ON OPERATORS SATISFYING $T^{* m}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T^{m} \geq T^{* m}|T|^{2} T^{m}$

Mohammad H. M. Rashid

Abstract

Let T be a bounded linear operator acting on a complex Hilbert space \mathscr{H}. In this paper we introduce the class, denoted $\mathcal{Q}(A(k)$, m), of operators satisfying $T^{m *}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T^{m} \geq T^{* m}|T|^{2} T^{m}$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point λ of the spectrum of $T \in \mathcal{Q}(A(k), m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T \otimes S$ to be in $\mathcal{Q}(A(k), m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_{0}(T-\lambda)$ of class $A(k)$ operator.

1. Introduction

Let \mathscr{H} be a complex Hilbert space and let $\mathscr{L}(\mathscr{H})$ be the algebra of all bounded linear operators acting on \mathscr{H}. An operator $T \in \mathscr{L}(\mathscr{H})$ has a unique polar decomposition $T=U|T|$, where $|T|=\left(T^{*} T\right)^{1 / 2}$ and U is partial isometry satisfying $\operatorname{ker}(U)=\operatorname{ker}(T)=\operatorname{ker}(|T|)$ and $\operatorname{ker}(U)=\operatorname{ker}\left(T^{*}\right)$.

An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in \mathscr{H}$ and also T is said to be strictly positive (denoted by $T>$ 0) if T is positive and invertible. An operator T is called p-hyponormal if $|T|^{2 p} \geq\left|T^{*}\right|^{2 p}$ for every $0<p \leq 1$ and log-hyponormal if T is invertible and $\log \left(T^{*} T\right) \geq \log \left(T T^{*}\right), T$ is called paranormal if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for every unit vector $x \in \mathscr{H}$, and T is called normaloid if $\|T\|=r(T)$, the spectral radius of T. Following [9, 10], we say that $T \in \mathscr{L}(\mathscr{H})$ belongs to class A if $\left|T^{2}\right| \geq|T|^{2}$ and class $A(k)$ for $k>0$ (abbreviation $T \in \mathcal{A}(k))$ if $\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} \geq|T|^{2}$, we note that T is class A if and only if T is class $A(1)$. According to [2], an operator $T \in \mathscr{L}(\mathscr{H})$ is said to be w-hyponormal if $|\widetilde{T}| \geq|T| \geq\left|\widetilde{T^{*}}\right|$, where \widetilde{T} is the Aluthge transformation $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$. As a generalization of w hyponormal and class $A(k)$, Ito [10] introduced class $w A(s, t)$ as follows. An operator T is called class $w A(s, t)$ for $s>0$ and $t>0$ if $\left|\widetilde{T_{s, t}}\right|^{2 t /(s+t)} \geq|T|^{2 t}$

Received September 17, 2016; Accepted December 9, 2016.
2010 Mathematics Subject Classification. 47A55, 47A10, 47A11.
Key words and phrases. Riesz idempotent, tensor product, class $A(k)$, m-quasi-class $A(k)$.
and $|T|^{2 s} \geq\left|\widetilde{T_{s, t}^{*}}\right|^{2 s /(s+t)}$, where $\widetilde{T_{s, t}}$ is generalized Aluthge transformation, i.e., $\widetilde{T_{s, t}}=|T|^{s} U|T|^{t}$. An operator $T \in \mathscr{L}(\mathscr{H})$ is called k-paranormal for positive integer k, if $\left\|T^{k+1} x\right\| \geq\|T x\|^{k+1}$ for every unit vector $x \in \mathscr{H}$.
Definition 1.1. We say that an operator $T \in \mathscr{L}(\mathscr{H})$ is of m-quasi class A_{k} (abbreviate $\mathcal{Q}(A(k), m)$), if

$$
T^{* m}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T^{m} \geq T^{m *}|T|^{2} T^{m}
$$

where m is a positive integers and $k>0$. If $m=1$, then T is called a quasi-class $A(k)$ and $k=m=1$, then $\mathcal{Q}(A(k), m)$ coincides with quasi-class A operator.
Example 1.2. Let $\mathscr{H}=\bigoplus_{n=0}^{\infty} \mathbb{C}^{2}$ and define an operator T on \mathscr{H} by
$T\left(\cdots \oplus x_{-2} \oplus x_{-1} \oplus x_{0}^{(0)} \oplus x_{1} \oplus \cdots\right)=\cdots \oplus A x_{-2} \oplus A x_{-1} \oplus B x_{0} \oplus B x_{1} \oplus \cdots$, where $A=\frac{1}{4}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then T is of m-quasi-class $A(k)$ for each $k \geq \frac{1}{4}$. In fact, for each $k \geq \frac{1}{4}$,

$$
\begin{aligned}
& \left\langle T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}-|T|^{2}\right) T^{m} x, x\right\rangle \\
= & \left\langle A^{m}\left((A B A)^{1 /(k+1)}-A^{2}\right) A^{m} x_{-1}, x_{-1}\right\rangle \\
= & \left(\frac{1}{16}\right)^{m}\left\{\left(\frac{1}{32}\right)^{1 /(k+1)}-\left(\frac{1}{16}\right)\right\}\left\|\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) x_{-1}\right\|^{2} \geq 0
\end{aligned}
$$

for each $x \in \mathscr{H}$.
Let $0<\alpha<1$ and $A=\alpha\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$. Then $T \in \mathcal{Q}(A(k), m)$ with $k \geq \frac{-\log 2}{2 \log \alpha}$. Since $\frac{-\log 2}{2 \log \alpha} \rightarrow 0$ as $\alpha \rightarrow 0$ for any $k>0$. Then $T \in \mathcal{Q}(A(k), m)$ for each $k>0$ and m is a positive integer.

Since $T \geq 0$ implies $R^{*} T R \geq 0$, we have:
Proposition 1.3. Let $T \in \mathscr{L}(\mathscr{H})$. If $T \in \mathcal{A}(k)$, then $T \in \mathcal{Q}(A(k), m)$.
Throughout this paper, we shall denote the spectrum, the point spectrum and the isolated points of the spectrum of $T \in \mathscr{L}(\mathscr{H})$ by $\sigma(T), \sigma_{p}(T)$ and $\operatorname{iso\sigma }(T)$, respectively. The range and the kernel of $T \in \mathscr{L}(\mathscr{H})$ will be denoted by $\Re(T)$ and $\operatorname{ker}(T)$, respectively. We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by \mathbb{C} and $\bar{\lambda}$, respectively. The closure of a set S will be denoted by \bar{S} and we shall henceforth shorten $T-\lambda I$ to $T-\lambda$.

In Section 2, we prove basic properties of $\mathcal{Q}(A(k), m)$ operators and using these properties, in Section 3, we prove that if P is the Riesz idempotent for a non-zero isolated point λ of the spectrum of $T \in \mathcal{Q}(A(k), m)$, then P is self-adjoint and $\Re(P)=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$ and if $\lambda=0$, then $\Re(P)=H_{0}(T)=\operatorname{ker}\left(T^{m+1}\right)$. This is a complete extension of results proved for
quasi-class A operators and quasi-class (A, m) operators in [12, 26], respectively. In Section 4, we give a necessary and sufficient condition for $T \otimes S$ to be in $\mathcal{Q}(A(k), m)$ when T and S are both non-zero operators. This gives an analogous result proved for quasi-class A operators and quasi-class (A, m) operators in [12, 26], respectively.

