarly we have

(2.6)

I2 =
(a+ b− 2x)2α

4α(b − a)3α

[

f (α)(x)− f (α)(a+ b− x)
]

+
Γ(1 + 2α)(a+ b− 2x)α

2αΓ(1 + α)(b − a)3α
[f(x) + f(a+ b− x)]

+
Γ(1 + 2α)

(b − a)2α
1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

f (ta+ (1− t)b) (dt)α

and

(2.7)

I3 =
(b− x)(2α)

(b− a)3α
f (α)(a+ b− x)−

Γ(1 + 2α)(b − x)α

Γ(1 + α)(b − a)3α
f(a+ b− x)

+
Γ(1 + 2α)

(b− a)2α
1

Γ(1 + α)

∫ 1

x−a
b−a

f (ta+ (1 − t)b) (dt)α.
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We find from (2.5), (2.6) and (2.7) that

(2.8)

I =
1

(b− a)2α

(

x−
a+ 3b

4

)α
(

f (α)(x)− f (α)(a+ b− x)
)

−
Γ(1 + 2α)

2αΓ(1 + α)(b − a)2α
(f(x) + f(a+ b− x))

+
Γ(1 + 2α)

(b− a)2α
1

Γ(1 + α)

∫ 1

0

f(ta+ (1− t)b)(dt)α.

Finally, changing the variable u = ta + (1 − t)b (t ∈ [0, 1]) in (2.8) and
multiplying each side of the resulting identity by (b − a)2α/Γ(1 + 2α), we can
get the desired equality (2.1). �

Theorem 9. Let I ⊆ R be an interval, f : I◦ ⊆ R → R
α (I◦ is the interior

of I) such that f, f (α) ∈ Dα(I
◦) and f (2α) ∈ Cα[a, b] for a, b ∈ I◦ with a < b.

Also assume that

‖f (2α)‖∞ := sup
t∈[a,b]

|f (2α)(t)| < ∞.

Then the following inequality holds true: For any x ∈ [a+b
2 , b],

(2.9) |L(α; a, b;x)| ≤

∥

∥f (2α)
∥

∥

∞

Γ(1 + 3α) (b− a)α

[

2α (b− x)3α +
(2x− a− b)3α

4α

]

,

where L(α; a, b;x) is given as in (2.2).

Proof. Let L := L(α; a, b;x) in (2.2). Then we have

|L| ≤
(b− a)2α

Γ(1 + α) Γ(1 + 2α)

∫ 1

0

|k(t)|
∣

∣

∣
f (2α)(ta+ (1 − t)b)

∣

∣

∣
(dt)α

≤
(b− a)2α

∥

∥f (2α)
∥

∥

∞

Γ(1 + α) Γ(1 + 2α)

∫ 1

0

|k(x, t)|(dt)α.

Using (2.3), we get
(2.10)

|L| ≤
(b− a)2α

∥

∥f (2α)
∥

∥

∞

Γ(1 + 2α)

{

1

Γ(1 + α)

∫
b−x
b−a

0

t2α(dt)α

+
1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2α

(dt)α +
1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)2α(dt)α

}

.

Using Lemma 3, we have

1

Γ(1 + α)

∫
b−x
b−a

0

t2α(dt)α =
Γ(1 + 2α)

Γ(1 + 3α)

(b− x

b− a

)3α

,(2.11)

1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2α

(dt)α =
Γ(1 + 2α)

4αΓ(1 + 3α)

(2x− a− b

b− a

)3α

(2.12)
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and

(2.13)

1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)2α (dt)α =
1

Γ(1 + α)

∫
b−x
b−a

0

u2α(du)α

=
Γ(1 + 2α)

Γ(1 + 3α)

(b− x

b− a

)3α

.

Finally, substituting (2.11), (2.12) and (2.13) into (2.10) is immediately seen
to yield the desired inequality (2.9). �

Setting x = (a+b)/2 in Theorem 9 gives an interesting inequality associated
with the local fractional integral asserted by the following corollary.

