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ESTIMATES FOR SECOND NON-TANGENTIAL

DERIVATIVES AT THE BOUNDARY

Burcu Gök and Bülent Nafi Örnek

Abstract. In this paper, a boundary version of Schwarz lemma is inves-
tigated. We take into consideration a function f(z) holomorphic in the

unit disc and f(0) = 0, f ′(0) = 1 such that ℜf ′(z) > 1−α
2

, −1 < α < 1,

we estimate a modulus of the second non-tangential derivative of f(z)

function at the boundary point z0 with ℜf ′(z0) = 1−α
2

, by taking into
account their first nonzero two Maclaurin coefficients. Also, we shall give
an estimate below |f ′′(z0)| according to the first nonzero Taylor coeffi-
cient of about two zeros, namely z = 0 and z1 6= 0. The sharpness of
these inequalities is also proved.

1. Introduction

The classical Schwarz lemma gives information about the behavior of a holo-
morphic function on the unit disc D = {z : |z| < 1} at the origin, subject only
to the relatively mild hypotheses that the function map the unit disc to the
disc and the origin to the origin. This lemma, named after Hermann Amandus
Schwarz, is a result in complex analysis about holomorphic functions defined
on the unit disc. In its most basic form, the familiar Schwarz lemma says this
([6], p. 329):

Let D be the unit disc in the complex plane C. Let f : D → D be a
holomorphic function with f(0) = 0. Under these circumstances |f(z)| ≤
|z| for all z ∈ D, and |f ′(0)| ≤ 1. In addition, if the equality |f(z)| = |z| holds
for any z 6= 0, or |f ′(0)| = 1, then f is a rotation, that is, f(z) = zeiθ, θ real.
For historical background about the Schwarz lemma and its applications on the
boundary of the unit disc, we refer to (see [2], [20]).

Let f(z) = z+ c2z
2 + · · · be a holomorphic function in the unit disc D such

that ℜf ′(z) > 1−α
2 , −1 < α < 1.

Consider the function

Θ(z) =
f ′(z)− 1

f ′(z) + α
.
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Θ(z) is a holomorphic function in the unit disc D, Θ(0) = 0 and since ℜf ′(z) >
1−α
2 , it also follows that |Θ(z)| < 1 for |z| < 1. Thus, from the Schwarz lemma,

we obtain for every z1, |z1| < 1,

(1.1) |f ′(z1)| ≤
1 + α |z1|

1− |z1|

and

(1.2) |f ′′(0)| ≤ 1 + α.

Equality is achieved in (1.1) (for some nonzero z1 ∈ D) if and only if f(z) is
the function of the form f(z) = −αz − 1+α

eiθ
ln
(

1− zeiθ
)

, where θ = − arg z1,
but the equality in (1.2) holds if and only if

f(z) = −αz −
1 + α

eiθ
ln
(

1− zeiθ
)

,

where θ is a real number.
Robert Osserman [16] has given the inequalities which are called the bound-

ary Schwarz lemma. He has first showed that

(1.3) |f ′(z0)| ≥
2

1 + |f ′(0)|

and

(1.4) |f ′(z0)| ≥ 1

under the assumption f(0) = 0 where f is a holomorphic function mapping the
unit disc into itself and z0 is a boundary point to which f extends continuously
and |f(z0)| = 1. In addition, the equality in (1.4) holds if and only if f(z) =
zeiθ, θ real. Also, z0 = 1 in the inequality (1.3) equality occurs for the function
f(z) = z z+a

1+az
, 0 ≤ a ≤ 1.

Inequality (1.4) and its generalizations have important applications in geo-
metric theory of functions (see, e.g., [6], [19]). Therefore, the interest to such
type results is not vanished recently (see, e.g., [1], [2], [4], [5], [10], [11], [16],
[17], [18], [20] and references therein).