2. Properties of $\mathcal{Q}(A(k), m)$ operators

To prove these properties we need the following lemma.
Lemma 2.1 ([13]). If $A, B \in \mathscr{L}(\mathscr{H})$ satisfying $A \geq 0$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\alpha} \geq B^{*} A^{\alpha} B \quad \text { for all } \alpha \in(0,1] .
$$

Lemma 2.2. Let $T \in \mathcal{Q}(A(k), m)$ and T not have a dense range. Then

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \quad \text { on } \quad \mathscr{H}=\overline{\Re\left(T^{m}\right)} \oplus \operatorname{ker}\left(T^{* m}\right)
$$

where $T_{1}=\left.T\right|_{\overline{\Re\left(T^{m}\right)}}$ is the restriction of T to $\overline{\Re\left(T^{m}\right)}$, and $T_{1} \in \mathcal{A}(k)$ and T_{3} is nilpotent of nilpotency m. Moreover, $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.

Proof. Consider the matrix representation of T with respect to the decomposition $\mathscr{H}=\overline{\Re\left(T^{m}\right)} \oplus \operatorname{ker}\left(T^{* m}\right)$;

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right)
$$

Let P be the orthogonal projection onto $\overline{\Re\left(T^{m}\right)}$. Then $\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)=T P=P T P$.
Since $T \in \mathcal{Q}(A(k), m)$, we have

$$
P\left(\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}-|T|^{2}\right) P \geq 0
$$

Then by Lemma 2.1

$$
\begin{aligned}
P\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} P & =P\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} P \\
& \leq\left(P T^{*}|T|^{2 k} T P\right)^{\frac{1}{k+1}} \leq\left(P T^{*}\left(P T^{*} T P\right)^{k} T P\right)^{\frac{1}{k+1}} \\
& =\left(\begin{array}{cc}
\left(T_{1}^{*}\left|T_{1}\right|^{2 k} T_{1}\right)^{1 /(k+1)} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
P|T|^{2} P=P T^{*} T P=\left(\begin{array}{cc}
\left|T_{1}\right|^{2} & 0 \\
0 & 0
\end{array}\right)
$$

Hence

$$
\begin{aligned}
\left(\begin{array}{cc}
\left(T_{1}^{*}\left|T_{1}\right|^{2 k} T_{1}\right)^{1 /(k+1)} & 0 \\
0 & 0
\end{array}\right) & \geq P\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} P \geq P|T|^{2} P \\
& =\left(\begin{array}{cc}
\left|T_{1}\right|^{2} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

i.e., $T_{1} \in \mathcal{A}(k)$. On the other hand, if $u=\binom{u_{1}}{u_{2}} \in \mathscr{H}$,

$$
\left\langle T_{3} u_{2}, u_{2}\right\rangle=\langle T(I-P) u,(I-P) u\rangle=\left\langle(I-P) u, T^{*}(I-P) u\right\rangle=0,
$$

which implies that $T_{3}=0$. It is well known that $\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)=\sigma(T) \cup \mathcal{C}$, where \mathcal{C} is the union of certain of the holes in $\sigma(T)$ which happen to be subset of $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ and $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ has no interior points. Therefore, we have

$$
\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)=\sigma\left(T_{1}\right) \cup\{0\}
$$

Theorem 2.3. Let $T \in \mathscr{L}(\mathscr{H})$ be a $\mathcal{Q} \mathcal{A}_{k}$ operator and \mathscr{M} be its invariant subspace. Then the restriction $\left.T\right|_{\mathscr{M}}$ of T to \mathscr{M} is also $\mathcal{Q}(A(k), m)$ operator.

Proof. Let Q be the orthogonal projection onto \mathscr{M}. Put $T_{1}=\left.T\right|_{\mathscr{M}}$. Then $T Q=Q T Q$ and $T_{1}=\left.(Q T Q)\right|_{\mathscr{M}}$. Since T is a $\mathcal{Q}(A(k), m)$ operator, we have

$$
Q T^{*}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T Q \geq Q T^{*}|T|^{2} T Q
$$

Since

$$
\begin{aligned}
Q T^{*}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T Q & =Q T^{*} Q\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} Q T Q \\
& \leq Q T^{*} Q\left(Q T^{*}\left(T^{*} T\right)^{k} T Q\right)^{\frac{1}{1+k}} Q T Q \\
& \leq Q T^{*} Q\left(Q T^{*}\left(Q T^{*} T Q\right)^{k} T Q\right)^{\frac{1}{1+k}} Q T Q \\
& =\left(\begin{array}{cc}
\left(T_{1}^{*}\left|T_{1}\right|^{2 k} T_{1}\right)^{1 /(k+1)} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
Q T^{*}|T|^{2} T Q=Q T^{*} Q T^{*} T Q T Q=\left(\begin{array}{cc}
T_{1}^{*}\left|T_{1}\right|^{2} T_{1} & 0 \\
0 & 0
\end{array}\right)
$$

we have

$$
\begin{aligned}
\left(\begin{array}{cc}
\left(T_{1}^{*}\left|T_{1}\right|^{2 k} T_{1}\right)^{1 /(k+1)} & 0 \\
0 & 0
\end{array}\right) & \geq Q T^{*}\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} T \\
& \geq Q T^{*}\left(|T|^{2}\right) T Q=\left(\begin{array}{cc}
T_{1}^{*}\left|T_{1}\right|^{2} T_{1} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

This implies that $T_{1} \in \mathcal{Q}(A(k), m)$.
Theorem 2.4. Let $T \in \mathcal{Q}(A(k), m)$. Then the following assertions holds:
(a) If \mathscr{M} is an invariant subspace of T and $\left.T\right|_{\mathscr{M}}$ is an injective normal operator, then \mathscr{M} reduces T.
(b) If $(T-\lambda) x=0$ and $\lambda \neq 0$, then $(T-\lambda)^{*}=0$.

Proof. (a) Decompose T into

$$
T=\left(\begin{array}{cc}
S & A \\
0 & B
\end{array}\right) \quad \text { on } \quad \mathscr{H}=\mathscr{M} \oplus \mathscr{M}^{\perp}
$$

and let $S=\left.T\right|_{\mathscr{M}}$ be an injective normal operator. Let Q be the orthogonal projection of \mathscr{H} onto \mathscr{M}. Since $T^{m}=\left(\begin{array}{cc}S^{m} & { }^{*} \\ 0 & B^{m}\end{array}\right)$ and $\operatorname{ker}(S)=\operatorname{ker}\left(S^{*}\right)=\{0\}$, we have

$$
\mathscr{M}=\overline{\Re(S)}=\overline{\Re\left(S^{m}\right)} \subset \overline{\Re\left(T^{m}\right)} .
$$

Then

$$
\begin{aligned}
\left(\begin{array}{cc}
|S|^{2} & 0 \\
0 & 0
\end{array}\right) & =Q|T|^{2} Q \leq Q\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} Q \\
& \left.\leq\left(Q T^{*}|T|^{2 k} T\right) Q\right)^{1 /(k+1)} \\
& \left.\leq\left(Q T^{*}\left(Q T^{*} T Q\right)^{k} T\right) Q\right)^{1 /(k+1)}=\left(\begin{array}{cc}
\left|S^{k+1}\right|^{2 /(k+1)} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

by Lemma 2.1. Therefore,

$$
Q\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} Q=\left(\begin{array}{cc}
|S|^{2} & 0 \\
0 & 0
\end{array}\right)=Q|T|^{2} Q
$$