Corollary 1. Under the assumptions of Theorem 9, the following inequality

holds true:
(2.14)
∣

∣

∣

∣

1

(b − a)α
aI

α
b f −

2α

Γ(1 + α)Γ(1 + 2α)
f

(

a+ b

2

)
∣

∣

∣

∣

≤

∥

∥f (2α)
∥

∥

∞
(b− a)2α

4αΓ(1 + 3α)
.

Theorem 10. Let I ⊆ R be an interval, f : I◦ ⊆ R → R
α (I◦ is the interior of

I) such that f, f (α) ∈ Dα(I
◦) and f (2α) ∈ Cα[a, b] for a, b ∈ I◦ with a < b. If

∣

∣f (2α)
∣

∣ is generalized convex, then the following inequality holds true: For any

x ∈ [a+b
2 , b],

(2.15)

|L(α; a, b;x)|

≤
(b − a)2α

Γ(1 + 2α)
[Kα(x; a, b) + Lα(x; a, b) +Mα(x; a, b)] ,

where L(α; a, b;x) is given as in (2.2), and
(2.16)

Kα(x; a, b) :=
Γ(1 + 3α)

Γ(1 + 4α)

(

b− x

b− a

)4α
∣

∣

∣
f (2α)(a)

∣

∣

∣

+

[

Γ(1 + 2α)

Γ(1 + 3α)

(

b− x

b− a

)3α

−
Γ(1 + 3α)

Γ(1 + 4α)

(

b− x

b− a

)4α
]

∣

∣

∣
f (2α)(b)

∣

∣

∣
,

(2.17) Lα(x; a, b) := Cα(x; a, b)
∣

∣

∣
f (2α)(a)

∣

∣

∣
−Dα(x; a, b)

∣

∣

∣
f (2α)(b)

∣

∣

∣
,

Cα(x; a, b) :=
Γ(1 + 3α)

Γ(1 + 4α)

(

(x− a)4α − (b − x)4α

(b− a)4α

)

−
Γ(1 + 2α)

Γ(1 + 3α)

(

(x− a)3α − (b− x)3α

(b− a)3α

)

+
Γ(1 + α)

4αΓ(1 + 2α)

(

(x − a)2α − (b− x)2α

(b− a)2α

)
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and

Dα(x; a, b) :=
Γ(1 + 3α)

Γ(1 + 4α)

(

(x− a)4α − (b− x)4α

(b − a)4α

)

− 2α
Γ(1 + 2α)

Γ(1 + 3α)

(

(x− a)3α − (b − x)3α

(b− a)3α

)

+

(

5

4

)α
Γ(1 + α)

Γ(1 + 2α)

(

(x− a)2α − (b− x)2α

(b− a)2α

)

−
1

4α Γ(1 + α)

(

(2x− b− a)α

(b− a)α

)

,

and

(2.18)

Mα(x; a, b) :=

[

Γ(1 + 3α)

Γ(1 + 4α)

(

(b − a)4α − (x− a)4α

(b− a)4α

)

−
2αΓ(1 + 2α)

Γ(1 + 3α)

(

(b − a)3α − (x− a)3α

(b− a)3α

)

+
Γ(1 + α)

Γ(1 + 2α)

(

b+ a− 2x

b− a

)α
]

∣

∣

∣
f (2α)(a)

∣

∣

∣

+
Γ(1 + 3α)

Γ(1 + 4α)

(

b− x

b− a

)4α
∣

∣

∣
f (2α)(b)

∣

∣

∣
.

Proof. As in the proof of Theorem 10, let L := L(α; a, b;x) in (2.2). Then, in
view of k(t), we have

(2.19)

|L| ≤
(b − a)2α

Γ(1 + 2α)

1

Γ(1 + α)

∫ 1

0

|k(t)|
∣

∣

∣
f (2α) (ta+ (1 − t)b)

∣

∣

∣
(dt)α

≤
(b − a)2α

Γ(1 + 2α)

(

H1 +H2 +H3

)

,

where

H1 :=
1

Γ(1 + α)

∫
b−x
b−a

0

t2α
∣

∣

∣
f (2α) (ta+ (1 − t)b)

∣

∣

∣
(dt)α,

H2 :=
1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2α
∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣
(dt)α

and

H3 :=
1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)
2α
∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣
(dt)α.

