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ON OPERATORS SATISFYING

T ∗m(T ∗|T |2kT )1/(k+1)Tm ≥ T ∗m|T |2Tm

Mohammad H. M. Rashid

Abstract. Let T be a bounded linear operator acting on a complex
Hilbert space H . In this paper we introduce the class, denoted Q(A(k),

m), of operators satisfying Tm∗(T ∗
|T |

2kT )1/(k+1)Tm
≥ T ∗m

|T |
2Tm,

where m is a positive integer and k is a positive real number and we prove
basic structural properties of these operators. Using these results, we
prove that if P is the Riesz idempotent for isolated point λ of the spectrum
of T ∈ Q(A(k), m), then P is self-adjoint, and we give a necessary and
sufficient condition for T ⊗S to be in Q(A(k), m) when T and S are both
non-zero operators. Moreover, we characterize the quasinilpotent part
H0(T − λ) of class A(k) operator.

1. Introduction

Let H be a complex Hilbert space and let L (H ) be the algebra of all
bounded linear operators acting on H . An operator T ∈ L (H ) has a unique
polar decomposition T = U |T |, where |T | = (T ∗T )1/2 and U is partial isometry
satisfying ker(U) = ker(T ) = ker(|T |) and ker(U) = ker(T ∗).

An operator T is said to be positive (denoted by T ≥ 0) if 〈Tx, x〉 ≥ 0
for all x ∈ H and also T is said to be strictly positive (denoted by T >

0) if T is positive and invertible. An operator T is called p-hyponormal if
|T |2p ≥ |T ∗|2p for every 0 < p ≤ 1 and log-hyponormal if T is invertible and

log(T ∗T ) ≥ log(TT ∗), T is called paranormal if
∥

∥T 2x
∥

∥ ≥ ‖Tx‖
2
for every unit

vector x ∈ H , and T is called normaloid if ‖T ‖ = r(T ), the spectral radius of
T . Following [9, 10], we say that T ∈ L (H ) belongs to class A if |T 2| ≥ |T |2

and class A(k) for k > 0 (abbreviation T ∈ A(k)) if (T ∗|T |2kT )1/(k+1) ≥ |T |2,
we note that T is class A if and only if T is class A(1). According to [2], an

operator T ∈ L (H ) is said to be w-hyponormal if | ˜T | ≥ |T | ≥ |˜T ∗|, where
˜T is the Aluthge transformation ˜T = |T |1/2U |T |1/2. As a generalization of w-
hyponormal and class A(k), Ito [10] introduced class wA(s, t) as follows. An

operator T is called class wA(s, t) for s > 0 and t > 0 if |˜Ts,t|
2t/(s+t) ≥ |T |2t
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and |T |2s ≥ |˜T ∗

s,t|
2s/(s+t), where ˜Ts,t is generalized Aluthge transformation, i.e.,

˜Ts,t = |T |sU |T |t. An operator T ∈ L (H ) is called k-paranormal for positive

integer k, if
∥

∥T k+1x
∥

∥ ≥ ‖Tx‖k+1 for every unit vector x ∈ H .

Definition 1.1. We say that an operator T ∈ L (H ) is of m-quasi class Ak

(abbreviate Q(A(k),m)), if

T ∗m(T ∗|T |2kT )1/(k+1)Tm ≥ Tm∗|T |2Tm,

wherem is a positive integers and k > 0. Ifm = 1, then T is called a quasi-class
A(k) and k = m = 1, then Q(A(k),m) coincides with quasi-class A operator.

Example 1.2. Let H =
∞
⊕

n=0

C
2 and define an operator T on H by

T (· · · ⊕ x−2 ⊕ x−1 ⊕ x
(0)
0 ⊕ x1 ⊕ · · · ) = · · · ⊕Ax−2 ⊕Ax−1 ⊕Bx0 ⊕Bx1 ⊕ · · · ,

where A = 1
4

(

1
2

1
2

1
2

1
2

)

and B = ( 1 0
0 0 ). Then T is of m-quasi-class A(k) for each

k ≥ 1
4 . In fact, for each k ≥ 1

4 ,
〈

T ∗m
(

(T ∗|T |2kT )1/(k+1) − |T |2
)

Tmx, x
〉

=
〈

Am
(

(ABA)1/(k+1) −A2
)

Amx−1, x−1

〉

=

(

1

16

)m
{

(

1

32

)1/(k+1)

−

(

1

16

)

}

∥

∥

∥

∥

(

1
2

1
2

1
2

1
2

)

x−1

∥

∥

∥

∥

2

≥ 0

for each x ∈ H .

Let 0 < α < 1 and A = α
(

1
2

1
2

1
2

1
2

)

. Then T ∈ Q(A(k),m) with k ≥ − log 2
2 logα

.

Since − log 2
2 logα

→ 0 as α → 0 for any k > 0. Then T ∈ Q(A(k),m) for each k > 0

and m is a positive integer.

Since T ≥ 0 implies R∗TR ≥ 0, we have:

Proposition 1.3. Let T ∈ L (H ). If T ∈ A(k), then T ∈ Q(A(k),m).

Throughout this paper, we shall denote the spectrum, the point spectrum
and the isolated points of the spectrum of T ∈ L (H ) by σ(T ), σp(T ) and
isoσ(T ), respectively. The range and the kernel of T ∈ L (H ) will be de-
noted by ℜ(T ) and ker(T ), respectively. We shall denote the set of all complex
numbers and the complex conjugate of a complex number λ by C and λ, re-
spectively. The closure of a set S will be denoted by S and we shall henceforth
shorten T − λI to T − λ.