Furthermore, if f(z) = cpz
p + cp+1z

p+1 + · · · , p ∈ N = {1, 2, . . .}, then

(1.5) |f ′(z0)| ≥ p+
1− |cp|

1 + |cp|

and

(1.6) |f ′(z0)| ≥ p.

Let f be a holomorphic function in D, f(0) = 0 and f(D) ⊂ D. If the
function f has an angular limit f(z0) at z0 ∈ ∂D, |f(z0)| = 1, then by the
Julia-Wolff lemma the angular derivative f ′(z0) exists and 1 ≤ |f ′(z0)| ≤ ∞.
Also, the holomorphic function f has a finite angular derivative f ′(z0) if and
only if f ′ has the finite angular limit f ′(z0) at z0 ∈ ∂D (see [19]).
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Vladimir N. Dubinin has continued this line and has made a refinement
on the boundary Schwarz lemma under the assumption that f(z) = cpz

p +
cp+1z

p+1 + · · · , with a zero set {zk} (see [4]).
S. G. Krantz and D. M. Burns [9] and D. Chelst [3] studied the uniqueness

part of the Schwarz lemma. In M. Mateljević’s papers, for more general results
and related estimates, see also ([12], [13], [14] and [15]).

Also, M. Jeong [7] showed some inequalities at a boundary point for different
form of holomorphic functions and found the condition for equality and in [8]
a holomorphic self map defined on the closed unit disc with fixed points only
on the boundary of the unit disc.

2. Main results

We consider holomorphic functions f of the unit disk D fixing the origin,
such that the derivative f ′ maps D into a right half plane (ℜf ′(z) > 1−α

2 for
a real parameter α such that −1 < α < 1), with the normalization f ′(0) = 1.
It is assumed at some boundary point z0 ∈ ∂D, f ′ has a non-tangential limit
f ′(z0) with ℜf ′(z0) =

1−α
2 . The conclusion is that f has a second derivative

in the non-tangential sense at z0, and that there is an explicit lower bound
for |f ′′(z0)| as in (1.7) in the paper, with equality attained for certain specific
functions f . Further results are obtained under the assumption that f ′ 6= 1
except at the origin.

Theorem 2.1. Let f(z) = z+ c2z
2+ · · · be a holomorphic function in the unit

disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1. Suppose that, for some z0 ∈ ∂D,

f ′ has a non-tangential limit f ′(z0) at z0 and ℜf ′(z0) =
1−α
2 . Then f has the

second non-tangential derivative at z0 and

(1.7) |f ′′(z0)| ≥
1 + α

4
.

Moreover, the equality in (1.7) occurs for the function

f(z) = −αz − (1 + α) ln (1− z) .

Proof. Let

Θ(z) =
f ′(z)− 1

f ′(z) + α
.

Θ(z) is a holomorphic function in the unit disc D, |Θ(z)| < 1 for |z| < 1,
Θ(0) = 0 and |Θ(z0)| = 1 for z0 ∈ ∂D. It can be easily shown a non-tangential
derivative of Θ at z0 ∈ ∂D (see [19]). Therefore, the second non-tangential
derivative of f at z0 is obtained.

From (1.4), we obtain

1 ≤ |Θ′(z0)| = (1 + α)
|f ′′(z0)|

|f ′(z0) + α|
2 .
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Since

|f ′(z0) + α|
2
≥ [ℜ (f ′(z0) + α)]

2
= (ℜf ′(z0) + α)

2
=

(

1 + α

2

)2

,

we take

(1.8) 1 ≤ |Θ′(z0)| ≤
(1 + α)
(

1+α
2

)2 |f ′′(z0)| =
4

1 + α
|f ′′(z0)| .

So, we obtain the inequality (1.7).
Now, we shall show that the inequality (1.7) is sharp. Let

f(z) = −αz − (1 + α) ln (1− z) .

Then

f ′(z) = −α+
1 + α

1− z
=

1 + αz

1− z
,

f ′′(z) =
1 + α

(1− z)2

and

|f ′′(−1)| =
1 + α

|(1− (−1))|
2 =

1 + α

4
.