By using the generalized convexity of
∣

∣f (2α)
∣

∣ (see Definition 4) and applying
Lemma 3 to compute local fractional integrals of the involved powers, we have

(2.20)
H1 ≤

1

Γ(1 + α)

∫
b−x
b−a

0

(

t3α
∣

∣

∣
f (2α) (a)

∣

∣

∣
+ t2α(1 − t)α

∣

∣

∣
f (2α) (b)

∣

∣

∣

)

(dt)α

= Kα(x; a, b),
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(2.21)

H2 ≤
1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

[

tα
(

t−
1

2

)2α
∣

∣

∣
f (2α) (a)

∣

∣

∣

+ (1− t)α
(

t−
1

2

)2α
∣

∣

∣
f (2α) (a)

∣

∣

∣

]

(dt)α = Lα(x; a, b)

and

(2.22)

H3 ≤
1

Γ(1 + α)

∫ 1

x−a
b−a

[

tα (t− 1)2α
∣

∣

∣
f (2α) (a)

∣

∣

∣

+ (1− t)α (t− 1)
2α
∣

∣

∣
f (2α) (b)

∣

∣

∣

]

(dt)α = Mα(x; a, b).

Finally, by substituting (2.20), (2.21) and (2.22) in (2.19), we can get the
desired inequality. �

Theorem 11. Let I ⊆ R be an interval, f : I◦ ⊆ R → R
α (I◦ is the interior

of I) such that f, f (α) ∈ Dα(I
◦) and f (2α) ∈ Cα[a, b] for a, b ∈ I◦ with a < b.

Also let p, q ∈ R with p, q > 1 and

1

p
+

1

q
= 1.

If
∣

∣f (2α)
∣

∣

q
is generalized convex, then the following inequality holds true: For

any x ∈
[

a+b
2 , b

]

,

(2.23)

|L(α; a, b;x)|

≤
(b− a)2α

Γ(1 + 2α)

1

{2α Γ(1 + α)}
1
q

{

Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

}
1
p

Jα(x; a, b; p, q),

where L(α; a, b;x) is given as in (2.2), and Jα(x; a, b; p, q) :=
3
∑

j=1

Jα,j(x; a, b; p, q)

with

Jα,1(x; a, b; p, q) :=

(

b− x

b− a

)(2+1/p)α
(
∣

∣

∣
f (2α) (b)

∣

∣

∣

q

+
∣

∣

∣
f (2α) (x)

∣

∣

∣

q)
1
q

,

Jα,2(x; a, b; p, q) :=

{

(

2x− b− a

2(b− a)

)(2p+1)α

−

(

a+ b− 2x

2(b− a)

)(2p+1)α
}

1
p

×
(∣

∣

∣
f (2α) (x)

∣

∣

∣

q

+
∣

∣

∣
f (2α) (a+ b− x)

∣

∣

∣

q)
1
q

and

Jα,3(x; a, b; p, q) :=

(

b− x

b− a

)(2+1/p)α
(
∣

∣

∣
f (2α) (a)

∣

∣

∣

q

+
∣

∣

∣
f (2α) (a+ b− x)

∣

∣

∣

q)
1
q

.
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Proof. Let L := L(α; a, b;x) in (2.2). Then we find from (2.19) that

(2.24)

|L| ≤
(b − a)2α

Γ(1 + 2α)

1

Γ(1 + α)

∫ 1

0

|k(t)|
∣

∣

∣
f (2α) (ta+ (1 − t)b)

∣

∣

∣
(dt)α

≤
(b − a)2α

Γ(1 + 2α)

(

H1 +H2 +H3

)

,

where Hi (i = 1, 2, 3) are given as in (2.19).
By applying the Hölder’s inequality for the local fractional integral in Lemma

5 to Hi (i = 1, 2, 3), we have

(2.25)

H1 ≤

(

1

Γ(1 + α)

∫
b−x
b−a

0

t2pα(dt)α

)
1
p

×

(

1

Γ(1 + α)

∫
b−x
b−a

0

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α

)
1
q

,

(2.26)

H2 ≤

(

1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2pα

(dt)α

)
1
p

×

(

1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α

)
1
q

and

(2.27)

H3 ≤

(

1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)
2pα

(dt)α

)
1
p

×

(

1

Γ(1 + α)

∫ 1

x−a
b−a

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α

)
1
q

.

