Commun. Korean Math. Soc. **32** (2017), No. 3, pp. 661–676 https://doi.org/10.4134/CKMS.c160191 pISSN: 1225-1763 / eISSN: 2234-3024

ON OPERATORS SATISFYING $T^{*m}(T^*|T|^{2k}T)^{1/(k+1)}T^m \ge T^{*m}|T|^2T^m$

Mohammad H. M. Rashid

ABSTRACT. Let T be a bounded linear operator acting on a complex Hilbert space \mathscr{H} . In this paper we introduce the class, denoted $\mathcal{Q}(A(k), m)$, of operators satisfying $T^{m*}(T^*|T|^{2k}T)^{1/(k+1)}T^m \geq T^{*m}|T|^2T^m$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point λ of the spectrum of $T \in \mathcal{Q}(A(k), m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T \otimes S$ to be in $\mathcal{Q}(A(k), m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_0(T - \lambda)$ of class A(k) operator.

1. Introduction

Let \mathscr{H} be a complex Hilbert space and let $\mathscr{L}(\mathscr{H})$ be the algebra of all bounded linear operators acting on \mathscr{H} . An operator $T \in \mathscr{L}(\mathscr{H})$ has a unique polar decomposition T = U|T|, where $|T| = (T^*T)^{1/2}$ and U is partial isometry satisfying $\ker(U) = \ker(T) = \ker(|T|)$ and $\ker(U) = \ker(T^*)$.

An operator T is said to be positive (denoted by $T \ge 0$) if $\langle Tx, x \rangle \ge 0$ for all $x \in \mathscr{H}$ and also T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. An operator T is called p-hyponormal if $|T|^{2p} \ge |T^*|^{2p}$ for every 0 and log-hyponormal if <math>T is invertible and $\log(T^*T) \ge \log(TT^*)$, T is called paranormal if $||T^2x|| \ge ||Tx||^2$ for every unit vector $x \in \mathscr{H}$, and T is called normaloid if ||T|| = r(T), the spectral radius of T. Following [9, 10], we say that $T \in \mathscr{L}(\mathscr{H})$ belongs to class A if $|T^2| \ge |T|^2$ and class A(k) for k > 0 (abbreviation $T \in \mathcal{A}(k)$) if $(T^*|T|^{2k}T)^{1/(k+1)} \ge |T|^2$, we note that T is class A if and only if T is class A(1). According to [2], an operator $T \in \mathscr{L}(\mathscr{H})$ is said to be w-hyponormal if $|\widetilde{T}| \ge |T| \ge |\widetilde{T}^*|$, where \widetilde{T} is the Aluthge transformation $\widetilde{T} = |T|^{1/2}U|T|^{1/2}$. As a generalization of w-hyponormal and class A(k), Ito [10] introduced class wA(s,t) as follows. An operator T is called class wA(s,t) for s > 0 and t > 0 if $|\widetilde{T}_{s,t}|^{2t/(s+t)} > |T|^{2t}$

©2017 Korean Mathematical Society

Received September 17, 2016; Accepted December 9, 2016.

²⁰¹⁰ Mathematics Subject Classification. 47A55, 47A10, 47A11.

Key words and phrases. Riesz idempotent, tensor product, class A(k), m-quasi-class A(k).

and $|T|^{2s} \ge |\widetilde{T_{s,t}^*}|^{2s/(s+t)}$, where $\widetilde{T_{s,t}}$ is generalized Aluthge transformation, i.e., $\widetilde{T_{s,t}} = |T|^s U|T|^t$. An operator $T \in \mathscr{L}(\mathscr{H})$ is called k-paranormal for positive integer k, if $||T^{k+1}x|| \ge ||Tx||^{k+1}$ for every unit vector $x \in \mathscr{H}$.

Definition 1.1. We say that an operator $T \in \mathscr{L}(\mathscr{H})$ is of *m*-quasi class A_k (abbreviate $\mathcal{Q}(A(k), m)$), if

$$T^{*m}(T^*|T|^{2k}T)^{1/(k+1)}T^m \ge T^{m*}|T|^2T^m,$$

where m is a positive integers and k > 0. If m = 1, then T is called a quasi-class A(k) and k = m = 1, then $\mathcal{Q}(A(k), m)$ coincides with quasi-class A operator.

Example 1.2. Let $\mathscr{H} = \bigoplus_{n=0}^{\infty} \mathbb{C}^2$ and define an operator T on \mathscr{H} by

 $T(\dots \oplus x_{-2} \oplus x_{-1} \oplus x_0^{(0)} \oplus x_1 \oplus \dots) = \dots \oplus Ax_{-2} \oplus Ax_{-1} \oplus Bx_0 \oplus Bx_1 \oplus \dots,$ where $A = \frac{1}{4} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then *T* is of *m*-quasi-class *A*(*k*) for each $k \ge \frac{1}{4}$. In fact, for each $k \ge \frac{1}{4}$,

$$\left\langle T^{*m} \left((T^* |T|^{2k} T)^{1/(k+1)} - |T|^2 \right) T^m x, x \right\rangle$$

$$= \left\langle A^m \left((ABA)^{1/(k+1)} - A^2 \right) A^m x_{-1}, x_{-1} \right\rangle$$

$$= \left(\frac{1}{16} \right)^m \left\{ \left(\frac{1}{32} \right)^{1/(k+1)} - \left(\frac{1}{16} \right) \right\} \left\| \left(\frac{\frac{1}{2}}{\frac{1}{2}} - \frac{1}{2} \right) x_{-1} \right\|^2 \ge 0$$

for each $x \in \mathscr{H}$.

Let $0 < \alpha < 1$ and $A = \alpha \left(\frac{\frac{1}{2}}{\frac{1}{2}}\frac{1}{2}\right)$. Then $T \in \mathcal{Q}(A(k), m)$ with $k \ge \frac{-\log 2}{2\log \alpha}$. Since $\frac{-\log 2}{2\log \alpha} \to 0$ as $\alpha \to 0$ for any k > 0. Then $T \in \mathcal{Q}(A(k), m)$ for each k > 0 and m is a positive integer.

Since $T \ge 0$ implies $R^*TR \ge 0$, we have:

Proposition 1.3. Let $T \in \mathscr{L}(\mathscr{H})$. If $T \in \mathcal{A}(k)$, then $T \in \mathcal{Q}(A(k), m)$.

Throughout this paper, we shall denote the spectrum, the point spectrum and the isolated points of the spectrum of $T \in \mathscr{L}(\mathscr{H})$ by $\sigma(T), \sigma_p(T)$ and $iso\sigma(T)$, respectively. The range and the kernel of $T \in \mathscr{L}(\mathscr{H})$ will be denoted by $\Re(T)$ and ker(T), respectively. We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by \mathbb{C} and $\overline{\lambda}$, respectively. The closure of a set S will be denoted by \overline{S} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$.