Since S is normal, we can write $\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}=\left(\begin{array}{cc}|S|^{2} C \\ C^{*} & D\end{array}\right)$. Since

$$
\left(\begin{array}{cc}
|S|^{2(k+1)} & 0 \\
0 & 0
\end{array}\right)=Q\left(T^{*}|T|^{2 k} T\right) Q=Q\left(\left(T^{*}|T|^{2 k} T\right)^{k+1}\right)^{1 /(k+1)} Q
$$

we can easily show that $C=0$. Therefore,

$$
\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}=\left(\begin{array}{cc}
|S|^{2} & 0 \\
0 & D
\end{array}\right)
$$

and hence

$$
T^{*}|T|^{2 k} T=\left(\begin{array}{cc}
|S|^{2(k+1)} & 0 \\
0 & D^{k+1}
\end{array}\right)=T^{*}\left(T^{*} T\right)^{k} T
$$

This implies that $D=\left(B^{*}|B|^{2 k} B\right)^{1 /(k+1)}$. Therefore,

$$
\begin{aligned}
0 & \leq T^{* m}\left(\left(T^{*}\left(T^{*} T\right)^{k} T\right)^{1 /(k+1)}-|T|^{2}\right) T^{m} \\
& =\left(\begin{array}{cc}
0 & Y \\
Y^{*} & B^{* m}\left(\left(B^{*}|B|^{2 k} B\right)^{1 /(k+1)}-|B|^{2}\right) B^{m}
\end{array}\right)
\end{aligned}
$$

Hence $A=0$ and B is a $\mathcal{Q}(A(k), m)$ operator.
(b) Let $\mathscr{M}=\operatorname{span}\{x\}$. Then $\left.T\right|_{\mathscr{M}}=\lambda \neq 0$ and $\left.T\right|_{\mathscr{M}}$ is an injective normal operator. Hence \mathscr{M} reduces T and $T=\left(\begin{array}{cc}\lambda & 0 \\ 0 & B\end{array}\right)$ on $\mathscr{H}=\mathscr{M} \oplus \mathscr{M}^{\perp}$. Then $(T-\lambda)^{*}=0$.

An operator $T \in \mathscr{L}(\mathscr{H})$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. In [21], Rashid proved every class $w F(p, r, q)$ operators are isoloid, we extend this result to m-quasi-class $A(k)$ operators.

Lemma 2.5. Let $T \in \mathcal{Q}(A(k), m)$. Then T is an isoloid.

Proof. Let $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathscr{H}=\overline{\Re\left(T^{m}\right)} \oplus \operatorname{ker}\left(T^{* m}\right)$, and assume that $\mu \in$ $\operatorname{iso\sigma }(T)$. Then $\mu \in \operatorname{iso\sigma }\left(T_{1}\right)$ or $\mu=0$ by Lemma 2.2. If $\mu \in \operatorname{iso\sigma }\left(T_{1}\right)$, then $\mu \in \sigma_{p}\left(T_{1}\right)$ because $T_{1} \in \mathcal{A}(k)$ and a class $A(k)$ is an isoloid by Theorem 2.10 of [22]. Thus we may assume that $\mu=0$ and $\mu \notin \sigma\left(T_{1}\right)$, so $\operatorname{dim} \operatorname{ker}\left(T_{3}\right)>0$. Therefore, if $x \in \operatorname{ker}\left(T_{3}\right)$, then $-T_{1}^{-1} T_{2} x \oplus x \operatorname{ker}(T)$. Hence μ is an eigenvalue of T.

Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [7] we say that $T \in \mathscr{L}(\mathscr{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathscr{H}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathscr{L}(\mathscr{H})$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathscr{L}(\mathscr{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [18, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Definition 2.6 ([4]). An operator T is said to have Bishop's property (β) at $\lambda \in \mathbb{C}$ if for every open neighborhood G of λ, the function $f_{n} \in \operatorname{Hol}(G)$ with $(T-\lambda) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G implies that $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, where $\operatorname{Hol}(G)$ means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathbb{C}$, simply say that T has property (β).

Lemma 2.7 ([17]). Let G be open subset of complex plane \mathbb{C} and let $f_{n} \in$ $\operatorname{Hol}(G)$ be functions such that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, then $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.

Following [8], we say that an operator $T \in \mathscr{L}(\mathscr{H})$ belongs to class $A(s, t)$ for every $s>0$ and $t>0$ if

$$
\left(\left|T^{*}\right|^{t}|T|^{2 s}\left|T^{*}\right|^{s}\right)^{t /(t+s)} \geq\left|T^{*}\right|^{2 t}
$$

It is easy to see that $T \in A(k)$ if and only $T \in A(k, 1)$ because if T is a class $A(k)$, then

$$
\begin{aligned}
\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} & =\left(U^{*}\left|T^{*}\right||T|^{2 k}\left|T^{*}\right| U\right)^{1 /(k+1)} \\
& =U^{*}\left(\left|T^{*}\right||T|^{2 k}\left|T^{*}\right|\right)^{1 /(k+1)} U \geq|T|^{2} \text { and } \\
\left(\left|T^{*}\right||T|^{2 k}\left|T^{*}\right|\right)^{1 /(k+1)} & \geq U|T|^{2} U^{*}=\left|T^{*}\right|^{2} .
\end{aligned}
$$

Hence, $T \in A(k, 1)$. If $T \in A(k, 1)$, then

$$
\begin{aligned}
\left|T^{*}\right|^{2} & \leq\left(\left|T^{*}\right||T|^{2 k}\left|T^{*}\right|\right)^{1 /(k+1)} \\
& \leq\left(U T^{*}|T|^{2 k} T U^{*}\right)^{1 /(k+1)}=U\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} U^{*} \text { and } \\
\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} & \geq U^{*}\left|T^{*}\right|^{2} U=|T|^{2}
\end{aligned}
$$

So, $T \in A(k)$.

The relations between T and its transformation $\widetilde{T}_{s, t}$ are

$$
\begin{equation*}
\widetilde{T}_{s, t}|T|^{s}=|T|^{s} U|T|^{t}|T|^{s}=|T|^{s} T \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U|T|^{t} \widetilde{T}_{s, t}=U|T|^{t}|T|^{s} U|T|^{t}=T U|T|^{t} \tag{2.2}
\end{equation*}
$$

for each $s>0$ and $t>0$.
Theorem 2.8. Let T belong the class $A(k)$ for $k>0$. Then T has the property (β).
Proof. Since $\widetilde{T}_{k, 1}$ is $\frac{\min (k, 1)}{k+1}$-hyponormal $([10])$ it is suffices to show that T has property (β) if and only if $\widetilde{T}_{k, 1}$ has property (β).

Let G be an open neighborhood of λ and let $f_{n} \in \operatorname{Hol}(\sigma(T))$ be functions such that $\left(\mu-\widetilde{T}_{k, 1}\right) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By Equations 2.2, $(\mu-T)\left(U|T|^{k} f_{n}(\mu)\right)=U|T|^{k}\left(\mu-\widetilde{T}_{k, 1}\right) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Hence $\widetilde{T}_{k, 1} f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and $\widetilde{T}_{k, 1}$ having property β follows by Lemma 2.7 .

Suppose that $\widetilde{T}_{k, 1}$ has property (β). Let G be an open neighborhood of λ and let $f_{n} \in \operatorname{Hol}(\sigma(T))$ be functions such that $(\mu-T) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Since $\left(\widetilde{T}_{k, 1}-\mu\right)|T|^{k} f_{n}(\mu)=|T|^{k}(T-\mu) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Hence $T f_{n}(\mu)=U|T|^{k}|T| f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G for $\widetilde{T}_{k, 1}$ has property (β, so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and T has property (β) follows by Lemma 2.7.

