DOI QR코드

DOI QR Code

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep (Department of Mathematics University of Petroleum and Energy Studies) ;
  • Mondal, Saiful R. (Department of Mathematics and Statistics College of Science King Faisal University)
  • Received : 2016.09.18
  • Accepted : 2016.12.09
  • Published : 2017.07.31

Abstract

The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

Keywords

References

  1. P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc. 53 (2016), no. 5, 1183-1210. https://doi.org/10.4134/JKMS.j150458
  2. M. Ali Ozarslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9-10, 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
  3. R. Caponetto, Fractional Order Systems: Modeling and Control Applications, World Scientific, 2010.
  4. M. Caputo, Elasticitae dissipazione Zanichelli, Bologna, 1969.
  5. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  6. M. A. Chaudhry, A. Qadir, H. M. Srivastave, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  7. C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London. Math. Soc. 27 (1938), no. 1, 389-400.
  8. R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Singapore, New York, 2000.
  9. S. L. Kalla and R. K. Saxena, Integral operators involving hypergeometric functions, Math. Z. 108 (1969), 231-234. https://doi.org/10.1007/BF01112023
  10. U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), no. 3, 860-865. https://doi.org/10.1016/j.amc.2011.03.062
  11. A. A. Kilbas and M. Saigo, H-transforms, Chapman & Hall/CRC, Boca Raton, FL, 2004.
  12. A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integral Transforms Spec. Funct. 19 (2008), no. 11-12, 869-883. https://doi.org/10.1080/10652460802295978
  13. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
  14. V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res Notes Math. 301, Longman Scientific & Technical; Harlow, Co-published with John Wiley, New York, 1994.
  15. V. S. Kiryakova, All the special functions are fractional differintegrals of elementary functions, J. Phys. A 30 (1997), no. 14, 5083-5103.
  16. V. S. Kiryakova, Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000), no. 1-2, 241-259. https://doi.org/10.1016/S0377-0427(00)00292-2
  17. H. Kober, On fractional integrals and derivatives, Quart. J. Math., Oxford Ser. 11 (1940), 193-212.
  18. P. Malik, S. R. Mondal, and A. Swaminathan, Riemann-Liouville Fractional calculus for generalized Bessel functions, Proceedings of the ASME 2011, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 3 (2011), 409-418.
  19. P. Malik and A. Swaminathan, Derivatives of a finite class of orthogonal polynomials defined on positive real line related to F-Distribution, Comput. Math. Appl. 61 (2011), no. 4, 1180-1189. https://doi.org/10.1016/j.camwa.2010.12.067
  20. P. Malik and A. Swaminathan, Derivatives of a finite class of orthogonal polynomials related to inverse gamma distribution, Appl. Math. Comput. 218 (2012), no. 11, 6251-6262. https://doi.org/10.1016/j.amc.2011.11.078
  21. M. Masjedjamei, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, Integral Transforms Spec. Funct. 13 (2002), no. 2, 169-191. https://doi.org/10.1080/10652460212898
  22. A. C. McBride and G. F. Roach (Editors), Fractional Calculus, (University of Strathclyde, Glasgow, Scotland, August 5-11, 1984) Research Notes in Mathematics 138, Pitman Publishing Limited, London, 1985.
  23. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993.
  24. Saiful. R. Mondal and K. S. Nisar, Marichev-Saigo-Maeda fractional integration operators of generalized Bessel functions, Mathematical Problems in Engineering 2014 (2014), Article ID 274093, 11 pages.
  25. K. Nishimoto, Fractional Calculus 1, 2, 3, 4, 5, Descartes Press, Koriyama, Japan, 1984, 1987, 1989, 1991, 1996.
  26. K. Nishimoto, Fractional Calculus and Its Applications, (May 29-June 1, 1989), Nihon University (College of Engineering), Koriyama, 1990.
  27. K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, New York, 1974.
  28. E. D. Rainville, Special Functions, Macmillan, New York, 1960.
  29. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1977/78), no. 2, 135-143.
  30. M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H function, Fukuoka Univ. Sci. Rep. 29 (1999), no. 1, 31-45.
  31. M. Saigo and N. Maeda, More generalization of fractional calculus, Transform methods & special functions, Varna '96, 386-400, Bulgarian Acad. Sci., Sofia, 1998.
  32. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
  33. E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London, Ser. A. 238 (1940), 423-451. https://doi.org/10.1098/rsta.1940.0002
  34. E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (2) 46 (1940), 389-408.