In Section 2, we prove basic properties of Q(A(k),m) operators and using
these properties, in Section 3, we prove that if P is the Riesz idempotent
for a non-zero isolated point λ of the spectrum of T ∈ Q(A(k),m), then P

is self-adjoint and ℜ(P ) = ker(T − λ) = ker(T − λ)∗ and if λ = 0, then
ℜ(P ) = H0(T ) = ker(Tm+1). This is a complete extension of results proved for
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quasi-classA operators and quasi-class (A,m) operators in [12, 26], respectively.
In Section 4, we give a necessary and sufficient condition for T ⊗ S to be in
Q(A(k),m) when T and S are both non-zero operators. This gives an analogous
result proved for quasi-classA operators and quasi-class (A,m) operators in [12,
26], respectively.

2. Properties of Q(A(k),m) operators

To prove these properties we need the following lemma.

Lemma 2.1 ([13]). If A,B ∈ L (H ) satisfying A ≥ 0 and ‖B‖ ≤ 1, then

(B∗AB)α ≥ B∗AαB for all α ∈ (0, 1].

Lemma 2.2. Let T ∈ Q(A(k),m) and T not have a dense range. Then

T =

(

T1 T2

0 T3

)

on H = ℜ(Tm)⊕ ker(T ∗m),

where T1 = T |
ℜ(Tm) is the restriction of T to ℜ(Tm), and T1 ∈ A(k) and T3 is

nilpotent of nilpotency m. Moreover, σ(T ) = σ(T1) ∪ {0} .

Proof. Consider the matrix representation of T with respect to the decompo-
sition H = ℜ(Tm)⊕ ker(T ∗m);

T =

(

T1 T2

0 T3

)

Let P be the orthogonal projection onto ℜ(Tm). Then
(

T1 0
0 0

)

= TP = PTP.

Since T ∈ Q(A(k),m), we have

P
(

(T ∗|T |2kT )1/(k+1) − |T |2
)

P ≥ 0.

Then by Lemma 2.1

P (T ∗|T |2kT )1/(k+1)P = P (T ∗|T |2kT )1/(k+1)P

≤
(

PT ∗|T |2kTP
)

1
k+1 ≤

(

PT ∗(PT ∗TP )kTP
)

1
k+1

=

(

(T ∗

1 |T1|
2kT1)

1/(k+1) 0
0 0

)

and

P |T |2P = PT ∗TP =

(

|T1|
2 0

0 0

)

.

Hence
(

(T ∗

1 |T1|
2kT1)

1/(k+1) 0
0 0

)

≥ P (T ∗|T |2kT )1/(k+1)P ≥ P |T |2P

=

(

|T1|
2 0

0 0

)

,
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i.e., T1 ∈ A(k). On the other hand, if u = ( u1
u2

) ∈ H ,

〈T3u2, u2〉 = 〈T (I − P )u, (I − P )u〉 = 〈(I − P )u, T ∗(I − P )u〉 = 0,

which implies that T3 = 0. It is well known that σ(T1) ∪ σ(T3) = σ(T ) ∪ C,
where C is the union of certain of the holes in σ(T ) which happen to be subset
of σ(T1) ∩ σ(T3) and σ(T1) ∩ σ(T3) has no interior points. Therefore, we have

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0} . �

Theorem 2.3. Let T ∈ L (H ) be a QAk operator and M be its invariant

subspace. Then the restriction T |M of T to M is also Q(A(k),m) operator.

Proof. Let Q be the orthogonal projection onto M . Put T1 = T |M . Then
TQ = QTQ and T1 = (QTQ)|M . Since T is a Q(A(k),m) operator, we have

QT ∗
(

T ∗|T |2kT
)1/(k+1)

TQ ≥ QT ∗|T |2TQ.

Since

QT ∗
(

T ∗|T |2kT
)1/(k+1)

TQ = QT ∗Q
(

T ∗|T |2kT
)1/(k+1)

QTQ

≤ QT ∗Q
(

QT ∗(T ∗T )kTQ
)

1
1+k QTQ

≤ QT ∗Q
(

QT ∗(QT ∗TQ)kTQ
)

1
1+k QTQ

=

(

(T ∗

1 |T1|
2kT1)

1/(k+1) 0
0 0

)

and

QT ∗|T |2TQ = QT ∗QT ∗TQTQ =

(

T ∗

1 |T1|
2T1 0

0 0

)

,

we have
(

(T ∗

1 |T1|
2kT1)

1/(k+1) 0
0 0

)

≥ QT ∗
(

T ∗|T |2kT
)1/(k+1)

T

≥ QT ∗(|T |2)TQ =

(

T ∗

1 |T1|
2T1 0

0 0

)

.

This implies that T1 ∈ Q(A(k),m). �

Theorem 2.4. Let T ∈ Q(A(k),m). Then the following assertions holds:

(a) If M is an invariant subspace of T and T |M is an injective normal

operator, then M reduces T .

(b) If (T − λ)x = 0 and λ 6= 0, then (T − λ)∗ = 0.

Proof. (a) Decompose T into

T =

(

S A

0 B

)

on H = M ⊕ M
⊥
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and let S = T |M be an injective normal operator. Let Q be the orthogonal
projection of H onto M . Since Tm =

(

Sm
∗

0 Bm

)

and ker(S) = ker(S∗) = {0} ,
we have

M = ℜ(S) = ℜ(Sm) ⊂ ℜ(Tm).