Here, using Lemma 3, we obtain

(2.28)
1

Γ(1 + α)

∫
b−x
b−a

0

t2pα(dt)α =
Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

(

b− x

b− a

)(2p+1)α

,

(2.29)

1

Γ(1 + α)

∫
x−a
b−a

b−x
b−a

(

t−
1

2

)2pα

(dt)α =
Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

×

[

(

2x− b− a

2(b− a)

)(2p+1)α

−

(

a+ b− 2x

2(b− a)

)(2p+1)α
]



614 J. CHOI, E. SET, AND M. TOMAR

and

(2.30)

1

Γ(1 + α)

∫ 1

x−a
b−a

(t− 1)
2pα

(dt)α =
1

Γ(1 + α)

∫ 1

x−a
b−a

(1− t)
2pα

(dt)α

=
1

Γ(1 + α)

∫
b−x
b−a

0

u2pα (du)α

=
Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

(

b− x

b− a

)(2p+1)α

.

Also, since
∣

∣f (2α)
∣

∣

q
is generalized convex on [a, b], by the generalized Hermite-

Hadamard inequality in (1.10), we have

(2.31)

∫
b−x
b−a

0

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α =
1

(b − a)α

∫ b

x

∣

∣

∣
f (2α) (u)

∣

∣

∣

q

(du)α

≤

∣

∣f (2α) (b)
∣

∣

q
+
∣

∣f (2α) (x)
∣

∣

q

2α
,

(2.32)

∫
x−a
b−a

b−x
b−a

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α

≤

∣

∣f (2α) (x)
∣

∣

q
+
∣

∣f (2α) (a+ b− x)
∣

∣

q

2α

and

(2.33)

∫ 1

x−a
b−a

∣

∣

∣
f (2α) (ta+ (1− t)b)

∣

∣

∣

q

(dt)α

≤

∣

∣f (2α) (a+ b− x)
∣

∣

q
+
∣

∣f (2α) (a)
∣

∣

q

2α
.

Finally, setting the equalities (2.28)-(2.30) and the inequalities (2.31)-(2.33)
in the inequalities (2.25)-(2.27), and substituting the resulting inequalities into
(2.24), we can obtain the desired inequality (2.23). �

Setting x = b in Theorem 11 yields an inequality involving a local fractional
integral asserted by Corollary 2. Here we need to recall the following inequality
(see, e.g., [4, p. 54]):

(2.34)

n
∑

k=1

(uk + vk)
s ≤

n
∑

k=1

(uk)
s +

n
∑

k=1

(vk)
s

(n ∈ N; 0 ≤ s ≤ 1; uk, vk ≥ 0 (1 ≤ k ≤ n)) .
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Corollary 2. Under the assumptions of Theorem 11, the following inequality

holds true:
(2.35)

∣

∣

∣

∣

1

(b− a)α
aI

α
b f −

f(a) + f(b)

Γ(1 + α)Γ(1 + 2α)
+

(

b− a

8

)α
f (α)(b)− f (α)(a)

Γ(1 + α)

∣

∣

∣

∣

≤
(b− a)2α

4αΓ(1 + 2α)

{

Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

}
1
p
{

|f (2α)(a)|+ |f (2α)(b)|

(2αΓ(1 + α))
1
q

}

.

Proof. Let L1 be the left-hand side of the inequality in (2.35). Then, setting
x = b in Theorem 11, we obtain

(2.36)

L1 ≤
(b− a)2α

Γ(1 + 2α)

{

Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

}
1
p

×
[1α − (−1)α]

1
p

2(2+
1
p
)α

{

|f (2α)(a)|+ |f (2α)(b)|

(2αΓ(1 + α))
1
q

}

.