The quasinilpotent part of $T-\lambda$ is defined as

$$
H_{0}(T-\lambda)=\left\{x \in \mathscr{H}: \lim _{n \rightarrow \infty}\left\|(T-\lambda)^{n}\right\|^{1 / n}=0\right\}
$$

In general, $\operatorname{ker}(T-\lambda) \subset H_{0}(T-\lambda)$ and $H_{0}(T-\lambda)$ is not closed. Let $F \subset \mathbb{C}$ be closed set. Then the global spectral subspace is defined by

$$
\chi_{T}(F)=\{x \in \mathscr{H} \mid \exists \text { analytic } f(z):(T-\lambda) f(z)=x \text { on } \mathbb{C} \backslash F\}
$$

Theorem 2.9. Let $T \in \mathcal{A}(k)$. Then $H_{0}(T-\lambda)=\operatorname{ker}(T-\lambda)$ for $\lambda \in \mathbb{C}$.
Proof. Let $F \subset \mathbb{C}$ be closed set. It is known that $H_{0}(T-\lambda)=\chi_{T}(\{\lambda\})$ by Theorem 2.20 of [1]. As T has Bishop's property by Theorem 2.8, $\chi_{T}(F)$ is closed and $\sigma\left(\left.T\right|_{\chi_{T}(F)}\right) \subset F$ by Proposition 1.2.19 of [19]. Hence $H_{0}(T-\lambda)$ is closed and $\left.T\right|_{H_{0}(T-\lambda)}$ is class A_{k} by Theorem 2.3. If $\sigma\left(\left.T\right|_{H_{0}(T-\lambda)}\right) \subset\{\lambda\}$, $\left.T\right|_{H_{0}(T-\lambda)}$ is normal by Theorem 2.4. If $\sigma\left(\left.T\right|_{H_{0}(T-\lambda)}\right)=\emptyset$, then $H_{0}(T-\lambda)=$ $\{0\}$ and $\operatorname{ker}(T-\lambda)=\{0\}$. If $\sigma\left(\left.T\right|_{H_{0}(T-\lambda)}\right)=\{\lambda\}$, then $\left.T\right|_{H_{0}(T-\lambda)}=\lambda$ and $H_{0}(T-\lambda)=\operatorname{ker}(T-\lambda)$.

Rashid [20] proved that quasi-class (A, k) has Bishop's property, in the following we prove analogous result for m-quasi-class $A(k)$ operators.

Lemma 2.10. Let $T \in \mathcal{Q}(A(k), m)$. Then T has Bishop's property (β).
Proof. Let $f_{n}(z)$ be analytic on G. Let $(T-z) f_{n}(z) \longrightarrow 0$ uniformly on each compact subset of G. Then, using the representation of Lemma 2.2 we have

$$
\left(\begin{array}{cc}
T_{1}-z & T_{2} \\
0 & T_{3}-z
\end{array}\right)\binom{f_{n 1}(z)}{f_{n 2}(z)}=\binom{\left(T_{1}-z\right) f_{n 1}(z)+T_{2} f_{n 2}(z)}{\left(T_{3}-z\right) f_{n 2}(z)} \longrightarrow 0
$$

Since T_{3} is nilpotent, T_{3} has Bishop's property (β). Hence $f_{n 2}(z) \longrightarrow 0$ uniformly on every compact subset of G. Then $\left(T_{1}-z\right) f_{n 1}(z) \longrightarrow 0$. Since T_{1} is of class $A(k), T_{1}$ has Bishop's property (β) by Theorem 2.8. Hence $f_{n 1}(z) \longrightarrow 0$ uniformly on every compact subset of G. Thus T has Bishop's property (β).
Lemma 2.11. Let $T \in \mathscr{L}(\mathscr{H})$ be a class $A(k)$. Let $\lambda \in \mathbb{C}$. Assume that $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$.

Proof. We consider two cases:
Case (I) $(\lambda=0)$: Since T is a class $A(k), T$ is normaloid. Therefore $T=0$.
Case (II) $(\lambda \neq 0)$: Here T is invertible, and since T is a class A_{k}, we see that T^{-1} is also belongs class $A(k)$. Therefore T^{-1} is normaloid. On the other hand, $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}\right\}$, so $\|T\|\left\|T^{-1}\right\|=\left|\lambda \| \frac{1}{\lambda}\right|=1$. It follows that T is convexoid, so $W(T)=\{\lambda\}$. Therefore $T=\lambda$.

Lemma 2.12. Let $T \in \mathscr{L}(\mathscr{H})$ be a $\mathcal{Q}(A(k), m)$ operator and $\sigma(T)=\{\lambda\}$. Then $T=\lambda$ if $\lambda \neq 0$, and $T^{m+1}=0$ if $\lambda=0$.

Proof. If the range of T is dense, then T is a class $A(k)$. Hence $T=\lambda$ by Lemma 2.11. If the range of T is not dense, then

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right) \quad \text { on } \quad \mathscr{H}=\overline{\Re\left(T^{m}\right)} \oplus \operatorname{ker}\left(T^{* m}\right)
$$

where $T_{1}=\left.T\right|_{\overline{\Re\left(T^{m}\right)}}$ is the restriction of T to $\overline{\Re\left(T^{m}\right)}$, and $T_{1} \in \mathcal{Q}(A(k), m)$, $T_{3}^{m}=0$ and $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$ by Lemma 2.2. Hence $T_{1}=0$ by Lemma 2.11. Thus

$$
T^{m+1}=\left(\begin{array}{cc}
0 & T_{2} \\
0 & T_{3}
\end{array}\right)^{m+1}=\left(\begin{array}{cc}
0 & T_{2} T_{3}^{m} \\
0 & T_{3}^{m+1}
\end{array}\right)=0
$$

3. Riesz idempotent for an isolated point of the spectrum

Let $T \in \mathscr{L}(\mathscr{H})$ and $\mu \in \operatorname{iso\sigma }(T)$. Then there exists a positive number $r>0$ such that $\{\lambda \in \mathbb{C}:|\lambda-\mu| \leq r\} \cap \sigma(T)=\{\mu\}$. Let γ be the boundary of $\{\lambda \in \mathbb{C}:|\lambda-\mu| \leq r\}$. Then $P:=\frac{1}{2 \pi i} \int_{\gamma}(\lambda-T) d \lambda$ is called the Riesz idempotent of T for μ. Then it is well known that

$$
P^{2}=P, \quad P T=T P, \quad \sigma\left(\left.T\right|_{\Re(P)}\right)=\{\mu\} \quad \text { and } \quad \Re(P) \supseteq \operatorname{ker}(T-\mu) .
$$

In general, it is well known that the Riesz idempotent P is not an orthogonal projection and necessary and sufficient condition for P to be orthogonal is that P is self-adjoint [6]. For a hyponormal operator T, Stampfli [24] have shown that the Riesz idempotent for an isolated point of the spectrum of T
is self-adjoint. Uchiyama and Tanahashi [27] proved this property for class A. Recently, Jeon and Kim [12] showed that this property also holds for quasiclass A. In this section we extend these result to class $A(k)$ operators and $\mathcal{Q}(A(k), m)$ operators.
Theorem 3.1. Let $T \in \mathscr{L}(\mathscr{H})$ be a class $A(k)$ operator and λ be a non-zero isolated point of $\sigma(T)$. Then the Riesz idempotent satisfies that

$$
\Re(P)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}
$$

In particular T is self-adjoint.
Proof. Since class A_{k} operators are isoloid by Lemma 2.5. Then λ is an isolated point of $\sigma(T)$. Let γ be the boundary of a closed disc $\mathbb{D}_{\lambda}=\{\mu \in \mathbb{C}:|\mu-\lambda| \leq r\}$ for which $0 \notin \mathbb{D}_{\mu}$ such that $\gamma \cap \sigma(T)=\{\lambda\}$. Then the range of Riesz idempotent $P=\frac{1}{2 \pi i} \int_{\gamma}(T-\lambda I)^{-1} d \lambda$ is an invariant closed subspace of T and $\sigma\left(\left.T\right|_{\Re(P)}\right)=\{\lambda\}$.