In Section 2, we prove basic properties of $\mathcal{Q}(A(k), m)$ operators and using these properties, in Section 3, we prove that if P is the Riesz idempotent for a non-zero isolated point λ of the spectrum of $T \in \mathcal{Q}(A(k), m)$, then Pis self-adjoint and $\Re(P) = \ker(T - \lambda) = \ker(T - \lambda)^*$ and if $\lambda = 0$, then $\Re(P) = H_0(T) = \ker(T^{m+1})$. This is a complete extension of results proved for

quasi-class A operators and quasi-class (A, m) operators in [12, 26], respectively. In Section 4, we give a necessary and sufficient condition for $T \otimes S$ to be in $\mathcal{Q}(A(k), m)$ when T and S are both non-zero operators. This gives an analogous result proved for quasi-class A operators and quasi-class (A, m) operators in [12, 26], respectively.

2. Properties of $\mathcal{Q}(A(k), m)$ operators

To prove these properties we need the following lemma.

Lemma 2.1 ([13]). If $A, B \in \mathscr{L}(\mathscr{H})$ satisfying $A \ge 0$ and $||B|| \le 1$, then $(B^*AB)^{\alpha} \ge B^*A^{\alpha}B$ for all $\alpha \in (0, 1]$.

Lemma 2.2. Let $T \in \mathcal{Q}(A(k), m)$ and T not have a dense range. Then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \quad on \quad \mathscr{H} = \overline{\Re(T^m)} \oplus \ker(T^{*m}),$$

where $T_1 = T|_{\overline{\Re(T^m)}}$ is the restriction of T to $\overline{\Re(T^m)}$, and $T_1 \in \mathcal{A}(k)$ and T_3 is nilpotent of nilpotency m. Moreover, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Consider the matrix representation of T with respect to the decomposition $\mathscr{H} = \overline{\Re(T^m)} \oplus \ker(T^{*m});$

$$T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & T_3 \end{array}\right)$$

Let P be the orthogonal projection onto $\overline{\Re(T^m)}$. Then $\begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP$. Since $T \in \mathcal{Q}(A(k), m)$, we have

$$P\left((T^*|T|^{2k}T)^{1/(k+1)} - |T|^2\right)P \ge 0.$$

Then by Lemma 2.1

$$\begin{split} P(T^*|T|^{2k}T)^{1/(k+1)}P &= P(T^*|T|^{2k}T)^{1/(k+1)}P \\ &\leq \left(PT^*|T|^{2k}TP\right)^{\frac{1}{k+1}} \leq \left(PT^*(PT^*TP)^kTP\right)^{\frac{1}{k+1}} \\ &= \left(\begin{array}{cc} (T_1^*|T_1|^{2k}T_1)^{1/(k+1)} & 0 \\ 0 & 0 \end{array}\right) \end{split}$$

and

$$P|T|^2 P = PT^*TP = \begin{pmatrix} |T_1|^2 & 0\\ 0 & 0 \end{pmatrix}.$$

Hence

$$\begin{pmatrix} (T_1^*|T_1|^{2k}T_1)^{1/(k+1)} & 0\\ 0 & 0 \end{pmatrix} \ge P(T^*|T|^{2k}T)^{1/(k+1)}P \ge P|T|^2P$$
$$= \begin{pmatrix} |T_1|^2 & 0\\ 0 & 0 \end{pmatrix},$$

i.e., $T_1 \in \mathcal{A}(k)$. On the other hand, if $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathscr{H}$,

$$\langle T_3u_2, u_2 \rangle = \langle T(I-P)u, (I-P)u \rangle = \langle (I-P)u, T^*(I-P)u \rangle = 0,$$

which implies that $T_3 = 0$. It is well known that $\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup C$, where C is the union of certain of the holes in $\sigma(T)$ which happen to be subset of $\sigma(T_1) \cap \sigma(T_3)$ and $\sigma(T_1) \cap \sigma(T_3)$ has no interior points. Therefore, we have

$$\sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\}.$$

Theorem 2.3. Let $T \in \mathscr{L}(\mathscr{H})$ be a \mathcal{QA}_k operator and \mathscr{M} be its invariant subspace. Then the restriction $T|_{\mathscr{M}}$ of T to \mathscr{M} is also $\mathcal{Q}(A(k), m)$ operator.

Proof. Let Q be the orthogonal projection onto \mathcal{M} . Put $T_1 = T|_{\mathcal{M}}$. Then TQ = QTQ and $T_1 = (QTQ)|_{\mathcal{M}}$. Since T is a $\mathcal{Q}(A(k), m)$ operator, we have

$$QT^* \left(T^* |T|^{2k} T \right)^{1/(k+1)} TQ \ge QT^* |T|^2 TQ.$$

Since

$$\begin{aligned} QT^* \left(T^* |T|^{2k} T\right)^{1/(k+1)} TQ &= QT^* Q \left(T^* |T|^{2k} T\right)^{1/(k+1)} QTQ \\ &\leq QT^* Q \left(QT^* (T^*T)^k TQ\right)^{\frac{1}{1+k}} QTQ \\ &\leq QT^* Q \left(QT^* (QT^*TQ)^k TQ\right)^{\frac{1}{1+k}} QTQ \\ &= \begin{pmatrix} (T_1^* |T_1|^{2k} T_1)^{1/(k+1)} & 0 \\ 0 & 0 \end{pmatrix} \end{aligned}$$

and

$$QT^*|T|^2TQ = QT^*QT^*TQTQ = \begin{pmatrix} T_1^*|T_1|^2T_1 & 0\\ 0 & 0 \end{pmatrix},$$

we have

$$\begin{pmatrix} (T_1^*|T_1|^{2k}T_1)^{1/(k+1)} & 0\\ 0 & 0 \end{pmatrix} \ge QT^* \left(T^*|T|^{2k}T\right)^{1/(k+1)} T \\ \ge QT^*(|T|^2)TQ = \begin{pmatrix} T_1^*|T_1|^2T_1 & 0\\ 0 & 0 \end{pmatrix}.$$

This implies that $T_1 \in \mathcal{Q}(A(k), m)$.

Theorem 2.4. Let $T \in \mathcal{Q}(A(k), m)$. Then the following assertions holds:

(a) If \mathscr{M} is an invariant subspace of T and $T|_{\mathscr{M}}$ is an injective normal operator, then \mathscr{M} reduces T.

(b) If $(T - \lambda)x = 0$ and $\lambda \neq 0$, then $(T - \lambda)^* = 0$.