�

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

(1.9) |f ′′(z0)| ≥
(1 + α)

2

2 (1 + α+ |f ′′(0)|)
.

The inequality (1.9) is sharp with equality for the function

f(z) = −αz +
√

1− b2 arctan

(

b+ z
√
1− b2

)

+
b

2
ln
(

1 + 2bz + z2
)

+ c,

where c = −
√
1− b2 arctan

(

b
√

1−b2

)

is a constant and b =
|f ′′(0)|
1+α

is an arbi-

trary number from [0, 1] (see, (1.2)).

Proof. Let Θ(z) be as in the proof of Theorem 2.1. Using the inequality (1.3)
for the function Θ(z), we obtain

2

1 + |Θ′(0)|
≤ |Θ′(z0)| ≤

4

1 + α
|f ′′(z0)| .

Since

Θ′(z) = (1 + α)
f ′′(z)

(f ′(z) + α)2

and

|Θ′(0)| =
|f ′′(0)|

1 + α
,

we take
2

1 + |f ′′(0)|
1+α

≤
4

1 + α
|f ′′(z0)| .
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So, we obtain the inequality (1.9).
Now, we shall show that the inequality (1.9) is sharp. Choose arbitrary

b ∈ [0, 1]. Let

f(z) = −αz +
√

1− b2 arctan

(

b+ z
√
1− b2

)

+
b

2
ln
(

1 + 2bz + z2
)

+ c.

Then

f ′(z) =
1 + bz − αbz − αz2

1 + 2bz + z2
,

f ′′(z) =
(b− αb− 2αz)

(

1 + 2bz + z2
)

− (2b+ 2z)
(

1 + bz − αbz − αz2
)

(1 + 2bz + z2)
2

and

|f ′′(1)| =
1 + α

2 (1 + b)
.

Since b =
|f ′′(0)|
1+α

, (1.9) is satisfied with equality. �

If f(z) = z + cp+1z
p+1 + · · · , p ≥ 1, is a holomorphic function in D such

that ℜf ′(z) > 1−α
2 , −1 < α < 1, then

|f ′(z)| ≤
1 + α |z|p

1− |z|p

and

(1.10) |cp+1| ≤
1 + α

1 + p
.

Theorem 2.3. Let f(z) = z+cp+1z
p+1+· · · , cp+1 6= 0, p ≥ 1 be a holomorphic

function in the unit disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1. Suppose that,

for some z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0 and ℜf ′(z0) =
1−α
2 . Then f has the second non-tangential derivative at z0 and

(1.11) |f ′′(z0)| ≥
1 + α

4

(

p+
1 + α− (1 + p) |cp+1|

1 + α+ (1 + p) |cp+1|

)

.

The inequality (1.11) is sharp with equality for the function

f(z) =

∫ z

0

1 + et− αetp − αtp+1

1 + et+ etp + tp+1
dt,

where e = 1+p
1+α

|cp+1| is an arbitrary number on [0, 1] (see, (1.10)).

Proof. Using the inequality (1.5) for the function Θ(z), we obtain

p+
1− |ap|

1 + |ap|
≤ |Θ′(z0)| = (1 + α)

|f ′′(z0)|

|f ′(z0) + α|
2 ,

where |ap| =
|Θ(p)(0)|

p! = 1+p
1+α

|cp+1|.
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Therefore, we take

p+
1− 1+p

1+α
|cp+1|

1 + 1+p
1+α

|cp+1|
≤

4

1 + α
|f ′′(z0)|

and

|f ′′(z0)| ≥
1 + α

4

(

p+
1 + α− (1 + p) |cp+1|

1 + α+ (1 + p) |cp+1|

)

.

Now, we will prove that the inequality (1.11) is sharp. Choose arbitrary
e ∈ [0, 1]. Let

f(z) =

∫ z

0

1 + et− αetp − αtp+1

1 + et+ etp + tp+1
dt.