Then
(

|S|2 0
0 0

)

= Q|T |2Q ≤ Q(T ∗|T |2kT )1/(k+1)Q

≤
(

QT ∗|T |2kT )Q
)1/(k+1)

≤
(

QT ∗(QT ∗TQ)kT )Q
)1/(k+1)

=

(

|Sk+1|2/(k+1) 0
0 0

)

by Lemma 2.1. Therefore,

Q(T ∗|T |2kT )1/(k+1)Q =

(

|S|2 0
0 0

)

= Q|T |2Q.

Since S is normal, we can write (T ∗|T |2kT )1/(k+1) =
(

|S|
2 C

C∗ D

)

. Since

(

|S|2(k+1) 0
0 0

)

= Q(T ∗|T |2kT )Q = Q((T ∗|T |2kT )k+1)1/(k+1)Q,

we can easily show that C = 0. Therefore,

(T ∗|T |2kT )1/(k+1) =

(

|S|2 0
0 D

)

and hence

T ∗|T |2kT =

(

|S|2(k+1) 0
0 Dk+1

)

= T ∗(T ∗T )kT.

This implies that D = (B∗|B|2kB)1/(k+1). Therefore,

0 ≤ T ∗m((T ∗(T ∗T )kT )1/(k+1) − |T |2)Tm

=

(

0 Y

Y ∗ B∗m((B∗|B|2kB)1/(k+1) − |B|2)Bm

)

.

Hence A = 0 and B is a Q(A(k),m) operator.
(b) Let M = span {x}. Then T |M = λ 6= 0 and T |M is an injective normal

operator. Hence M reduces T and T =
(

λ 0
0 B

)

on H = M ⊕ M
⊥. Then

(T − λ)∗ = 0. �

An operator T ∈ L (H ) is called isoloid if every isolated point of σ(T ) is
an eigenvalue of T . In [21], Rashid proved every class wF (p, r, q) operators are
isoloid, we extend this result to m-quasi-class A(k) operators.

Lemma 2.5. Let T ∈ Q(A(k),m). Then T is an isoloid.
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Proof. Let T =
(

T1 T2

0 T3

)

on H = ℜ(Tm) ⊕ ker(T ∗m), and assume that µ ∈

isoσ(T ). Then µ ∈ isoσ(T1) or µ = 0 by Lemma 2.2. If µ ∈ isoσ(T1), then
µ ∈ σp(T1) because T1 ∈ A(k) and a class A(k) is an isoloid by Theorem 2.10
of [22]. Thus we may assume that µ = 0 and µ /∈ σ(T1), so dim ker(T3) > 0.
Therefore, if x ∈ ker(T3), then −T−1

1 T2x ⊕ xker(T ). Hence µ is an eigenvalue
of T . �

Let Hol(σ(T )) be the space of all functions that analytic in an open neigh-
borhoods of σ(T ). Following [7] we say that T ∈ L (H ) has the single-valued
extension property (SVEP) at point λ ∈ C if for every open neighborhood
Uλ of λ, the only analytic function f : Uλ −→ H which satisfies the equa-
tion (T − µ)f(µ) = 0 is the constant function f ≡ 0. It is well-known that
T ∈ L (H ) has SVEP at every point of the resolvent ρ(T ) := C \ σ(T ). More-
over, from the identity Theorem for analytic function it easily follows that
T ∈ L (H ) has SVEP at every point of the boundary ∂σ(T ) of the spectrum.
In particular, T has SVEP at every isolated point of σ(T ). In [18, Proposition
1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Definition 2.6 ([4]). An operator T is said to have Bishop’s property (β)
at λ ∈ C if for every open neighborhood G of λ, the function fn ∈ Hol(G)
with (T − λ)fn(µ) → 0 uniformly on every compact subset of G implies that
fn(µ) → 0 uniformly on every compact subset of G, where Hol(G) means the
space of all analytic functions on G. When T has Bishop’s property (β) at each
λ ∈ C, simply say that T has property (β).

Lemma 2.7 ([17]). Let G be open subset of complex plane C and let fn ∈
Hol(G) be functions such that µfn(µ) → 0 uniformly on every compact subset

of G, then fn(µ) → 0 uniformly on every compact subset of G.

Following [8], we say that an operator T ∈ L (H ) belongs to class A(s, t)
for every s > 0 and t > 0 if

(|T ∗|t|T |2s|T ∗|s)t/(t+s) ≥ |T ∗|2t.

It is easy to see that T ∈ A(k) if and only T ∈ A(k, 1) because if T is a class
A(k), then

(T ∗|T |2kT )1/(k+1) = (U∗|T ∗||T |2k|T ∗|U)1/(k+1)

= U∗(|T ∗||T |2k|T ∗|)1/(k+1)U ≥ |T |2 and

(|T ∗||T |2k|T ∗|)1/(k+1) ≥ U |T |2U∗ = |T ∗|2.

Hence, T ∈ A(k, 1). If T ∈ A(k, 1), then

|T ∗|2 ≤ (|T ∗||T |2k|T ∗|)1/(k+1)

≤ (UT ∗|T |2kTU∗)1/(k+1) = U(T ∗|T |2kT )1/(k+1)U∗ and

(T ∗|T |2kT )1/(k+1) ≥ U∗|T ∗|2U = |T |2.
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So, T ∈ A(k).