Now, applying the inequality (2.34) to each of the last two terms in (2.36) is
easily seen to give the desired inequality (2.35). �

3. Application to some special means

In order to apply some results in Section 2, we first recall the following
generalized means (see, e.g., [3]):

(3.1) A(a, b) :=
aα + bα

2α

and

(3.2) Ln(a, b) :=

[

Γ(1 + nα)

Γ(1 + (n+ 1)α)

(

b(n+1)α − a(n+1)α

(b− a)α

)]

1
n

(n ∈ Z \ {−1, 0}; a, b ∈ R with a 6= b) .

Now consider a function f : I ⊆ R
+ → R

α defined by

f(t) = tnα (n ∈ Z \ {−1, 0}).

Then it is easy to see the following relations: For a, b ∈ I with a < b,

(3.3) f

(

a+ b

2

)

= [A(a, b)]
n

and

(3.4)
1

(b− a)α
aI

α
b f(t) = [Ln(a, b)]

n
.
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Here applying (3.3) and (3.4) to the inequalities (2.14) and (2.35), we obtain
the following inequalities associated with A(a, b) in (3.1) and Ln(a, b) in (3.2),
respectively:

(3.5)

∣

∣

∣

∣

[Ln(a, b)]
n
−

2α [A(a, b)]n

Γ(1 + α)Γ(1 + 2α)

∣

∣

∣

∣

≤

∥

∥f (2α)
∥

∥

∞
(b− a)2α

4αΓ(1 + 3α)

and

∣

∣

∣

∣

[Ln(a, b)]
n
−

2αA(an, bn)

Γ(1 + α)Γ(1 + 2α)
+

(

b− a

8

)α
f (α)(b)− f (α)(a)

Γ(1 + α)

∣

∣

∣

∣

(3.6)

≤
(b − a)2α

2αΓ(1 + 2α)

Γ(1 + nα)

Γ(1 + (n− 2)α)

{

Γ(1 + 2pα)

Γ(1 + (2p+ 1)α)

}
1
p
A
(

a(n−2), b(n−2)
)

(2αΓ(1 + α))
1
q

.
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[8] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem

integralmitelwert, Comment. Math. Helv. 10 (1938), 226–227.
[9] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional

integrals, RGMIA Research Report Collection 18 (2015), Article 62, 11 pages.
[10] M. Z. Sarikaya, T. Tunc, and H. Budak, On generalized some integral inequalities for

local fractional integrals, Appl. Math. Comput. 276 (2016), 316–323.

[11] E. Set and M. Tomar, New inequalities of Hermite–Hadamard type for generalized con-

vex functions with applications, Facta Univ. Ser. Math. Inform. (2016), in press.
[12] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and

Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[13] M. Tomar, Erhan Set, and M. Z. Sarikaya, Some inequalities of generalized Hermite-

Hadamard type for functions whose second derivatives in absolute value are generalized

convex, Researchgate, DOI: 10.13140/RG.2.1.3849.7763.
[14] X. J. Yang, Local Fractional Functional Analysis & Its Applications, Asian Academic

publisher Limited, Hong Kong, 2011.
[15] , Advanced Local Fractional Calculus and Its Applications, World Science Pub-

lisher, New York, 2012.
[16] , Local fractional integral equations and their applications, Adv. Comput. Sci.

Appl. 1(4) (2012).



OSTROWSKI TYPE INEQUALITIES VIA LOCAL FRACTIONAL INTEGRALS 617

[17] , Generalized local fractional Taylor’s formula with local fractional derivative, J.
Expert Sys. 1 (2012), no. 1, 26–30.

[18] , Local fractional Fourier analysis, Adv. Mech. Engrg. Appl. 1 (2012), no. 1,
12–16.

[19] J. Yang, D. Baleanu, and X. J. Yang, Analysis of fractal wave equations by local frac-

tional Fourier series method, Adv. Math. Phys. 2013 (2013), Article ID 632309, 6 pp.

Junesang Choi

Department of Mathematics

Dongguk University

Gyeongju 38066, Korea

E-mail address: junesang@mail.dongguk.ac.kr

Erhan Set

Department of Mathematics

Faculty of Science and Arts

Ordu University

Ordu, Turkey

E-mail address: erhanset@yahoo.com

Muharrem Tomar

Department of Mathematics

Faculty of Science and Arts

Ordu University

Ordu, Turkey

E-mail address: muharremtomar@gmail.com