If $\lambda=0$, then $\sigma\left(\left.T\right|_{\Re(P)}\right)=\{0\}$. Since $\left.T\right|_{\Re(P)}$ is class $A(k)$ by Theorem 2.3, $\left.T\right|_{\Re(P)}=0$ by Lemma 2.11. Therefore, 0 is an eigenvalue of T.

If $\lambda \neq 0$, then $\left.T\right|_{\Re(P)}$ is an invertible class $A(k)$ operator and hence $\left(\left.T\right|_{\Re(P)}\right)^{-1}$ is also class $A(k)$. We see that $\left\|\left.T\right|_{\Re(P)}\right\|=|\lambda|$ and $\left\|\left(\left.T\right|_{\Re(P)}\right)^{-1}\right\|=$ $\frac{1}{|\lambda|}$. Let $x \in \Re(P)$ be arbitrary vector. Then

$$
\|x\| \leq\left\|\left(\left.T\right|_{\Re(P)}\right)^{-1}\right\|\left\|\left.T\right|_{\Re(P)} x\right\|=\frac{1}{|\lambda|}\left\|\left.T\right|_{\Re(P)} x\right\| \leq \frac{1}{|\lambda|}|\lambda|\|x\|=\|x\|
$$

This implies that $\left.\frac{1}{\lambda} T\right|_{\Re(P)}$ is unitary with its spectrum $\sigma\left(\left.\frac{1}{\lambda} T\right|_{\Re(P)}\right)=\{1\}$. Hence $\left.T\right|_{\Re(P)}=\lambda I$ and λ is an eigenvalue of T. Therefore, $\Re(P)=\operatorname{ker}(T-\lambda I)$. Since $\operatorname{ker}(T-\lambda I) \subset \operatorname{ker}(T-\lambda I)^{*}$ by Theorem 2.4, it suffices to show that $\operatorname{ker}(T-\lambda I)^{*} \subset \operatorname{ker}(T-\lambda I)$. Since $\operatorname{ker}(T-\lambda I)$ is a reducing subspace of T by Theorem 2.4 and the restriction of a class $A(k)$ to its reducing subspace is also class $A(k)$ operator, we see that T is of the form $T=T^{\prime} \oplus \lambda I$ on $\mathscr{H}=\operatorname{ker}(T-\lambda I) \oplus \operatorname{ker}(T-\lambda I)^{\perp}$, where T^{\prime} is a class $A(k)$ operator with $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\}$. Since $\lambda \in \sigma(T)=\sigma\left(T^{\prime}\right) \cup\{\lambda\}$ is isolated, the only two cases occur. One is $\lambda \notin \sigma\left(T^{\prime}\right)$ and the other is that λ is an isolated point of $\sigma\left(T^{\prime}\right)$. The latter case, however, does not occur otherwise we have $\lambda \in \sigma_{p}\left(T^{\prime}\right)$ and this contradicts the fact that $\operatorname{ker}\left(T^{\prime}-\lambda I\right)=\{0\} \cdot \operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{*}$ is immediate from the injectivity of $T^{\prime}-\lambda I$ as an operator on $\operatorname{ker}(T-\lambda I)^{\perp}$.

Next, we show that P is self-adjoint. Since $\Re(P)=\operatorname{ker}(T-\lambda I)=\operatorname{ker}(T-$ $\lambda I)^{*}$, we have $\left((T-z I)^{*}\right)^{-1} P=\overline{(z-\lambda)^{-1}} P$. Hence

$$
\begin{aligned}
P^{*} P & =-\frac{1}{2 i \pi} \int_{\gamma}\left((T-z I)^{*}\right)^{-1} P d \bar{z} \\
& =-\frac{1}{2 i \pi} \int_{\gamma} \overline{(z-\lambda)^{-1}} P d \bar{z} \\
& =\overline{\left(\frac{1}{2 i \pi} \int_{\gamma} \frac{1}{z-\lambda} d \bar{z}\right)} P
\end{aligned}
$$

$$
=P P^{*} .
$$

Therefore, the proof is achieved.
Example 3.2. There exists a class $A(k)$ operator T such that 0 is an isolated point of $\sigma(T), \operatorname{ker}(T) \neq \operatorname{ker}\left(T^{*}\right)$ and the Riesz idempotent P with respect to 0 is not self-adjoint. To see this, let $0<\alpha<1$ and $A=\alpha\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ in Example 1.2. Then $T \in \mathcal{A}(k)$ with $k \geq \frac{-\log 2}{2 \log \alpha}$ and 0 is an isolated point of $\sigma(T)$. Also $\operatorname{ker}(T) \neq \operatorname{ker}\left(T^{*}\right)$ and the Riesz idempotent P with respect to 0 is not self-adjoint.

Theorem 3.3. Let $T \in \mathcal{Q}(A(k), m)$. Then

$$
H_{0}(T-\lambda)= \begin{cases}\operatorname{ker}(T-\lambda), & \text { if } \lambda \neq 0 \\ \operatorname{ker}\left(T^{m+1}\right), & \text { if } \lambda=0\end{cases}
$$

Moreover, if $0 \neq \lambda$, then $H_{0}(T-\lambda)=\operatorname{ker}(T-\lambda) \subset \operatorname{ker}(T-\lambda)^{*}$.
Proof. Since T has Bishop's property (β) by Lemma 2.10 and $H_{0}(T-\lambda)=$ $\chi_{T}(\{\lambda\})$ by Theorem 2.20 of $[1], H_{0}(T-\lambda)$ is closed and $\sigma\left(\left.T\right|_{H_{0}(T-\lambda)}\right) \subset\{\lambda\}$ by Proposition 1.2 .19 of [19]. Let $S=\left.T\right|_{H_{0}(T-\lambda)}$. Then S is a $\mathcal{Q}(A(k), m)$ operator by Theorem 2.3. Hence, we divide into the cases:

Case I. If $\sigma(S)=\sigma\left(\left.T\right|_{H_{0}(T-\lambda)}\right)=\emptyset$, then $H_{0}(T-\lambda)=\{0\}$, and so $\operatorname{ker}(T-$ $\lambda)=\{0\}$.

Case II. If $\sigma(S)=\{\lambda\}$ and $\lambda \neq 0$, then $S=\lambda$ by Lemma 2.12, and $H_{0}(T-$ $\lambda)=\operatorname{ker}(S-\lambda) \subset \operatorname{ker}(T-\lambda)$.

Case III. If $\sigma(S)=\{0\}$, then $S^{m+1}=0$ by Lemma 2.12, and $H_{0}(T)=$ $\operatorname{ker}\left(S^{m+1}\right) \subset \operatorname{ker}\left(T^{m+1}\right)$.