Proof. (a) Decompose T into

$$T = \begin{pmatrix} S & A \\ 0 & B \end{pmatrix} \quad \text{on} \quad \mathscr{H} = \mathscr{M} \oplus \mathscr{M}^{\perp}$$

and let $S = T|_{\mathscr{M}}$ be an injective normal operator. Let Q be the orthogonal projection of \mathscr{H} onto \mathscr{M} . Since $T^m = \begin{pmatrix} S_0^m & * \\ 0 & B^m \end{pmatrix}$ and $\ker(S) = \ker(S^*) = \{0\}$, we have

$$\mathscr{M} = \overline{\Re(S)} = \overline{\Re(S^m)} \subset \overline{\Re(T^m)}.$$

Then

$$\begin{pmatrix} |S|^2 & 0\\ 0 & 0 \end{pmatrix} = Q|T|^2 Q \le Q(T^*|T|^{2k}T)^{1/(k+1)}Q$$

$$\le (QT^*|T|^{2k}T)Q)^{1/(k+1)}$$

$$\le (QT^*(QT^*TQ)^kT)Q)^{1/(k+1)} = \begin{pmatrix} |S^{k+1}|^{2/(k+1)} & 0\\ 0 & 0 \end{pmatrix}$$

by Lemma 2.1. Therefore,

$$Q(T^*|T|^{2k}T)^{1/(k+1)}Q = \begin{pmatrix} |S|^2 & 0\\ 0 & 0 \end{pmatrix} = Q|T|^2Q.$$

Since S is normal, we can write $(T^*|T|^{2k}T)^{1/(k+1)} = \begin{pmatrix} |S|^2 & C \\ C^* & D \end{pmatrix}$. Since

$$\begin{pmatrix} |S|^{2(k+1)} & 0\\ 0 & 0 \end{pmatrix} = Q(T^*|T|^{2k}T)Q = Q((T^*|T|^{2k}T)^{k+1})^{1/(k+1)}Q,$$

we can easily show that C = 0. Therefore,

$$(T^*|T|^{2k}T)^{1/(k+1)} = \begin{pmatrix} |S|^2 & 0\\ 0 & D \end{pmatrix}$$

and hence

$$T^*|T|^{2k}T = \begin{pmatrix} |S|^{2(k+1)} & 0\\ 0 & D^{k+1} \end{pmatrix} = T^*(T^*T)^kT.$$

This implies that $D = (B^*|B|^{2k}B)^{1/(k+1)}$. Therefore,

$$0 \le T^{*m} ((T^*(T^*T)^k T)^{1/(k+1)} - |T|^2) T^m$$

= $\begin{pmatrix} 0 & Y \\ Y^* & B^{*m} ((B^*|B|^{2k}B)^{1/(k+1)} - |B|^2) B^m \end{pmatrix}$

Hence A = 0 and B is a $\mathcal{Q}(A(k), m)$ operator.

(b) Let $\mathscr{M} = span \{x\}$. Then $T|_{\mathscr{M}} = \lambda \neq 0$ and $T|_{\mathscr{M}}$ is an injective normal operator. Hence \mathscr{M} reduces T and $T = \begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}$ on $\mathscr{H} = \mathscr{M} \oplus \mathscr{M}^{\perp}$. Then $(T - \lambda)^* = 0$.

An operator $T \in \mathscr{L}(\mathscr{H})$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. In [21], Rashid proved every class wF(p, r, q) operators are isoloid, we extend this result to *m*-quasi-class A(k) operators.

Lemma 2.5. Let $T \in \mathcal{Q}(A(k), m)$. Then T is an isoloid.

Proof. Let $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\mathscr{H} = \overline{\Re(T^m)} \oplus \ker(T^{*m})$, and assume that $\mu \in iso\sigma(T)$. Then $\mu \in iso\sigma(T_1)$ or $\mu = 0$ by Lemma 2.2. If $\mu \in iso\sigma(T_1)$, then $\mu \in \sigma_p(T_1)$ because $T_1 \in \mathcal{A}(k)$ and a class A(k) is an isoloid by Theorem 2.10 of [22]. Thus we may assume that $\mu = 0$ and $\mu \notin \sigma(T_1)$, so dim $\ker(T_3) > 0$. Therefore, if $x \in \ker(T_3)$, then $-T_1^{-1}T_2x \oplus x\ker(T)$. Hence μ is an eigenvalue of T.

Let $Hol(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [7] we say that $T \in \mathscr{L}(\mathscr{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ , the only analytic function $f: U_{\lambda} \longrightarrow \mathscr{H}$ which satisfies the equation $(T - \mu)f(\mu) = 0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathscr{L}(\mathscr{H})$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity Theorem for analytic function it easily follows that $T \in \mathscr{L}(\mathscr{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [18, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Definition 2.6 ([4]). An operator T is said to have Bishop's property (β) at $\lambda \in \mathbb{C}$ if for every open neighborhood G of λ , the function $f_n \in Hol(G)$ with $(T - \lambda)f_n(\mu) \to 0$ uniformly on every compact subset of G implies that $f_n(\mu) \to 0$ uniformly on every compact subset of G, where Hol(G) means the space of all analytic functions on G. When T has Bishop's property (β) at each $\lambda \in \mathbb{C}$, simply say that T has property (β) .

Lemma 2.7 ([17]). Let G be open subset of complex plane \mathbb{C} and let $f_n \in Hol(G)$ be functions such that $\mu f_n(\mu) \to 0$ uniformly on every compact subset of G, then $f_n(\mu) \to 0$ uniformly on every compact subset of G.

Following [8], we say that an operator $T\in \mathscr{L}(\mathscr{H})$ belongs to class A(s,t) for every s>0 and t>0 if

$$(|T^*|^t |T|^{2s} |T^*|^s)^{t/(t+s)} \ge |T^*|^{2t}.$$

It is easy to see that $T \in A(k)$ if and only $T \in A(k, 1)$ because if T is a class A(k), then

$$(T^*|T|^{2k}T)^{1/(k+1)} = (U^*|T^*||T|^{2k}|T^*|U)^{1/(k+1)}$$

= $U^*(|T^*||T|^{2k}|T^*|)^{1/(k+1)}U \ge |T|^2$ and
 $|T^*||T|^{2k}|T^*|)^{1/(k+1)} \ge U|T|^2U^* = |T^*|^2.$

Hence, $T \in A(k, 1)$. If $T \in A(k, 1)$, then

$$\begin{split} |T^*|^2 &\leq (|T^*||T|^{2k}|T^*|)^{1/(k+1)} \\ &\leq (UT^*|T|^{2k}TU^*)^{1/(k+1)} = U(T^*|T|^{2k}T)^{1/(k+1)}U^* \text{ and} \\ (T^*|T|^{2k}T)^{1/(k+1)} &\geq U^*|T^*|^2U = |T|^2. \end{split}$$

So, $T \in A(k)$.

The relations between T and its transformation $\tilde{T}_{s,t}$ are

- (2.1) $\widetilde{T}_{s,t}|T|^s = |T|^s U|T|^t |T|^s = |T|^s T,$
- and

(2.2)
$$U|T|^{t}\widetilde{T}_{s,t} = U|T|^{t}|T|^{s}U|T|^{t} = TU|T|^{t}$$

for each s > 0 and t > 0.

Theorem 2.8. Let T belong the class A(k) for k > 0. Then T has the property (β) .

Proof. Since $\widetilde{T}_{k,1}$ is $\frac{\min(k,1)}{k+1}$ -hyponormal ([10]) it is suffices to show that T has property (β) if and only if $\widetilde{T}_{k,1}$ has property (β).