Then

f ′(z) =
1 + ez − αezp − αzp+1

1 + ez + ezp + zp+1
,

f ′′(z) =

(

e− αepzp−1 − α(p+ 1)zp
) (

1 + ez + ezp + zp+1
)

(1 + ez + ezp + zp+1)
2

−

(

e + epzp−1 + (p+ 1)zp
) (

1 + ez − αezp − αzp+1
)

(1 + ez + ezp + zp+1)
2

and

f ′′(1) =
(e− αep− α(p+ 1)) (1 + e+ e+ 1)

(1 + e+ e+ 1)2

−
(e+ ep+ (p+ 1)) (1 + e− αe− α)

(1 + e+ e+ 1)
2

= −
1 + α

4

(

p+
1− e

1 + e

)

.

Thus, we take

|f ′′(1)| =
1 + α

4

(

p+
1− e

1 + e

)

.

Since e = 1+p
1+α

|cp+1|, (1.11) is satisfied with equality. �

Theorem 2.4. Let f(z) = z+cp+1z
p+1+· · · , cp+1 6= 0, p ≥ 1 be a holomorphic

function in the unit disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1. Suppose that,

for some z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0 and ℜf ′(z0) =
1−α
2 . Let b1, b2, . . . , bn be critical points of the function f(z)− z in D that are

different from zero. Then f has the second non-tangential derivative at z0 and

we have the inequality

(1.12)

|f ′′(z0)| ≥
1 + α

4









p+

n
∑

k=1

1− |bk|
2

|z0 − bk|
2 +

(1 + α)
n
∏

k=1

|bk| − (1 + p) |cp+1|

(1 + α)
n
∏

k=1

|bk|+ (1 + p) |cp+1|









.
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In addition, the equality in (1.12) occurs for the function

f(z) =

∫ z

0

1− αtp
n
∏

k=1

t−bk
1−bkt

1 + tp
n
∏

k=1

t−bk
1−bkt

dt,

where b1, b2, . . . , bn are positive real numbers.

Proof. Let Θ(z) be as in the proof of Theorem 2.1 and b1, b2, . . . , bn be critical
points of the function f(z)− z in D that are different from zero.

B(z) =

n
∏

k=1

z − bk

1− bkz

is a holomorphic function in D and |B(z)| < 1 for |z| < 1. By the maximum
principle for each z ∈ D, we have

|Θ(z)| ≤ |B(z)| .

The auxiliary function

Υ(z) =
Θ(z)

B(z)
=
f ′(z)− 1

f ′(z) + α

1
n
∏

k=1

z−bk
1−bkz

is holomorphic in D, and |Υ(z)| < 1 for |z| < 1, Υ(0) = 0 and |Υ(z0)| = 1 for
z0 ∈ ∂D. It can be easily shown a non-tangential derivative of Υ at z0 ∈ ∂D

(see [19]). So, the second non-tangential derivative of f at z0 is obtained.
Moreover, it can be seen that

z0Θ
′(z0)

Θ(z0)
= |Θ′(z0)| ≥ |B′(z0)| =

z0B
′(z0)

B(z0)
.

Besides, by applying some simple calculations, we take

|B′(z0)| =
z0B

′(z0)

B(z0)
=

n
∑

k=1

1− |bk|
2

|z0 − bk|
2 .

Using the inequality (1.5) for the function Υ(z), we obtain

p+
1− |sp|

1 + |sp|
≤ |Υ′(z0)| =

∣

∣

∣

∣

z0Θ
′(z0)

Θ(z0)
−
z0B

′(z0)

B(z0)

∣

∣

∣

∣

= {|Θ′(z0)| − |B′(z0)|} ,

where |sp| =
|Υ(p)(0)|

p! .