Moreover, let $\lambda \neq 0$. In this case, $S=\lambda$. Hence S is normal and invertible, so $H_{0}(T-\lambda)$ reduces T by Theorem 2.4. Thus $H_{0}(T-\lambda)=\operatorname{ker}(T-\lambda) \subset$ $(T-\lambda)^{*}$.

Theorem 3.4. Let $T \in \mathcal{Q}(A(k), m)$. If $0 \neq \lambda \in \operatorname{iso\sigma }(T)$ and P is the Riesz idempotent for λ, then P is self-adjoint and

$$
\Re(P)=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*} .
$$

Moreover, if $\lambda=0$, then $\Re(P)=H_{0}(T)=\operatorname{ker}\left(T^{m+1}\right)$.
Proof. If T has a dense range, then T is a class $A(k)$ operator, so the result follows from Theorem 3.1. Therefore we may assume that $\overline{\Re\left(T^{m}\right)} \neq \mathscr{H}$. Let $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathscr{H}=\overline{\Re\left(T^{m}\right)} \oplus \operatorname{ker}\left(T^{* m}\right)$, where T_{1} is a class $A(k), T_{3}^{m}=0$ and $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$. If $0 \neq \lambda \in i \operatorname{so\sigma }(T)$, then $\lambda \in i \operatorname{so\sigma }\left(T_{1}\right)$ because $\sigma(T)=$ $\sigma\left(T_{1}\right) \cup\{0\}$. Let γ be the boundary of a closed disc $\mathbb{D}_{\lambda}=\{\mu \in \mathbb{C}:|\mu-\lambda| \leq r\}$ for which $0 \notin \mathbb{D}_{\mu}$ such that $\gamma \cap \sigma(T)=\{\lambda\}$. Then

$$
P=\frac{1}{2 \pi i} \int_{\gamma}\left(\begin{array}{cc}
\mu-T_{1} & -T_{2} \\
0 & \mu-T_{3}
\end{array}\right)^{-1} d \mu
$$

$$
=\frac{1}{2 \pi i} \int_{\gamma}\left(\begin{array}{cc}
\left(\mu-T_{1}\right)^{-1} & \left(\mu-T_{1}\right)^{-1} T_{2}\left(\mu-T_{3}\right)^{-1} \\
0 & \left(\mu-T_{3}\right)^{-1}
\end{array}\right) d \mu .
$$

Let $P_{1}=\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} d \mu$ be the Riesz idempotent of T_{1} for μ. Since T_{1} is a class $A(k)$, it follows from Theorem 3.1 that P_{1} is self-adjoint and

$$
\Re\left(P_{1}\right)=\operatorname{ker}\left(T_{1}-\lambda\right)=\operatorname{ker}\left(T_{1}-\lambda\right)^{*} .
$$

We prove that

$$
X=\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2}\left(\mu-T_{3}\right)^{-1} d \mu=0 .
$$

Since

$$
\left(\mu-T_{3}\right)^{-1}=\frac{1}{\mu}+\frac{T_{3}}{\mu^{2}}+\frac{T_{3}^{2}}{\mu^{3}}+\cdots+\frac{T_{3}^{m-1}}{\mu^{m}}
$$

we see that

$$
\begin{aligned}
X & =\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2} \frac{1}{\mu} d \mu+\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2} \frac{T_{3}}{\mu^{2}}+\cdots \\
& =X_{0}+X_{1}+\cdots+X_{m-1} .
\end{aligned}
$$

Since $\frac{1}{\mu}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\lambda}\left(\frac{\mu-\lambda}{\lambda}\right)^{n}$, we have

$$
\begin{aligned}
X & =\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2} \frac{1}{\mu} d \mu+\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2} \frac{\mu-\lambda}{\mu^{2}}+\cdots \\
& =\frac{1}{\lambda} P_{1} T_{2}-\frac{1}{\lambda^{2}}\left(T_{1}-\lambda\right) P_{1} T_{2}+\frac{1}{\lambda^{3}}\left(T_{1}-\lambda\right)^{2} P_{1} T_{2}-\cdots .
\end{aligned}
$$

We prove that

$$
P_{1} T_{2}=0
$$

Let $y=P_{1} x$ for $x \in \overline{\Re(T)}$. Then $y \in \operatorname{ker}\left(T_{1}-\lambda\right)=\operatorname{ker}\left(T_{1}-\lambda\right)^{*}$. Therefore, from Theorem 2.4 we have

$$
\binom{0}{0}=(T-\lambda)\binom{y}{0}=(T-\lambda)^{*}\binom{y}{0}=\binom{\left(T_{1}-\lambda\right)^{*} y}{-T_{2}^{*} y} .
$$

Thus $T_{2}^{*} y=T_{2}^{*} P_{1} x=0$ for $x \in \overline{\Re(T)}$. This implies that $P_{1} T_{2}=0$ because P_{1} is self-adjoint. Hence $X_{0}=0$. On the other hand, since $\frac{1}{\mu^{2}}=$ $\frac{1}{\lambda^{2}}-\frac{2(\mu-\lambda)}{\lambda^{3}}+\frac{3(\mu-\lambda)^{2}}{\lambda^{4}}-\cdots$, we have

$$
\begin{aligned}
X_{1} & =\frac{1}{2 \pi i} \int_{\gamma}\left(\mu-T_{1}\right)^{-1} T_{2} \frac{T_{3}}{\mu^{2}} d \mu \\
& =\frac{1}{\lambda^{2}} P_{1} T_{2} T_{3}-\frac{2}{\lambda^{3}}\left(T_{1}-\lambda\right) P_{1} T_{2} T_{3}+\frac{3}{\lambda^{4}} P_{1} T_{2} T_{3}-\cdots \\
& =0 .
\end{aligned}
$$

Similarly we have $X_{2}=X_{3}=\cdots=X_{m-1}=0$, and $X=0$. Hence

$$
P=\left(\begin{array}{cc}
P_{1} & 0 \tag{3.1}\\
0 & 0
\end{array}\right)
$$

is self-adjoint as well as P_{1}. Now we claim that $\Re(P)=\operatorname{ker}(T-\lambda)$. We see from Equation (3.1) that

$$
\Re(P)=\Re\left(P_{1}\right) \oplus\{0\}=\operatorname{ker}\left(T_{1}-\lambda\right) \oplus\{0\}=\operatorname{ker}\left(T_{1}-\lambda\right)^{*} \oplus\{0\}
$$

So, if $x \in \Re(P)$, then $x=\binom{x_{1}}{0}$, where $x_{1} \in \operatorname{ker}\left(T_{1}-\lambda\right)$. Therefore,

$$
(T-\lambda) x=\left(\begin{array}{cc}
T_{1}-\lambda & -T_{2} \\
0 & T_{3}-\lambda
\end{array}\right)\binom{x_{1}}{0}=\binom{0}{0} .
$$

Thus $\Re(P) \subset \operatorname{ker}(T-\lambda)$. Hence, since $\Re(P) \supseteq \operatorname{ker}(T-\lambda)$, we have that $\Re(P)=\operatorname{ker}(T-\lambda)$.