The relations between T and its transformation ˜Ts,t are

(2.1) ˜Ts,t|T |
s = |T |sU |T |t|T |s = |T |sT,

and

(2.2) U |T |t ˜Ts,t = U |T |t|T |sU |T |t = TU |T |t

for each s > 0 and t > 0.

Theorem 2.8. Let T belong the class A(k) for k > 0. Then T has the property

(β).

Proof. Since ˜Tk,1 is min (k,1)
k+1 -hyponormal ([10]) it is suffices to show that T has

property (β) if and only if ˜Tk,1 has property (β).
Let G be an open neighborhood of λ and let fn ∈ Hol(σ(T )) be functions

such that (µ − ˜Tk,1)fn(µ) → 0 uniformly on every compact subset of G. By

Equations 2.2, (µ− T )(U |T |kfn(µ)) = U |T |k(µ− ˜Tk,1)fn(µ) → 0 uniformly on

every compact subset of G. Hence ˜Tk,1fn(µ) → 0 uniformly on every compact

subset of G, and ˜Tk,1 having property β follows by Lemma 2.7.

Suppose that ˜Tk,1 has property (β). Let G be an open neighborhood of λ
and let fn ∈ Hol(σ(T )) be functions such that (µ− T )fn(µ) → 0 uniformly on

every compact subset of G. Since (˜Tk,1 − µ)|T |kfn(µ) = |T |k(T − µ)fn(µ) → 0
uniformly on every compact subset of G. Hence Tfn(µ) = U |T |k|T |fn(µ) → 0

uniformly on every compact subset of G for ˜Tk,1 has property (β, so that
µfn(µ) → 0 uniformly on every compact subset of G, and T has property (β)
follows by Lemma 2.7. �

The quasinilpotent part of T − λ is defined as

H0(T − λ) =
{

x ∈ H : lim
n→∞

‖(T − λ)n‖1/n = 0
}

.

In general, ker(T − λ) ⊂ H0(T − λ) and H0(T − λ) is not closed. Let F ⊂ C

be closed set. Then the global spectral subspace is defined by

χT (F ) = {x ∈ H | ∃ analytic f(z) : (T − λ)f(z) = x onC \ F} .

Theorem 2.9. Let T ∈ A(k). Then H0(T − λ) = ker(T − λ) for λ ∈ C.

Proof. Let F ⊂ C be closed set. It is known that H0(T − λ) = χT ({λ}) by
Theorem 2.20 of [1]. As T has Bishop’s property by Theorem 2.8, χT (F ) is
closed and σ(T |χT (F )) ⊂ F by Proposition 1.2.19 of [19]. Hence H0(T − λ)
is closed and T |H0(T−λ) is class Ak by Theorem 2.3. If σ(T |H0(T−λ)) ⊂ {λ} ,
T |H0(T−λ) is normal by Theorem 2.4. If σ(T |H0(T−λ)) = ∅, then H0(T − λ) =
{0} and ker(T − λ) = {0} . If σ(T |H0(T−λ)) = {λ} , then T |H0(T−λ) = λ and
H0(T − λ) = ker(T − λ). �

Rashid [20] proved that quasi-class (A, k) has Bishop’s property, in the fol-
lowing we prove analogous result for m-quasi-class A(k) operators.
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Lemma 2.10. Let T ∈ Q(A(k),m). Then T has Bishop’s property (β).

Proof. Let fn(z) be analytic on G. Let (T − z)fn(z) −→ 0 uniformly on each
compact subset of G. Then, using the representation of Lemma 2.2 we have
(

T1 − z T2

0 T3 − z

)(

fn1(z)
fn2(z)

)

=

(

(T1 − z)fn1(z) + T2fn2(z)
(T3 − z)fn2(z)

)

−→ 0.

Since T3 is nilpotent, T3 has Bishop’s property (β). Hence fn2(z) −→ 0 uni-
formly on every compact subset of G. Then (T1−z)fn1(z) −→ 0. Since T1 is of
class A(k), T1 has Bishop’s property (β) by Theorem 2.8. Hence fn1(z) −→ 0
uniformly on every compact subset of G. Thus T has Bishop’s property (β). �

Lemma 2.11. Let T ∈ L (H ) be a class A(k). Let λ ∈ C. Assume that

σ(T ) = {λ}. Then T = λI.

Proof. We consider two cases:
Case (I) (λ = 0): Since T is a class A(k), T is normaloid. Therefore T = 0.
Case (II) (λ 6= 0): Here T is invertible, and since T is a class Ak, we see that

T−1 is also belongs class A(k). Therefore T−1 is normaloid. On the other hand,
σ(T−1) = { 1

λ
}, so ‖T ‖‖T−1‖ = |λ|| 1

λ
| = 1. It follows that T is convexoid, so

W (T ) = {λ}. Therefore T = λ. �

Lemma 2.12. Let T ∈ L (H ) be a Q(A(k),m) operator and σ(T ) = {λ} .
Then T = λ if λ 6= 0, and Tm+1 = 0 if λ = 0.

Proof. If the range of T is dense, then T is a class A(k). Hence T = λ by
Lemma 2.11. If the range of T is not dense, then

T =

(

T1 T2

0 T3

)

on H = ℜ(Tm)⊕ ker(T ∗m),

where T1 = T |
ℜ(Tm) is the restriction of T to ℜ(Tm), and T1 ∈ Q(A(k),m),

Tm
3 = 0 and σ(T ) = σ(T1)∪{0} by Lemma 2.2. Hence T1 = 0 by Lemma 2.11.