Let G be an open neighborhood of λ and let $f_n \in Hol(\sigma(T))$ be functions such that $(\mu - \tilde{T}_{k,1})f_n(\mu) \to 0$ uniformly on every compact subset of G. By Equations 2.2, $(\mu - T)(U|T|^k f_n(\mu)) = U|T|^k (\mu - \tilde{T}_{k,1})f_n(\mu) \to 0$ uniformly on every compact subset of G. Hence $\tilde{T}_{k,1}f_n(\mu) \to 0$ uniformly on every compact subset of G, and $\tilde{T}_{k,1}$ having property β follows by Lemma 2.7.

Suppose that $\overline{T}_{k,1}$ has property (β). Let G be an open neighborhood of λ and let $f_n \in Hol(\sigma(T))$ be functions such that $(\mu - T)f_n(\mu) \to 0$ uniformly on every compact subset of G. Since $(\widetilde{T}_{k,1} - \mu)|T|^k f_n(\mu) = |T|^k (T - \mu)f_n(\mu) \to 0$ uniformly on every compact subset of G. Hence $Tf_n(\mu) = U|T|^k|T|f_n(\mu) \to 0$ uniformly on every compact subset of G for $\widetilde{T}_{k,1}$ has property (β , so that $\mu f_n(\mu) \to 0$ uniformly on every compact subset of G, and T has property (β) follows by Lemma 2.7.

The quasinilpotent part of $T - \lambda$ is defined as

$$H_0(T-\lambda) = \left\{ x \in \mathscr{H} : \lim_{n \to \infty} \left\| (T-\lambda)^n \right\|^{1/n} = 0 \right\}.$$

In general, $\ker(T - \lambda) \subset H_0(T - \lambda)$ and $H_0(T - \lambda)$ is not closed. Let $F \subset \mathbb{C}$ be closed set. Then the global spectral subspace is defined by

 $\chi_T(F) = \{ x \in \mathscr{H} \mid \exists \text{ analytic } f(z) : (T - \lambda)f(z) = x \text{ on } \mathbb{C} \setminus F \}.$

Theorem 2.9. Let $T \in \mathcal{A}(k)$. Then $H_0(T - \lambda) = \ker(T - \lambda)$ for $\lambda \in \mathbb{C}$.

Proof. Let $F \subset \mathbb{C}$ be closed set. It is known that $H_0(T - \lambda) = \chi_T(\{\lambda\})$ by Theorem 2.20 of [1]. As T has Bishop's property by Theorem 2.8, $\chi_T(F)$ is closed and $\sigma(T|_{\chi_T(F)}) \subset F$ by Proposition 1.2.19 of [19]. Hence $H_0(T - \lambda)$ is closed and $T|_{H_0(T-\lambda)}$ is class A_k by Theorem 2.3. If $\sigma(T|_{H_0(T-\lambda)}) \subset \{\lambda\}$, $T|_{H_0(T-\lambda)}$ is normal by Theorem 2.4. If $\sigma(T|_{H_0(T-\lambda)}) = \emptyset$, then $H_0(T - \lambda) =$ $\{0\}$ and ker $(T - \lambda) = \{0\}$. If $\sigma(T|_{H_0(T-\lambda)}) = \{\lambda\}$, then $T|_{H_0(T-\lambda)} = \lambda$ and $H_0(T - \lambda) = \text{ker}(T - \lambda)$.

Rashid [20] proved that quasi-class (A, k) has Bishop's property, in the following we prove analogous result for *m*-quasi-class A(k) operators. **Lemma 2.10.** Let $T \in \mathcal{Q}(A(k), m)$. Then T has Bishop's property (β) .

Proof. Let $f_n(z)$ be analytic on G. Let $(T-z)f_n(z) \to 0$ uniformly on each compact subset of G. Then, using the representation of Lemma 2.2 we have

$$\begin{pmatrix} T_1 - z & T_2 \\ 0 & T_3 - z \end{pmatrix} \begin{pmatrix} f_{n1}(z) \\ f_{n2}(z) \end{pmatrix} = \begin{pmatrix} (T_1 - z)f_{n1}(z) + T_2f_{n2}(z) \\ (T_3 - z)f_{n2}(z) \end{pmatrix} \longrightarrow 0.$$

Since T_3 is nilpotent, T_3 has Bishop's property (β) . Hence $f_{n2}(z) \longrightarrow 0$ uniformly on every compact subset of G. Then $(T_1 - z)f_{n1}(z) \longrightarrow 0$. Since T_1 is of class A(k), T_1 has Bishop's property (β) by Theorem 2.8. Hence $f_{n1}(z) \longrightarrow 0$ uniformly on every compact subset of G. Thus T has Bishop's property (β) . \Box

Lemma 2.11. Let $T \in \mathscr{L}(\mathscr{H})$ be a class A(k). Let $\lambda \in \mathbb{C}$. Assume that $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$.

Proof. We consider two cases:

Case (I) $(\lambda = 0)$: Since T is a class A(k), T is normaloid. Therefore T = 0. Case (II) $(\lambda \neq 0)$: Here T is invertible, and since T is a class A_k , we see that T^{-1} is also belongs class A(k). Therefore T^{-1} is normaloid. On the other hand, $\sigma(T^{-1}) = \{\frac{1}{\lambda}\}$, so $||T|| ||T^{-1}|| = |\lambda| |\frac{1}{\lambda}| = 1$. It follows that T is convexied, so $W(T) = \{\lambda\}$. Therefore $T = \lambda$.

Lemma 2.12. Let $T \in \mathscr{L}(\mathscr{H})$ be a $\mathcal{Q}(A(k), m)$ operator and $\sigma(T) = \{\lambda\}$. Then $T = \lambda$ if $\lambda \neq 0$, and $T^{m+1} = 0$ if $\lambda = 0$.

Proof. If the range of T is dense, then T is a class A(k). Hence $T = \lambda$ by Lemma 2.11. If the range of T is not dense, then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathscr{H} = \overline{\Re(T^m)} \oplus \ker(T^{*m})$,

where $T_1 = T|_{\overline{\mathfrak{R}(T^m)}}$ is the restriction of T to $\overline{\mathfrak{R}(T^m)}$, and $T_1 \in \mathcal{Q}(A(k), m)$, $T_3^m = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$ by Lemma 2.2. Hence $T_1 = 0$ by Lemma 2.11. Thus

$$T^{m+1} = \begin{pmatrix} 0 & T_2 \\ 0 & T_3 \end{pmatrix}^{m+1} = \begin{pmatrix} 0 & T_2 T_3^m \\ 0 & T_3^{m+1} \end{pmatrix} = 0.$$

3. Riesz idempotent for an isolated point of the spectrum

Let $T \in \mathscr{L}(\mathscr{H})$ and $\mu \in iso\sigma(T)$. Then there exists a positive number r > 0 such that $\{\lambda \in \mathbb{C} : |\lambda - \mu| \le r\} \cap \sigma(T) = \{\mu\}$. Let γ be the boundary of $\{\lambda \in \mathbb{C} : |\lambda - \mu| \le r\}$. Then $P := \frac{1}{2\pi i} \int_{\gamma} (\lambda - T) d\lambda$ is called the Riesz idempotent of T for μ . Then it is well known that

$$P^2 = P$$
, $PT = TP$, $\sigma(T|_{\Re(P)}) = \{\mu\}$ and $\Re(P) \supseteq \ker(T - \mu)$.