To end the proof, we must show that $\operatorname{ker}(T-\lambda)^{*} \subset \operatorname{ker}(T-\lambda)$. Let $x=$ $\binom{x_{1}}{x_{2}} \in \operatorname{ker}(T-\lambda)^{*}$. Then

$$
\begin{aligned}
(T-\lambda)^{*}\binom{x_{1}}{x_{2}} & =\left(\begin{array}{cc}
\left(T_{1}-\lambda\right)^{*} & 0 \\
T_{2}^{*} & \left(T_{3}-\lambda\right)^{3}
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\binom{\left(T_{1}-\lambda\right)^{*} x_{1}}{T_{2}^{*} x_{1}+\left(T_{3}-\lambda\right)^{*} x_{2}}=\binom{0}{0} .
\end{aligned}
$$

Therefore, $x_{1} \in \operatorname{ker}\left(T_{1}-\lambda\right)^{*}=\operatorname{ker}\left(T_{1}-\lambda\right)$. Then $(T-\lambda)\binom{x_{1}}{0}=\binom{0}{0}$ implies that $(T-\lambda)^{*}\binom{x_{1}}{0}=\binom{\left(T_{1}-\lambda\right)^{*} x_{1}}{T_{2}^{*} x_{1}}=\binom{0}{0}$.

Thus we have that $T_{2}^{*} x_{1}=0$. This implies that $\left(T_{3}-\lambda\right)^{*} x_{2}=0$ and $x_{2}=0$ because T_{3} is nilpotent. Therefore,

$$
x=\binom{x_{1}}{0} \in \operatorname{ker}\left(T_{1}-\lambda\right) \oplus\{0\}=\Re(P)=\operatorname{ker}(T-\lambda) .
$$

The proof of the case $\lambda=0$ is straightforward from Theorem 3.3. So, the proof is achieved.

4. Tensor product

Let \mathscr{H} and \mathscr{K} denote the Hilbert spaces. For given non-zero operators $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K}), T \otimes S$ denotes the tensor product on the product space $\mathscr{H} \otimes \mathscr{K}$. The normaloid property is invariant under tensor products [23]. $T \otimes S$ is normal if and only if T and S are normal [14, 25]. There exist paranormal operators T and S such that $T \otimes S$ is not paranormal [3]. In [15], I. H. Kim showed that for non-zero $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K}), T \otimes S$ is log-hyponormal if and only if T and S are log-hyponormal. This result was extended to p-quasi hyponormal operators, class A operators, quasi class A and quasi class (A, k) operators in [15], [11], [12] and [16], respectively. In this section, we prove an analogous result for $\mathcal{Q}(A(k), m)$ operators.

Remark 4.1. Let $T \in L B$ and $S \in \mathscr{L}(\mathscr{K})$ be non-zero operators, then we have
(i) $(T \otimes S)^{*}(T \otimes S)=T^{*} T \otimes S^{*} S$,
(ii) $|T \otimes S|^{t}=|T|^{t} \otimes|S|^{t}$ for any positive real t.

Lemma 4.2 ([25]). Let $T_{1}, T_{2} \in \mathscr{L}(\mathscr{H}), S_{1}, S_{2} \in \mathscr{L}(\mathscr{K})$ be non-negative operators. If T_{1} and S_{1} are non-zero, then the following assertions are equivalent:
(a) $T_{1} \otimes S_{1} \leq T_{2} \otimes S_{2}$;
(b) there exists $c>0$ such that $T_{1} \leq c T_{2}$ and $S_{1} \leq c^{-1} S_{2}$.

Lemma 4.3 (Hölder-McCarthy Inequality). Let $T \geq 0$. Then the following assertions hold.
(i) $\left\langle T^{r} x, x\right\rangle \geq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r>1$ and $x \in \mathscr{H}$.
(ii) $\left\langle T^{r} x, x\right\rangle \leq\langle T x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r \in[0,1]$ and $x \in \mathscr{H}$.

Theorem 4.4. Suppose that $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$ are non-zero operators. Then $T \otimes S$ is a class $A(k)$ operator if and only T and S are class $A(k)$ operators.

Proof. Assume that T and S are class $A(k)$ operators. Then

$$
\begin{aligned}
& \left((T \otimes S)^{*}|T \otimes S|^{2 k}(T \otimes S)\right)^{1 /(k+1)} \\
= & \left(\left(T^{*} \otimes S^{*}\right)\left(|T|^{2 k} \otimes|S|^{2 k}\right)(T \otimes S)\right)^{1 /(k+1)} \\
= & \left(\left(T^{*}|T|^{2 k} T\right) \otimes\left(S^{*}|S|^{2 k} S\right)\right)^{1 /(k+1)} \\
= & \left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} \otimes\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} \\
\geq & |T|^{2} \otimes|S|^{2}=|T \otimes S|^{2}
\end{aligned}
$$

which implies that $T \otimes S$ is a class $A(k)$ operator.
Conversely, assume that $T \otimes S$ is a class $A(k)$. We aim to show that T and S are class $A(k)$ operators. Without loss of generality, it is enough to show that T is a class $A(k)$ operator. Since $T \otimes S$ is a class $A(k)$ operator, we obtain

$$
\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} \otimes\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} \geq|T|^{2} \otimes|S|^{2}
$$

Hence by Lemma 4.2, there exists a positive real number c for which

$$
|T|^{2} \leq c\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} \text { and }|S|^{2} \leq c^{-1}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)}
$$

Consequently, for every $x \in \mathscr{H}$ and $y \in \mathscr{K}$ and by Hölder McCarthy Inequality, we have

$$
\begin{aligned}
\|T\|^{2} & \left.=\left.\sup _{\|x\|=1}\langle | T\right|^{2} x, x\right\rangle \\
& \leq \sup _{\|x\|=1}\left\langle c\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)} x, x\right\rangle \\
& \left.\leq\left. c \sup _{\|x\|=1}\left\langle T^{*}\right| T\right|^{2 k} T x, x\right\rangle^{1 /(k+1)} \\
& \leq c \sup _{\|x\|=1}\left\||T|^{k} T x\right\|^{2 /(k+1)} \\
& =c\left\|\left.T\right|^{k} T\right\|^{2 /(k+1)}=c\left\|T^{k+1}\right\|^{2 /(k+1)} \leq c\|T\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|S\|^{2} & \left.=\left.\sup _{\|y\|=1}\langle | S\right|^{2} y, y\right\rangle \\
& \leq \sup _{\|y\|=1}\left\langle c^{-1}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} y, y\right\rangle \\
& \left.\leq\left. c^{-1} \sup _{\|y\|=1}\left\langle S^{*}\right| S\right|^{2 k} S y, y\right\rangle^{1 /(k+1)} \\
& \leq c^{-1} \sup _{\|y\|=1}\left\||S|^{k} S y\right\|^{2 /(k+1)} \\
& =c^{-1}\left\||S|^{k} S\right\|^{2 /(k+1)} \\
& =c^{-1}\left\|S^{k+1}\right\|^{2 /(k+1)} \\
& \leq c^{-1}\|S\|^{2} .
\end{aligned}
$$

Thus, $c=1$, and so T is a class $A(k)$ operator.
Theorem 4.5. Let $T, S \in \mathscr{L}(\mathscr{H})$ be non-zero operators. Then $T \otimes S \in$ $\mathcal{Q}(A(k), m)$ if and only if one of the following holds:
(i) $T \in \mathcal{Q}(A(k), m)$ and $S \in \mathcal{Q}(A(k), m)$.
(ii) $T^{m+1}=0$ or $S^{m+1}=0$.