Thus

Tm+1 =

(

0 T2

0 T3

)m+1

=

(

0 T2T
m
3

0 Tm+1
3

)

= 0.
�

3. Riesz idempotent for an isolated point of the spectrum

Let T ∈ L (H ) and µ ∈ isoσ(T ). Then there exists a positive number
r > 0 such that {λ ∈ C : |λ− µ| ≤ r} ∩ σ(T ) = {µ} . Let γ be the boundary of
{λ ∈ C : |λ− µ| ≤ r} . Then P := 1

2πi

∫

γ
(λ−T )dλ is called the Riesz idempotent

of T for µ. Then it is well known that

P 2 = P, PT = TP, σ(T |
ℜ(P )) = {µ} and ℜ(P ) ⊇ ker(T − µ).

In general, it is well known that the Riesz idempotent P is not an orthogonal
projection and necessary and sufficient condition for P to be orthogonal is
that P is self-adjoint [6]. For a hyponormal operator T , Stampfli [24] have
shown that the Riesz idempotent for an isolated point of the spectrum of T
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is self-adjoint. Uchiyama and Tanahashi [27] proved this property for class A.
Recently, Jeon and Kim [12] showed that this property also holds for quasi-
class A. In this section we extend these result to class A(k) operators and
Q(A(k),m) operators.

Theorem 3.1. Let T ∈ L (H ) be a class A(k) operator and λ be a non-zero

isolated point of σ(T ). Then the Riesz idempotent satisfies that

ℜ(P ) = ker(T − λI) = ker(T − λI)∗.

In particular T is self-adjoint.

Proof. Since class Ak operators are isoloid by Lemma 2.5. Then λ is an isolated
point of σ(T ). Let γ be the boundary of a closed disc Dλ = {µ ∈ C : |µ− λ| ≤ r}
for which 0 /∈ Dµ such that γ ∩ σ(T ) = {λ}. Then the range of Riesz idem-
potent P = 1

2πi

∫

γ
(T − λI)−1 dλ is an invariant closed subspace of T and

σ(T |
ℜ(P )) = {λ}.

If λ = 0, then σ(T |
ℜ(P )) = {0} . Since T |

ℜ(P ) is class A(k) by Theorem 2.3,
T |

ℜ(P ) = 0 by Lemma 2.11. Therefore, 0 is an eigenvalue of T .
If λ 6= 0, then T |

ℜ(P ) is an invertible class A(k) operator and hence

(T |
ℜ(P ))

−1 is also class A(k). We see that
∥

∥T |
ℜ(P )

∥

∥ = |λ| and
∥

∥(T |
ℜ(P ))

−1
∥

∥ =
1
|λ|

. Let x ∈ ℜ(P ) be arbitrary vector. Then

‖x‖ ≤
∥

∥(T |
ℜ(P ))

−1
∥

∥

∥

∥T |
ℜ(P )x

∥

∥ =
1

|λ|

∥

∥T |
ℜ(P )x

∥

∥ ≤
1

|λ|
|λ| ‖x‖ = ‖x‖ .

This implies that 1
λ
T |

ℜ(P ) is unitary with its spectrum σ( 1
λ
T |

ℜ(P )) = {1} .
Hence T |

ℜ(P ) = λI and λ is an eigenvalue of T . Therefore, ℜ(P ) = ker(T−λI).
Since ker(T − λI) ⊂ ker(T − λI)∗ by Theorem 2.4, it suffices to show that
ker(T − λI)∗ ⊂ ker(T − λI). Since ker(T − λI) is a reducing subspace of T
by Theorem 2.4 and the restriction of a class A(k) to its reducing subspace
is also class A(k) operator, we see that T is of the form T = T ′ ⊕ λI on
H = ker(T − λI) ⊕ ker(T − λI)⊥, where T ′ is a class A(k) operator with
ker(T ′ − λI) = {0} . Since λ ∈ σ(T ) = σ(T ′) ∪ {λ} is isolated, the only two
cases occur. One is λ /∈ σ(T ′) and the other is that λ is an isolated point of
σ(T ′). The latter case, however, does not occur otherwise we have λ ∈ σp(T

′)
and this contradicts the fact that ker(T ′−λI) = {0} . ker(T−λI) = ker(T−λI)∗

is immediate from the injectivity of T ′ − λI as an operator on ker(T − λI)⊥.
Next, we show that P is self-adjoint. Since ℜ(P ) = ker(T − λI) = ker(T −

λI)∗, we have ((T − zI)∗)−1P = (z − λ)−1P. Hence

P ∗P = −
1

2iπ

∫

γ

((T − zI)∗)−1P dz̄

= −
1

2iπ

∫

γ

(z − λ)−1P dz̄

=

(

1

2iπ

∫

γ

1

z − λ
dz̄

)

P
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= PP ∗.

Therefore, the proof is achieved. �

Example 3.2. There exists a class A(k) operator T such that 0 is an isolated
point of σ(T ), ker(T ) 6= ker(T ∗) and the Riesz idempotent P with respect

to 0 is not self-adjoint. To see this, let 0 < α < 1 and A = α
(

1
2

1
2

1
2

1
2

)

in

Example 1.2. Then T ∈ A(k) with k ≥ − log 2
2 logα

and 0 is an isolated point of

σ(T ). Also ker(T ) 6= ker(T ∗) and the Riesz idempotent P with respect to 0 is
not self-adjoint.