In general, it is well known that the Riesz idempotent P is not an orthogonal projection and necessary and sufficient condition for P to be orthogonal is that P is self-adjoint [6]. For a hyponormal operator T, Stampfli [24] have shown that the Riesz idempotent for an isolated point of the spectrum of T

669

is self-adjoint. Uchiyama and Tanahashi [27] proved this property for class A. Recently, Jeon and Kim [12] showed that this property also holds for quasiclass A. In this section we extend these result to class A(k) operators and Q(A(k), m) operators.

Theorem 3.1. Let $T \in \mathscr{L}(\mathscr{H})$ be a class A(k) operator and λ be a non-zero isolated point of $\sigma(T)$. Then the Riesz idempotent satisfies that

$$\Re(P) = \ker(T - \lambda I) = \ker(T - \lambda I)^*$$

In particular T is self-adjoint.

Proof. Since class A_k operators are isoloid by Lemma 2.5. Then λ is an isolated point of $\sigma(T)$. Let γ be the boundary of a closed disc $\mathbb{D}_{\lambda} = \{\mu \in \mathbb{C} : |\mu - \lambda| \leq r\}$ for which $0 \notin \mathbb{D}_{\mu}$ such that $\gamma \cap \sigma(T) = \{\lambda\}$. Then the range of Riesz idempotent $P = \frac{1}{2\pi i} \int_{\gamma} (T - \lambda I)^{-1} d\lambda$ is an invariant closed subspace of T and $\sigma(T|_{\Re(P)}) = \{\lambda\}$.

If $\lambda = 0$, then $\sigma(T|_{\Re(P)}) = \{0\}$. Since $T|_{\Re(P)}$ is class A(k) by Theorem 2.3, $T|_{\Re(P)} = 0$ by Lemma 2.11. Therefore, 0 is an eigenvalue of T.

If $\lambda \neq 0$, then $T|_{\Re(P)}$ is an invertible class A(k) operator and hence $(T|_{\Re(P)})^{-1}$ is also class A(k). We see that $||T|_{\Re(P)}|| = |\lambda|$ and $||(T|_{\Re(P)})^{-1}|| = \frac{1}{|\lambda|}$. Let $x \in \Re(P)$ be arbitrary vector. Then

$$||x|| \le \left\| (T|_{\Re(P)})^{-1} \right\| \left\| T|_{\Re(P)} x \right\| = \frac{1}{|\lambda|} \left\| T|_{\Re(P)} x \right\| \le \frac{1}{|\lambda|} |\lambda| ||x|| = ||x||.$$

This implies that $\frac{1}{\lambda}T|_{\Re(P)}$ is unitary with its spectrum $\sigma(\frac{1}{\lambda}T|_{\Re(P)}) = \{1\}$. Hence $T|_{\Re(P)} = \lambda I$ and λ is an eigenvalue of T. Therefore, $\Re(P) = \ker(T - \lambda I)$. Since $\ker(T - \lambda I) \subset \ker(T - \lambda I)^*$ by Theorem 2.4, it suffices to show that $\ker(T - \lambda I)^* \subset \ker(T - \lambda I)$. Since $\ker(T - \lambda I)$ is a reducing subspace of T by Theorem 2.4 and the restriction of a class A(k) to its reducing subspace is also class A(k) operator, we see that T is of the form $T = T' \oplus \lambda I$ on $\mathscr{H} = \ker(T - \lambda I) \oplus \ker(T - \lambda I)^{\perp}$, where T' is a class A(k) operator with $\ker(T' - \lambda I) = \{0\}$. Since $\lambda \in \sigma(T) = \sigma(T') \cup \{\lambda\}$ is isolated, the only two cases occur. One is $\lambda \notin \sigma(T')$ and the other is that λ is an isolated point of $\sigma(T')$. The latter case, however, does not occur otherwise we have $\lambda \in \sigma_p(T')$ and this contradicts the fact that $\ker(T' - \lambda I) = \{0\}$. $\ker(T - \lambda I)^{\perp}$.

Next, we show that P is self-adjoint. Since $\Re(P) = \ker(T - \lambda I) = \ker(T - \lambda I)^*$, we have $((T - zI)^*)^{-1}P = \overline{(z - \lambda)^{-1}}P$. Hence

$$P^*P = -\frac{1}{2i\pi} \int_{\gamma} ((T - zI)^*)^{-1} P \, d\bar{z}$$
$$= -\frac{1}{2i\pi} \int_{\gamma} \overline{(z - \lambda)^{-1}} P \, d\bar{z}$$
$$= \overline{\left(\frac{1}{2i\pi} \int_{\gamma} \frac{1}{z - \lambda} \, d\bar{z}\right)} P$$

$$= PP^*.$$

Therefore, the proof is achieved.

Example 3.2. There exists a class A(k) operator T such that 0 is an isolated point of $\sigma(T)$, ker $(T) \neq \text{ker}(T^*)$ and the Riesz idempotent P with respect to 0 is not self-adjoint. To see this, let $0 < \alpha < 1$ and $A = \alpha \left(\frac{\frac{1}{2}}{\frac{1}{2}}\frac{1}{2}\right)$ in Example 1.2. Then $T \in \mathcal{A}(k)$ with $k \geq \frac{-\log 2}{2\log \alpha}$ and 0 is an isolated point of $\sigma(T)$. Also ker $(T) \neq \text{ker}(T^*)$ and the Riesz idempotent P with respect to 0 is not self-adjoint.

Theorem 3.3. Let $T \in \mathcal{Q}(A(k), m)$. Then

$$H_0(T-\lambda) = \begin{cases} \ker(T-\lambda), & \text{if } \lambda \neq 0; \\ \ker(T^{m+1}), & \text{if } \lambda = 0. \end{cases}$$

Moreover, if $0 \neq \lambda$, then $H_0(T - \lambda) = \ker(T - \lambda) \subset \ker(T - \lambda)^*$.

Proof. Since T has Bishop's property (β) by Lemma 2.10 and $H_0(T - \lambda) = \chi_T(\{\lambda\})$ by Theorem 2.20 of [1], $H_0(T - \lambda)$ is closed and $\sigma(T|_{H_0(T-\lambda)}) \subset \{\lambda\}$ by Proposition 1.2.19 of [19]. Let $S = T|_{H_0(T-\lambda)}$. Then S is a $\mathcal{Q}(A(k), m)$ operator by Theorem 2.3. Hence, we divide into the cases:

Case I. If $\sigma(S) = \sigma(T|_{H_0(T-\lambda)}) = \emptyset$, then $H_0(T-\lambda) = \{0\}$, and so ker $(T-\lambda) = \{0\}$.