Proof. By simple calculation we have $T \otimes S \in \mathcal{Q}(A(k), m)$ if and only if

$$
\begin{aligned}
& (T \otimes S)^{* m}\left(\left((T \otimes S)^{*}|T \otimes S|^{2 k}(T \otimes S)\right)^{1 /(k+1)}-|T \otimes S|^{2}\right)(T \otimes S)^{m} \geq 0 \\
\Leftrightarrow & T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}-|T|^{2}\right) T^{m} \otimes S^{* m}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} S^{m} \\
& +T^{* m}|T|^{2} T^{m} \otimes S^{* m}\left(\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)}-|S|^{2}\right) S^{m} \geq 0
\end{aligned}
$$

Thus the sufficiency is easily proved. Conversely, suppose that $T \otimes S \in$ $\mathcal{Q}(A(k), m)$. Then for $x \in \mathscr{H}$ and $y \in \mathscr{K}$ we have

$$
\begin{align*}
& \left\langle T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}-|T|^{2}\right) T^{m} x, x\right\rangle\left\langle S^{* m}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} S^{m} y, y\right\rangle \tag{4.1}\\
& \left.+\left.\left\langle T^{* m}\right| T\right|^{2} T^{m} x, x\right\rangle\left\langle S^{* m}\left(\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)}-|S|^{2}\right) S^{m} y, y\right\rangle \geq 0 .
\end{align*}
$$

It suffices to show that if the statement (ii) does not hold, the statement (i) holds. Thus, assume to the contrary that neither of T^{m+1} and S^{m+1} is the zero operator, and T is not in $\mathcal{Q}(A(k), m)$. Then there exists $x_{0} \in \mathscr{H}$ such that

$$
\begin{aligned}
& \left\langle T^{* m}\left(\left(T^{*}|T|^{2 k} T\right)^{1 /(k+1)}-|T|^{2}\right) T^{m} x_{0}, x_{0}\right\rangle:=\alpha<0 \quad \text { and } \\
& \left.\left.\left\langle T^{m *}\right| T\right|^{2} T^{m} x_{0}, x_{0}\right\rangle:=\beta>0 .
\end{aligned}
$$

From (4.1) we have

$$
\begin{equation*}
\left.(\alpha+\beta)\left\langle S^{* m}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} S^{m} y, y\right\rangle \geq\left.\beta\left\langle S^{* m}\right| S\right|^{2} S^{m} y, y\right\rangle \tag{4.2}
\end{equation*}
$$

Thus $S \in \mathcal{Q}(A(k), m)$. By Hölder McCarthy Inequality, we have

$$
\begin{aligned}
\left\langle S^{* m}\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} S^{m} y, y\right\rangle & =\left\langle\left(S^{*}|S|^{2 k} S\right)^{1 /(k+1)} S^{m} y, S^{m} y\right\rangle \\
& \left.\leq\left.\langle | S\right|^{2 k} S^{m+1} y, S^{m+1} y\right\rangle^{1 /(k+1)}\left\|S^{m} y\right\|^{2 k /(k+1)} \\
& \leq\left\|S^{m} y\right\|^{2 k /(k+1)}\left\||S|^{k} S^{m+1} y\right\|^{1 /(k+1)} \\
& =\left\|S^{m} y\right\|^{2 k}\left\|S^{k+m+1} y\right\|^{2 /(k+1)}
\end{aligned}
$$

and

$$
\left.\left.\left\langle S^{* m}\right| S\right|^{2} S^{m} y, y\right\rangle=\left\langle S^{m+1} y, S^{m+1} y\right\rangle=\left\|S^{m+1} y\right\|^{2} .
$$

Therefore, we have

$$
\begin{equation*}
(\alpha+\beta)\left\|S^{m} y\right\|^{\frac{2 k}{k+1}}\left\|S^{k+m+1} y\right\|^{2 /(k+1)} \geq \beta\left\|S^{m+1} y\right\|^{2} \tag{4.3}
\end{equation*}
$$

On the other hand, since $S \in \mathcal{Q}(A(k), m)$, from Lemma 2.2 we have a decomposition of S as the following:

$$
S=\left(\begin{array}{cc}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right) \quad \text { on } \quad \mathscr{H}=\overline{\Re\left(S^{m}\right)} \oplus \operatorname{ker}\left(S^{m *}\right)
$$

where S_{1} is a class $A(k)$ operator on $\overline{\Re\left(S^{m}\right)}$ and S_{3} is a nilpotent with nilpotency m. By (4.3) we have

$$
\begin{equation*}
(\alpha+\beta)\left\|S_{1}^{m} \xi\right\|^{\frac{2 k}{k+1}}\left\|S_{1}^{k+m+1} \xi\right\|^{2 /(k+1)} \geq \beta\left\|S_{1}^{m+1} \xi\right\|^{2} \quad \text { for all } \xi \in \overline{\Re\left(S^{m}\right)} \tag{4.4}
\end{equation*}
$$

Since S_{1} is a class $A(k), S_{1}$ is normaloid, and taking supremum on both sides of the inequality (4.4), we have

$$
(\alpha+\beta)\left\|S_{1}\right\|^{2(m+1)} \geq \beta\left\|S_{1}\right\|^{2(m+1)}
$$

This inequality forces that $S_{1}=0$. Hence $S^{m+1} x=0$ because $S^{m+1}=S_{1} S^{m}$ for all $y \in \mathscr{K}$. This is a contradiction to that S^{m+1} is not a zero operator. Hence T must be in $\mathcal{Q}(A(k), m)$ operators. In a similar manner, we can prove that S is also a quasi-class $\mathcal{Q}(A(k), m)$ operator. Therefore, the proof of the theorem is finished.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1-10.
[3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169178.
[4] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379-397.
[5] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equation Operator Theory 53 (2005), no. 4, 497508.
[6] J. B. Conway, A course in Functional Analysis, Springer-Verlag, New York, 1985.
[7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69.
[8] M. Fujii, D. Jung, S. H. Lee, M. Y. Lee, and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395-402.
[9] T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389-403.
[10] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math. 35 (1999), no. 1, 149-165.
[11] I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617-627.
[12] I. H. Jeon and I. H. Kim, On operators satisfying $T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T$, Linear Algebra Appl. 418 (2006), no. 2-3, 854-862.
[13] F. Hansen, An equality, Math. Ann. 246 (1980), 249-250.
[14] J.-C. Hou, On the tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), no. 2, 195-202.
[15] I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269-277.
[16], Weyl's theorem and tensor product for operators satisfying $T^{* k}\left|T^{2}\right| T^{k} \geq$ $T^{* k}|T|^{2} T^{k}$, J. Korean Math. Soc. 47 (2010), no. 2, 351-361.
[17] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory 50 (1995), no. 3, 375-384.
[18] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336.
[19] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon, 2000.
[20] M. H. M. Rashid, Property (w) and quasi-class (A, k) operators, Rev. Un. Mat. Argentina 52 (2011), no. 1, 133-142.
[21] , Weyl's theorem for algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geq 1$, Ukrainian Math. J. 63 (2011), no. 8, 1256-1267.
[22] M. H. M. Rashid and H. Zguitti, Weyl type theorems and class $A(s, t)$ operators, Math. Inequal. Appl. 14 (2011), no. 3, 581-594.
[23] T. Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics, vol. 247, Springer-Verlag, 1971.
[24] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476.
[25] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135-140.
[26] K. Tanahashi, I. H. Jeon, I. H. Kim, and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal, Operator Theory: Advances Appl. 187 (2008), 199-210.
[27] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Math. Inequal. Appl. 5 (2002), no. 2, 291-298.

Mohammad H. M. Rashid
Department of Mathematics \& Statistics
Faculty of Science P.O.Box(7)
Mu'tah University
Al-Karak-Jordan
E-mail address: malik_okasha@yahoo.com