Theorem 3.3. Let T ∈ Q(A(k),m). Then

H0(T − λ) =

{

ker(T − λ), if λ 6= 0;
ker(Tm+1), if λ = 0.

Moreover, if 0 6= λ, then H0(T − λ) = ker(T − λ) ⊂ ker(T − λ)∗.

Proof. Since T has Bishop’s property (β) by Lemma 2.10 and H0(T − λ) =
χT ({λ}) by Theorem 2.20 of [1], H0(T − λ) is closed and σ(T |H0(T−λ)) ⊂ {λ}
by Proposition 1.2.19 of [19]. Let S = T |H0(T−λ). Then S is a Q(A(k),m)
operator by Theorem 2.3. Hence, we divide into the cases:

Case I. If σ(S) = σ(T |H0(T−λ)) = ∅, then H0(T − λ) = {0} , and so ker(T −
λ) = {0} .

Case II. If σ(S) = {λ} and λ 6= 0, then S = λ by Lemma 2.12, and H0(T −
λ) = ker(S − λ) ⊂ ker(T − λ).

Case III. If σ(S) = {0} , then Sm+1 = 0 by Lemma 2.12, and H0(T ) =
ker(Sm+1) ⊂ ker(Tm+1).

Moreover, let λ 6= 0. In this case, S = λ. Hence S is normal and invertible,
so H0(T − λ) reduces T by Theorem 2.4. Thus H0(T − λ) = ker(T − λ) ⊂
(T − λ)∗. �

Theorem 3.4. Let T ∈ Q(A(k),m). If 0 6= λ ∈ isoσ(T ) and P is the Riesz

idempotent for λ, then P is self-adjoint and

ℜ(P ) = ker(T − λ) = ker(T − λ)∗.

Moreover, if λ = 0, then ℜ(P ) = H0(T ) = ker(Tm+1).

Proof. If T has a dense range, then T is a class A(k) operator, so the result

follows from Theorem 3.1. Therefore we may assume that ℜ(Tm) 6= H . Let

T =
(

T1 T2

0 T3

)

on H = ℜ(Tm)⊕ker(T ∗m), where T1 is a class A(k), Tm
3 = 0 and

σ(T ) = σ(T1) ∪ {0}. If 0 6= λ ∈ isoσ(T ), then λ ∈ isoσ(T1) because σ(T ) =
σ(T1)∪{0} . Let γ be the boundary of a closed disc Dλ = {µ ∈ C : |µ− λ| ≤ r}
for which 0 /∈ Dµ such that γ ∩ σ(T ) = {λ}. Then

P =
1

2πi

∫

γ

(

µ− T1 −T2

0 µ− T3

)

−1

dµ
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=
1

2πi

∫

γ

(

(µ− T1)
−1 (µ− T1)

−1T2(µ− T3)
−1

0 (µ− T3)
−1

)

dµ.

Let P1 = 1
2πi

∫

γ
(µ− T1)

−1dµ be the Riesz idempotent of T1 for µ. Since T1 is

a class A(k), it follows from Theorem 3.1 that P1 is self-adjoint and

ℜ(P1) = ker(T1 − λ) = ker(T1 − λ)∗.

We prove that

X =
1

2πi

∫

γ

(µ− T1)
−1T2(µ− T3)

−1dµ = 0.

Since

(µ− T3)
−1 =

1

µ
+

T3

µ2
+

T 2
3

µ3
+ · · ·+

Tm−1
3

µm
,

we see that

X =
1

2πi

∫

γ

(µ− T1)
−1T2

1

µ
dµ+

1

2πi

∫

γ

(µ− T1)
−1T2

T3

µ2
+ · · ·

= X0 +X1 + · · ·+Xm−1.

Since 1
µ
=

∑

∞

n=0
(−1)n

λ

(

µ−λ
λ

)n

, we have

X =
1

2πi

∫

γ

(µ− T1)
−1T2

1

µ
dµ+

1

2πi

∫

γ

(µ− T1)
−1T2

µ− λ

µ2
+ · · ·

=
1

λ
P1T2 −

1

λ2
(T1 − λ)P1T2 +

1

λ3
(T1 − λ)2P1T2 − · · · .

We prove that
P1T2 = 0.

Let y = P1x for x ∈ ℜ(T ). Then y ∈ ker(T1 − λ) = ker(T1 − λ)∗. Therefore,
from Theorem 2.4 we have

(

0
0

)

= (T − λ)

(

y

0

)

= (T − λ)∗
(

y

0

)

=

(

(T1 − λ)∗y
−T ∗

2 y

)

.

Thus T ∗

2 y = T ∗

2P1x = 0 for x ∈ ℜ(T ). This implies that P1T2 = 0 be-
cause P1 is self-adjoint. Hence X0 = 0. On the other hand, since 1

µ2 =

1
λ2 − 2(µ−λ)

λ3 + 3(µ−λ)2

λ4 − · · ·, we have

X1 =
1

2πi

∫

γ

(µ− T1)
−1T2

T3

µ2
dµ

=
1

λ2
P1T2T3 −

2

λ3
(T1 − λ)P1T2T3 +

3

λ4
P1T2T3 − · · ·

= 0.

Similarly we have X2 = X3 = · · · = Xm−1 = 0, and X = 0. Hence

(3.1) P =

(

P1 0
0 0

)
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is self-adjoint as well as P1. Now we claim that ℜ(P ) = ker(T − λ). We see
from Equation (3.1) that

ℜ(P ) = ℜ(P1)⊕ {0} = ker(T1 − λ)⊕ {0} = ker(T1 − λ)∗ ⊕ {0} .