Case II. If $\sigma(S) = \{\lambda\}$ and $\lambda \neq 0$, then $S = \lambda$ by Lemma 2.12, and $H_0(T - \lambda) = \ker(S - \lambda) \subset \ker(T - \lambda)$.

Case III. If $\sigma(S) = \{0\}$, then $S^{m+1} = 0$ by Lemma 2.12, and $H_0(T) = \ker(S^{m+1}) \subset \ker(T^{m+1})$.

Moreover, let $\lambda \neq 0$. In this case, $S = \lambda$. Hence S is normal and invertible, so $H_0(T - \lambda)$ reduces T by Theorem 2.4. Thus $H_0(T - \lambda) = \ker(T - \lambda) \subset (T - \lambda)^*$.

Theorem 3.4. Let $T \in \mathcal{Q}(A(k), m)$. If $0 \neq \lambda \in iso\sigma(T)$ and P is the Riesz idempotent for λ , then P is self-adjoint and

$$\Re(P) = \ker(T - \lambda) = \ker(T - \lambda)^*.$$

Moreover, if $\lambda = 0$, then $\Re(P) = H_0(T) = \ker(T^{m+1})$.

Proof. If T has a dense range, then T is a class A(k) operator, so the result follows from Theorem 3.1. Therefore we may assume that $\Re(T^m) \neq \mathscr{H}$. Let $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\mathscr{H} = \Re(T^m) \oplus \ker(T^{*m})$, where T_1 is a class A(k), $T_3^m = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$. If $0 \neq \lambda \in iso\sigma(T)$, then $\lambda \in iso\sigma(T_1)$ because $\sigma(T) = \sigma(T_1) \cup \{0\}$. Let γ be the boundary of a closed disc $\mathbb{D}_{\lambda} = \{\mu \in \mathbb{C} : |\mu - \lambda| \leq r\}$ for which $0 \notin \mathbb{D}_{\mu}$ such that $\gamma \cap \sigma(T) = \{\lambda\}$. Then

$$P = \frac{1}{2\pi i} \int_{\gamma} \left(\begin{array}{cc} \mu - T_1 & -T_2 \\ 0 & \mu - T_3 \end{array} \right)^{-1} d\mu$$

ON OPERATORS SATISFYING $T^{*m}(T^*|T|^{2k}T)^{1/(k+1)}T^m \ge T^{*m}|T|^2T^m$ 671

$$=\frac{1}{2\pi i}\int_{\gamma} \left(\begin{array}{cc} (\mu-T_1)^{-1} & (\mu-T_1)^{-1}T_2(\mu-T_3)^{-1} \\ 0 & (\mu-T_3)^{-1} \end{array}\right)d\mu$$

Let $P_1 = \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} d\mu$ be the Riesz idempotent of T_1 for μ . Since T_1 is a class A(k), it follows from Theorem 3.1 that P_1 is self-adjoint and

$$\Re(P_1) = \ker(T_1 - \lambda) = \ker(T_1 - \lambda)^*.$$

We prove that

$$X = \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} T_2 (\mu - T_3)^{-1} d\mu = 0.$$

Since

$$(\mu - T_3)^{-1} = \frac{1}{\mu} + \frac{T_3}{\mu^2} + \frac{T_3^2}{\mu^3} + \dots + \frac{T_3^{m-1}}{\mu^m},$$

we see that

$$X = \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} T_2 \frac{1}{\mu} d\mu + \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} T_2 \frac{T_3}{\mu^2} + \cdots$$

= $X_0 + X_1 + \cdots + X_{m-1}$.

Since $\frac{1}{\mu} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\lambda} \left(\frac{\mu-\lambda}{\lambda}\right)^n$, we have $X = \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} T_2 \frac{1}{\mu} d\mu + \frac{1}{2\pi i} \int_{\gamma} (\mu - T_1)^{-1} T_2 \frac{\mu-\lambda}{\mu^2} + \cdots$ $= \frac{1}{\lambda} P_1 T_2 - \frac{1}{\lambda^2} (T_1 - \lambda) P_1 T_2 + \frac{1}{\lambda^3} (T_1 - \lambda)^2 P_1 T_2 - \cdots$

We prove that

$$P_1 T_2 = 0.$$

Let $y = P_1 x$ for $x \in \overline{\Re(T)}$. Then $y \in \ker(T_1 - \lambda) = \ker(T_1 - \lambda)^*$. Therefore, from Theorem 2.4 we have

$$\begin{pmatrix} 0\\0 \end{pmatrix} = (T-\lambda)\begin{pmatrix} y\\0 \end{pmatrix} = (T-\lambda)^*\begin{pmatrix} y\\0 \end{pmatrix} = \begin{pmatrix} (T_1-\lambda)^*y\\-T_2^*y \end{pmatrix}.$$

Thus $T_2^* y = T_2^* P_1 x = 0$ for $x \in \overline{\Re(T)}$. This implies that $P_1 T_2 = 0$ because P_1 is self-adjoint. Hence $X_0 = 0$. On the other hand, since $\frac{1}{\mu^2} = \frac{1}{\lambda^2} - \frac{2(\mu - \lambda)}{\lambda^3} + \frac{3(\mu - \lambda)^2}{\lambda^4} - \cdots$, we have

$$X_{1} = \frac{1}{2\pi i} \int_{\gamma} (\mu - T_{1})^{-1} T_{2} \frac{T_{3}}{\mu^{2}} d\mu$$

= $\frac{1}{\lambda^{2}} P_{1} T_{2} T_{3} - \frac{2}{\lambda^{3}} (T_{1} - \lambda) P_{1} T_{2} T_{3} + \frac{3}{\lambda^{4}} P_{1} T_{2} T_{3} - \cdots$
= 0.

Similarly we have $X_2 = X_3 = \dots = X_{m-1} = 0$, and X = 0. Hence (3.1) $P = \begin{pmatrix} P_1 & 0 \\ 0 & 0 \end{pmatrix}$ is self-adjoint as well as P_1 . Now we claim that $\Re(P) = \ker(T - \lambda)$. We see from Equation (3.1) that

$$\Re(P) = \Re(P_1) \oplus \{0\} = \ker(T_1 - \lambda) \oplus \{0\} = \ker(T_1 - \lambda)^* \oplus \{0\}.$$

So, if $x \in \Re(P)$, then $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$, where $x_1 \in \ker(T_1 - \lambda)$. Therefore,

$$(T-\lambda)x = \begin{pmatrix} T_1 - \lambda & -T_2 \\ 0 & T_3 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Thus $\Re(P) \subset \ker(T-\lambda)$. Hence, since $\Re(P) \supseteq \ker(T-\lambda)$, we have that $\Re(P) = \ker(T - \lambda).$

To end the proof, we must show that $\ker(T-\lambda)^* \subset \ker(T-\lambda)$. Let x = $\binom{x_1}{x_2} \in \ker(T-\lambda)^*$. Then

$$(T-\lambda)^* \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} (T_1-\lambda)^* & 0 \\ T_2^* & (T_3-\lambda)^3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} (T_1-\lambda)^* x_1 \\ T_2^* x_1 + (T_3-\lambda)^* x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Therefore, $x_1 \in \ker(T_1 - \lambda)^* = \ker(T_1 - \lambda)$. Then $(T - \lambda) \begin{pmatrix} x_1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ implies that $(T - \lambda)^* \begin{pmatrix} x_1 \\ 0 \end{pmatrix} = \begin{pmatrix} (T_1 - \lambda)^* x_1 \\ T_2^* x_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Thus we have that $T_2^* x_1 = 0$. This implies that $(T_3 - \lambda)^* x_2 = 0$ and $x_2 = 0$.

because T_3 is nilpotent. Therefore,

$$x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix} \in \ker(T_1 - \lambda) \oplus \{0\} = \Re(P) = \ker(T - \lambda).$$

The proof of the case $\lambda = 0$ is straightforward from Theorem 3.3. So, the proof is achieved.