Since |sp| =
|Υ(p)(0)|

p! =
(1+p)|cp+1|

(1+α)
n
∏

k=1

|bk|
, we may write

p+

1−
(1+p)|cp+1|

(1+α)
n
∏

k=1

|bk|

1 +
(1+p)|cp+1|

(1+α)
n
∏

k=1

|bk|

≤ (1 + α)
|f ′′(z0)|

|f ′(z0) + α|
2 −

n
∑

k=1

1− |bk|
2

|z0 − bk|
2 ,
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p+

(1 + α)
n
∏

k=1

|bk| − (1 + p) |cp+1|

(1 + α)
n
∏

k=1

|bk|+ (1 + p) |cp+1|
≤ (1 + α)

|f ′′(z0)|

|f ′(z0) + α|
2 −

n
∑

k=1

1− |bk|
2

|z0 − bk|
2

and

p+

n
∑

k=1

1− |bk|
2

|z0 − bk|
2 +

(1 + α)
n
∏

k=1

|bk| − (1 + p) |cp+1|

(1 + α)
n
∏

k=1

|bk|+ (1 + p) |cp+1|
≤

4

1 + α
|f ′′(z0)| .

Therefore, we take the inequality (1.12).
Now, we shall show that the inequality (1.12) is sharp. Let

f(z) =

∫ z

0

1− αtp
n
∏

k=1

t−bk
1−bkt

1 + tp
n
∏

k=1

t−bk
1−bkt

dt.

Then

f ′(z) =

1− αzp
n
∏

k=1

z−bk
1−bkz

1 + zp
n
∏

k=1

z−bk
1−bkz

= −α+
1 + α

1 + zp
n
∏

k=1

z−bk
1−bkz

,

f ′′(z) = − (1 + α)



pzp−1
n
∏

k=1

z−bk
1−bkz

+
n
∑

k=1

1−|bk|
2

(1−bkz)
2

n
∏

s=1
k 6=s

z−bs
1−bsz

zp





(

1 + zp
n
∏

k=1

z−bk
1−bkz

)2

and

f ′′(1) = − (1 + α)



p
n
∏

k=1

1−bk
1−bk

+
n
∑

k=1

1−|bk|
2

(1−bk)
2

n
∏

s=1
k 6=s

1−bs
1−bs





(

1 +
n
∏

k=1

1−bk
1−bk

)2 .

Since b1, b2, . . . , bn are positive real numbers, we take

|f ′′(1)| =
1 + α

4

(

p+

n
∑

k=1

1 + bk

1− bk

)

.

Moreover, since |cp+1| =
1+α
p+1

n
∏

k=1

|bk| , (1.12) is satisfied with equality. �

In the following theorems, if we know the second and the third coefficient in
the expansion of the function f(z) = z + cp+1z

p+1 + cp+2z
p+2 + · · · , then we

obtain more general results on the second non-tangential derivatives of certain
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classes of a holomorphic function in the unit disc at the boundary by taking
into account cp+1, cp+2 and critical points of f(z)− z function. The sharpness
of these inequalities is also proved.

Theorem 2.5. Let f(z) = z+ cp+1z
p+1+ cp+2z

p+2+ · · · , cp+1 6= 0, p ≥ 2 be a

holomorphic function in the unit disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1.

Suppose that, for some z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0 and

ℜf ′(z0) =
1−α
2 . Then f has the second non-tangential derivative at z0 and

(1.13)

|f ′′(z0)| ≥
1 + α

4

[

p+
2 (1 + α− (p+ 1) |cp+1|)

2

(1 + α)2 − (p+ 1)2 |cp+1|
2 + (1 + α)(p+ 2) |cp+2|

]

.

Moreover, the equality in (1.13) occurs for the function

f(z) =

∫ z

0

1− αtp

1 + tp
dt.

Proof. Let Θ(z) be as in the proof of Theorem 2.1. ϑ(z) = zp is a holomorphic
function in the unit disc D, |ϑ(z)| < 1 for |z| < 1. By the maximum principle
for each z ∈ D, we have |Θ(z)| ≤ |ϑ(z)|.