So, if x ∈ ℜ(P ), then x = ( x1

0 ) , where x1 ∈ ker(T1 − λ). Therefore,

(T − λ)x =

(

T1 − λ −T2

0 T3 − λ

)(

x1

0

)

=

(

0
0

)

.

Thus ℜ(P ) ⊂ ker(T − λ). Hence, since ℜ(P ) ⊇ ker(T − λ), we have that
ℜ(P ) = ker(T − λ).

To end the proof, we must show that ker(T − λ)∗ ⊂ ker(T − λ). Let x =
( x1
x2

) ∈ ker(T − λ)∗. Then

(T − λ)∗
(

x1

x2

)

=

(

(T1 − λ)∗ 0
T ∗

2 (T3 − λ)3

)(

x1

x2

)

=

(

(T1 − λ)∗x1

T ∗

2 x1 + (T3 − λ)∗x2

)

=

(

0
0

)

.

Therefore, x1 ∈ ker(T1 − λ)∗ = ker(T1 − λ). Then (T − λ) ( x1

0 ) = ( 00 ) implies

that (T − λ)∗ ( x1

0 ) =
(

(T1−λ)∗x1

T∗

2 x1

)

= ( 0
0 ) .

Thus we have that T ∗

2 x1 = 0. This implies that (T3 − λ)∗x2 = 0 and x2 = 0
because T3 is nilpotent. Therefore,

x =

(

x1

0

)

∈ ker(T1 − λ)⊕ {0} = ℜ(P ) = ker(T − λ).

The proof of the case λ = 0 is straightforward from Theorem 3.3. So, the proof
is achieved. �

4. Tensor product

Let H and K denote the Hilbert spaces. For given non-zero operators
T ∈ L (H ) and S ∈ L (K ), T ⊗S denotes the tensor product on the product
space H ⊗K . The normaloid property is invariant under tensor products [23].
T ⊗ S is normal if and only if T and S are normal [14, 25]. There exist
paranormal operators T and S such that T ⊗ S is not paranormal [3]. In [15],
I. H. Kim showed that for non-zero T ∈ L (H ) and S ∈ L (K ), T ⊗ S is
log-hyponormal if and only if T and S are log-hyponormal. This result was
extended to p-quasi hyponormal operators, class A operators, quasi class A

and quasi class (A, k) operators in [15], [11], [12] and [16], respectively. In this
section, we prove an analogous result for Q(A(k),m) operators.

Remark 4.1. Let T ∈ LB and S ∈ L (K ) be non-zero operators, then we
have

(i) (T ⊗ S)∗(T ⊗ S) = T ∗T ⊗ S∗S,
(ii) |T ⊗ S|t = |T |t ⊗ |S|t for any positive real t.
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Lemma 4.2 ([25]). Let T1, T2 ∈ L (H ), S1, S2 ∈ L (K ) be non-negative op-

erators. If T1 and S1 are non-zero, then the following assertions are equivalent:

(a) T1 ⊗ S1 ≤ T2 ⊗ S2;
(b) there exists c > 0 such that T1 ≤ cT2 and S1 ≤ c−1S2.

Lemma 4.3 (Hölder-McCarthy Inequality). Let T ≥ 0. Then the following

assertions hold.

(i) 〈T rx, x〉 ≥ 〈Tx, x〉
r
‖x‖

2(1−r)
for r > 1 and x ∈ H .

(ii) 〈T rx, x〉 ≤ 〈Tx, x〉r ‖x‖2(1−r)
for r ∈ [0, 1] and x ∈ H .

Theorem 4.4. Suppose that T ∈ L (H ) and S ∈ L (K ) are non-zero opera-

tors. Then T ⊗ S is a class A(k) operator if and only T and S are class A(k)
operators.

Proof. Assume that T and S are class A(k) operators. Then
(

(T ⊗ S)∗|T ⊗ S|2k(T ⊗ S)
)1/(k+1)

=
(

(T ∗ ⊗ S∗)(|T |2k ⊗ |S|2k)(T ⊗ S)
)1/(k+1)

=
(

(T ∗|T |2kT )⊗ (S∗|S|2kS)
)1/(k+1)

= (T ∗|T |2kT )1/(k+1) ⊗ (S∗|S|2kS)1/(k+1)

≥ |T |2 ⊗ |S|2 = |T ⊗ S|2

which implies that T ⊗ S is a class A(k) operator.
Conversely, assume that T ⊗ S is a class A(k). We aim to show that T and

S are class A(k) operators. Without loss of generality, it is enough to show
that T is a class A(k) operator. Since T ⊗S is a class A(k) operator, we obtain

(T ∗|T |2kT )1/(k+1) ⊗ (S∗|S|2kS)1/(k+1) ≥ |T |2 ⊗ |S|2.

Hence by Lemma 4.2, there exists a positive real number c for which

|T |2 ≤ c(T ∗|T |2kT )1/(k+1) and |S|2 ≤ c−1(S∗|S|2kS)1/(k+1).