4. Tensor product

Let \mathscr{H} and \mathscr{K} denote the Hilbert spaces. For given non-zero operators $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{H}), T \otimes S$ denotes the tensor product on the product space $\mathcal{H} \otimes \mathcal{K}$. The normaloid property is invariant under tensor products [23]. $T \otimes S$ is normal if and only if T and S are normal [14, 25]. There exist paranormal operators T and S such that $T \otimes S$ is not paranormal [3]. In [15], I. H. Kim showed that for non-zero $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K}), T \otimes S$ is log-hyponormal if and only if T and S are log-hyponormal. This result was extended to p-quasi hyponormal operators, class A operators, quasi class Aand quasi class (A, k) operators in [15], [11], [12] and [16], respectively. In this section, we prove an analogous result for $\mathcal{Q}(A(k), m)$ operators.

Remark 4.1. Let $T \in LB$ and $S \in \mathscr{L}(\mathscr{K})$ be non-zero operators, then we have

- (i) $(T \otimes S)^* (T \otimes S) = T^*T \otimes S^*S$,
- (ii) $|T \otimes S|^t = |T|^t \otimes |S|^t$ for any positive real t.

Lemma 4.2 ([25]). Let $T_1, T_2 \in \mathscr{L}(\mathscr{H}), S_1, S_2 \in \mathscr{L}(\mathscr{H})$ be non-negative operators. If T_1 and S_1 are non-zero, then the following assertions are equivalent:

- (a) $T_1 \otimes S_1 \leq T_2 \otimes S_2$;
- (b) there exists c > 0 such that $T_1 \leq cT_2$ and $S_1 \leq c^{-1}S_2$.

Lemma 4.3 (Hölder-McCarthy Inequality). Let $T \ge 0$. Then the following assertions hold.

- (i) $\langle T^r x, x \rangle \ge \langle T x, x \rangle^r \|x\|^{2(1-r)}$ for r > 1 and $x \in \mathscr{H}$. (ii) $\langle T^r x, x \rangle \le \langle T x, x \rangle^r \|x\|^{2(1-r)}$ for $r \in [0, 1]$ and $x \in \mathscr{H}$.

Theorem 4.4. Suppose that $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$ are non-zero operators. Then $T \otimes S$ is a class A(k) operator if and only T and S are class A(k)operators.

Proof. Assume that T and S are class A(k) operators. Then

$$((T \otimes S)^* | T \otimes S|^{2k} (T \otimes S))^{1/(k+1)}$$

$$= ((T^* \otimes S^*) (|T|^{2k} \otimes |S|^{2k}) (T \otimes S))^{1/(k+1)}$$

$$= ((T^* |T|^{2k} T) \otimes (S^* |S|^{2k} S))^{1/(k+1)}$$

$$= (T^* |T|^{2k} T)^{1/(k+1)} \otimes (S^* |S|^{2k} S)^{1/(k+1)}$$

$$\ge |T|^2 \otimes |S|^2 = |T \otimes S|^2$$

which implies that $T \otimes S$ is a class A(k) operator.

Conversely, assume that $T \otimes S$ is a class A(k). We aim to show that T and S are class A(k) operators. Without loss of generality, it is enough to show that T is a class A(k) operator. Since $T \otimes S$ is a class A(k) operator, we obtain

$$(T^*|T|^{2k}T)^{1/(k+1)} \otimes (S^*|S|^{2k}S)^{1/(k+1)} \ge |T|^2 \otimes |S|^2.$$

Hence by Lemma 4.2, there exists a positive real number c for which

$$|T|^2 \le c(T^*|T|^{2k}T)^{1/(k+1)}$$
 and $|S|^2 \le c^{-1}(S^*|S|^{2k}S)^{1/(k+1)}$.

Consequently, for every $x \in \mathcal{H}$ and $y \in \mathcal{K}$ and by Hölder McCarthy Inequality, we have

$$\begin{aligned} \|T\|^{2} &= \sup_{\|x\|=1} \left\langle |T|^{2}x, x \right\rangle \\ &\leq \sup_{\|x\|=1} \left\langle c(T^{*}|T|^{2k}T)^{1/(k+1)}x, x \right\rangle \\ &\leq c \sup_{\|x\|=1} \left\langle T^{*}|T|^{2k}Tx, x \right\rangle^{1/(k+1)} \\ &\leq c \sup_{\|x\|=1} \left\| |T|^{k}Tx \right\|^{2/(k+1)} \\ &= c \left\| |T|^{k}T \right\|^{2/(k+1)} = c \left\| T^{k+1} \right\|^{2/(k+1)} \leq c \left\| T \right\|^{2} \end{aligned}$$

and

$$\begin{split} \|S\|^{2} &= \sup_{\|y\|=1} \left\langle |S|^{2}y, y \right\rangle \\ &\leq \sup_{\|y\|=1} \left\langle c^{-1} (S^{*}|S|^{2k}S)^{1/(k+1)}y, y \right\rangle \\ &\leq c^{-1} \sup_{\|y\|=1} \left\langle S^{*}|S|^{2k}Sy, y \right\rangle^{1/(k+1)} \\ &\leq c^{-1} \sup_{\|y\|=1} \left\| |S|^{k}Sy \right\|^{2/(k+1)} \\ &= c^{-1} \left\| |S|^{k}S \right\|^{2/(k+1)} \\ &= c^{-1} \left\| S^{k+1} \right\|^{2/(k+1)} \\ &\leq c^{-1} \left\| S \right\|^{2}. \end{split}$$

Thus, c = 1, and so T is a class A(k) operator.

Theorem 4.5. Let $T, S \in \mathscr{L}(\mathscr{H})$ be non-zero operators. Then $T \otimes S \in \mathcal{Q}(A(k), m)$ if and only if one of the following holds:

(i) $T \in \mathcal{Q}(A(k), m)$ and $S \in \mathcal{Q}(A(k), m)$. (ii) $T^{m+1} = 0$ or $S^{m+1} = 0$.

Proof. By simple calculation we have $T \otimes S \in \mathcal{Q}(A(k), m)$ if and only if

$$(T \otimes S)^{*m} \left(\left((T \otimes S)^* | T \otimes S |^{2k} (T \otimes S) \right)^{1/(k+1)} - |T \otimes S|^2 \right) (T \otimes S)^m \ge 0$$

$$\Leftrightarrow T^{*m} ((T^* | T |^{2k} T)^{1/(k+1)} - |T|^2) T^m \otimes S^{*m} (S^* | S |^{2k} S)^{1/(k+1)} S^m + T^{*m} |T|^2 T^m \otimes S^{*m} ((S^* | S |^{2k} S)^{1/(k+1)} - |S|^2) S^m \ge 0.$$

Thus the sufficiency is easily proved. Conversely, suppose that $T \otimes S \in \mathcal{Q}(A(k), m)$. Then for $x \in \mathscr{H}$ and $y \in \mathscr{K}$ we have (4.1)

$$\left\langle T^{*m}((T^*|T|^{2k}T)^{1/(k+1)} - |T|^2)T^m x, x \right\rangle \left\langle S^{*m}(S^*|S|^{2k}S)^{1/(k+1)}S^m y, y \right\rangle$$

+ $\left\langle T^{*m}|T|^2T^m x, x \right\rangle \left\langle S^{*m}((S^*|S|^{2k}S)^{1/(k+1)} - |S|^2)S^m y, y \right\rangle \ge 0.$

It suffices to show that if the statement (ii) does not hold, the statement (i) holds. Thus, assume to the contrary that neither of T^{m+1} and S^{m+1} is the zero operator, and T is not in $\mathcal{Q}(A(k), m)$. Then there exists $x_0 \in \mathscr{H}$ such that

$$\left\langle T^{*m}((T^*|T|^{2k}T)^{1/(k+1)} - |T|^2)T^m x_0, x_0 \right\rangle := \alpha < 0 \quad \text{and} \\ \left\langle T^{m*}|T|^2T^m x_0, x_0 \right\rangle := \beta > 0.$$

From (4.1) we have

(4.2)
$$(\alpha + \beta) \left\langle S^{*m} (S^* |S|^{2k} S)^{1/(k+1)} S^m y, y \right\rangle \ge \beta \left\langle S^{*m} |S|^2 S^m y, y \right\rangle.$$

674

Thus $S \in \mathcal{Q}(A(k), m)$. By Hölder McCarthy Inequality, we have $\left\langle S^{*m}(S^*|S|^{2k}S)^{1/(k+1)}S^my, y \right\rangle = \left\langle (S^*|S|^{2k}S)^{1/(k+1)}S^my, S^my \right\rangle$ $\leq \left\langle |S|^{2k}S^{m+1}y, S^{m+1}y \right\rangle^{1/(k+1)} ||S^my||^{2k/(k+1)}$ $\leq ||S^my||^{2k/(k+1)} ||S|^kS^{m+1}y||^{1/(k+1)}$ $= ||S^my||^{\frac{2k}{k+1}} ||S^{k+m+1}y||^{2/(k+1)}$

and

$$\left\langle S^{*m}|S|^2 S^m y, y \right\rangle = \left\langle S^{m+1}y, S^{m+1}y \right\rangle = \left\| S^{m+1}y \right\|^2.$$
 have

Therefore, we have

(4.3)
$$(\alpha + \beta) \|S^m y\|^{\frac{2k}{k+1}} \|S^{k+m+1} y\|^{2/(k+1)} \ge \beta \|S^{m+1} y\|^2.$$

On the other hand, since $S \in \mathcal{Q}(A(k), m)$, from Lemma 2.2 we have a decomposition of S as the following:

$$S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}$$
 on $\mathscr{H} = \overline{\Re(S^m)} \oplus \ker(S^{m*}),$

where S_1 is a class A(k) operator on $\overline{\Re(S^m)}$ and S_3 is a nilpotent with nilpotency m. By (4.3) we have

(4.4)

$$(\alpha + \beta) \|S_1^m \xi\|^{\frac{2k}{k+1}} \|S_1^{k+m+1} \xi\|^{2/(k+1)} \ge \beta \|S_1^{m+1} \xi\|^2 \quad \text{for all } \xi \in \overline{\Re(S^m)}.$$

Since S_1 is a class A(k), S_1 is normaloid, and taking supremum on both sides of the inequality (4.4), we have

$$(\alpha + \beta) ||S_1||^{2(m+1)} \ge \beta ||S_1||^{2(m+1)}$$

This inequality forces that $S_1 = 0$. Hence $S^{m+1}x = 0$ because $S^{m+1} = S_1S^m$ for all $y \in \mathscr{K}$. This is a contradiction to that S^{m+1} is not a zero operator. Hence T must be in $\mathcal{Q}(A(k), m)$ operators. In a similar manner, we can prove that S is also a quasi-class $\mathcal{Q}(A(k), m)$ operator. Therefore, the proof of the theorem is finished.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1–10.
- [3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169– 178.
- [4] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), no. 2, 379–397.
- [5] M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equation Operator Theory 53 (2005), no. 4, 497– 508.
- [6] J. B. Conway, A course in Functional Analysis, Springer-Verlag, New York, 1985.

M. H. M. RASHID

- [7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69.
- [8] M. Fujii, D. Jung, S. H. Lee, M. Y. Lee, and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), no. 3, 395–402.
- T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389–403.
- [10] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math. 35 (1999), no. 1, 149–165.
- [11] I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617–627.
- [12] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl. **418** (2006), no. 2-3, 854–862.
- [13] F. Hansen, An equality, Math. Ann. 246 (1980), 249–250.
- [14] J.-C. Hou, On the tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), no. 2, 195–202.
- [15] I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc. 42 (2005), no. 2, 269–277.
- [16] _____, Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^2|T^k \geq T^{*k}|T|^2T^k$, J. Korean Math. Soc. 47 (2010), no. 2, 351–361.
- [17] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory 50 (1995), no. 3, 375–384.
- [18] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323–336.
 [19] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon, 2000.
- [20] M. H. M. Rashid, Property (w) and quasi-class (A, k) operators, Rev. Un. Mat. Argentina 52 (2011), no. 1, 133–142.
- [21] _____, Weyl's theorem for algebraically wF(p,r,q) operators with p,r > 0 and $q \ge 1$, Ukrainian Math. J. **63** (2011), no. 8, 1256–1267.
- [22] M. H. M. Rashid and H. Zguitti, Weyl type theorems and class A(s,t) operators, Math. Inequal. Appl. 14 (2011), no. 3, 581–594.
- [23] T. Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics, vol. 247, Springer-Verlag, 1971.
- [24] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476.
- [25] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124 (1996), no. 1, 135–140.
- [26] K. Tanahashi, I. H. Jeon, I. H. Kim, and A. Uchiyama, Quasinilpotent part of class A or (p,k)-quasihyponormal, Operator Theory: Advances Appl. 187 (2008), 199–210.
- [27] A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Math. Inequal. Appl. 5 (2002), no. 2, 291–298.

Mohammad H. M. Rashid Department of Mathematics & Statistics Faculty of Science P.O.Box(7) Mu'tah University Al-Karak-Jordan *E-mail address*: malik_okasha@yahoo.com