Consequently, for every x ∈ H and y ∈ K and by Hölder McCarthy Inequality,
we have

‖T ‖
2
= sup

‖x‖=1

〈

|T |2x, x
〉

≤ sup
‖x‖=1

〈

c(T ∗|T |2kT )1/(k+1)x, x
〉

≤ c sup
‖x‖=1

〈

T ∗|T |2kTx, x
〉1/(k+1)

≤ c sup
‖x‖=1

∥

∥|T |kTx
∥

∥

2/(k+1)

= c
∥

∥|T |kT
∥

∥

2/(k+1)
= c

∥

∥T k+1
∥

∥

2/(k+1)
≤ c ‖T ‖

2
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and

‖S‖
2
= sup

‖y‖=1

〈

|S|2y, y
〉

≤ sup
‖y‖=1

〈

c−1(S∗|S|2kS)1/(k+1)y, y
〉

≤ c−1 sup
‖y‖=1

〈

S∗|S|2kSy, y
〉1/(k+1)

≤ c−1 sup
‖y‖=1

∥

∥|S|kSy
∥

∥

2/(k+1)

= c−1
∥

∥|S|kS
∥

∥

2/(k+1)

= c−1
∥

∥Sk+1
∥

∥

2/(k+1)

≤ c−1 ‖S‖
2
.

Thus, c = 1, and so T is a class A(k) operator. �

Theorem 4.5. Let T, S ∈ L (H ) be non-zero operators. Then T ⊗ S ∈
Q(A(k),m) if and only if one of the following holds:

(i) T ∈ Q(A(k),m) and S ∈ Q(A(k),m).
(ii) Tm+1 = 0 or Sm+1 = 0.

Proof. By simple calculation we have T ⊗ S ∈ Q(A(k),m) if and only if

(T ⊗ S)∗m
(

(

(T ⊗ S)∗|T ⊗ S|2k(T ⊗ S)
)1/(k+1)

− |T ⊗ S|2
)

(T ⊗ S)m ≥ 0

⇔ T ∗m((T ∗|T |2kT )1/(k+1) − |T |2)Tm ⊗ S∗m(S∗|S|2kS)1/(k+1)Sm

+ T ∗m|T |2Tm ⊗ S∗m((S∗|S|2kS)1/(k+1) − |S|2)Sm ≥ 0.

Thus the sufficiency is easily proved. Conversely, suppose that T ⊗ S ∈
Q(A(k),m). Then for x ∈ H and y ∈ K we have

〈

T ∗m((T ∗|T |2kT )1/(k+1) − |T |2)Tmx, x
〉〈

S∗m(S∗|S|2kS)1/(k+1)Smy, y
〉

(4.1)

+
〈

T ∗m|T |2Tmx, x
〉

〈

S∗m((S∗|S|2kS)1/(k+1) − |S|2)Smy, y
〉

≥ 0.

It suffices to show that if the statement (ii) does not hold, the statement (i)
holds. Thus, assume to the contrary that neither of Tm+1 and Sm+1 is the zero
operator, and T is not in Q(A(k),m). Then there exists x0 ∈ H such that

〈

T ∗m((T ∗|T |2kT )1/(k+1) − |T |2)Tmx0, x0

〉

:= α < 0 and
〈

Tm∗|T |2Tmx0, x0

〉

:= β > 0.

From (4.1) we have

(4.2) (α+ β)
〈

S∗m(S∗|S|2kS)1/(k+1)Smy, y
〉

≥ β
〈

S∗m|S|2Smy, y
〉

.
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Thus S ∈ Q(A(k),m). By Hölder McCarthy Inequality, we have
〈

S∗m(S∗|S|2kS)1/(k+1)Smy, y
〉

=
〈

(S∗|S|2kS)1/(k+1)Smy, Smy
〉

≤
〈

|S|2kSm+1y, Sm+1y
〉1/(k+1)

‖Smy‖
2k/(k+1)

≤ ‖Smy‖
2k/(k+1) ∥

∥|S|kSm+1y
∥

∥

1/(k+1)

= ‖Smy‖
2k

k+1

∥

∥Sk+m+1y
∥

∥

2/(k+1)

and
〈

S∗m|S|2Smy, y
〉

=
〈

Sm+1y, Sm+1y
〉

=
∥

∥Sm+1y
∥

∥

2
.

Therefore, we have

(4.3) (α+ β) ‖Smy‖
2k

k+1

∥

∥Sk+m+1y
∥

∥

2/(k+1)
≥ β

∥

∥Sm+1y
∥

∥

2
.

On the other hand, since S ∈ Q(A(k),m), from Lemma 2.2 we have a decom-
position of S as the following:

S =

(

S1 S2

0 S3

)

on H = ℜ(Sm)⊕ ker(Sm∗),

where S1 is a class A(k) operator on ℜ(Sm) and S3 is a nilpotent with nilpo-
tency m. By (4.3) we have
(4.4)

(α+ β) ‖Sm
1 ξ‖

2k
k+1

∥

∥Sk+m+1
1 ξ

∥

∥

2/(k+1)
≥ β

∥

∥Sm+1
1 ξ

∥

∥

2
for all ξ ∈ ℜ(Sm).

Since S1 is a class A(k), S1 is normaloid, and taking supremum on both sides
of the inequality (4.4), we have

(α+ β) ‖S1‖
2(m+1)

≥ β ‖S1‖
2(m+1)

.

This inequality forces that S1 = 0. Hence Sm+1x = 0 because Sm+1 = S1S
m

for all y ∈ K . This is a contradiction to that Sm+1 is not a zero operator.
Hence T must be in Q(A(k),m) operators. In a similar manner, we can prove
that S is also a quasi-class Q(A(k),m) operator. Therefore, the proof of the
theorem is finished. �
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