Therefore,

ϕ(z) =
Θ(z)

ϑ(z)

is a holomorphic function in D and |ϕ(z)| < 1 for |z| < 1.
In particular, we have

(1.14) |ϕ(0)| =
1 + p

1 + α
|cp+1| ≤ 1

and

|ϕ′(0)| =
p+ 2

α+ 1
|cp+2| .

In addition, it can be seen that

z0Θ
′(z0)

Θ(z0)
= |Θ′(z0)| ≥ |ϑ′(z0)| =

z0ϑ
′(z0)

ϑ(z0)
.

The function

ψ(z) =
ϕ(z)− ϕ(0)

1− ϕ(0)ϕ(z)

is holomorphic in the unit disc D, |ψ(z)| < 1 for |z| < 1, ψ(0) = 0 and
|ψ(z0)| = 1 for z0 ∈ ∂D. It can be easily shown that the function ψ has a
non-tangential derivative at z0 ∈ ∂D (see [19]). Therefore, the second non-
tangential derivative of f at z0 is obtained.

From (1.3), we obtain

2

1 + |ψ′(0)|
≤ |ψ′(z0)| =

1− |ϕ(0)|
2

∣

∣

∣
1− ϕ(0)ϕ(z0)

∣

∣

∣

2 |ϕ′(z0)| ≤
1 + |ϕ(0)|

1− |ϕ(0)|
|ϕ′(z0)|
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=
1 + |ϕ(0)|

1− |ϕ(0)|
{|Θ′(z0)| − |ϑ′(z0)|} .

Since

ψ′(z) =
1− |ϕ(0)|

2

(

1− ϕ(0)ϕ(z)
)2ϕ

′(z),

|ψ′(0)| =
1− |ϕ(0)|

2

(

1− |ϕ(0)|
2
)2 |ϕ′(0)| =

(1 + α)(p+ 2) |cp+2|

(1 + α)2 − (1 + p)2 |cp+1|
2 ,

we get

2

1 +
(1+α)(p+2)|cp+2|

(1+α)2−(1+p)2|cp+1|
2

≤
1 + 1+p

1+α
|cp+1|

1− 1+p
1+α

|cp+1|

{

(1 + α) |f ′′(z0)|

|f ′(z0) + α|
2 − p

}

=
1 + α+ (1 + p) |cp+1|

1 + α− (1 + p) |cp+1|

{

(1 + α) |f ′′(z0)|

|f ′(z0) + α|
2 − p

}

.

Since

|f ′(z0) + α|
2
≥ [ℜ (f ′(z0) + α)]

2
=

(

1 + α

2

)2

,

we take

p+
2

1 +
(1+α)(p+2)|cp+2|

(1+α)2−(1+p)2|cp+1|
2

1 + α− (1 + p) |cp+1|

1 + α+ (1 + p) |cp+1|
≤

4

1 + α
|f ′′(z0)| .

So, we obtain the inequality (1.13).
To show that the inequality (1.13) is sharp, take the holomorphic function

f(z) =

∫ z

0

1− αtp

1 + tp
dt.

Then

f ′(z) =
d

dz
f(z) =

1− αzp

1 + zp
,

f ′′(z) =
−αpzp−1 (1 + zp)− pzp−1 (1− αzp)

(1 + zp)2
,

f ′′(1) =
−2αp− p (1− α)

4
and

|f ′′(1)| = p
1 + α

4
.

Since |cp+1| =
1+α
1+p

, (1.13) is satisfied with equality. �

If f(z) − z has no critical points different from z = 0 in Theorem 2.5, the
inequality (1.15) can be further strengthened. This is given by the following
theorem.



ESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES 699

Theorem 2.6. Let f(z) = z+ cp+1z
p+1+ cp+2z

p+2+ · · · , cp+1 > 0, p ≥ 2 be a

holomorphic function in the unit disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1

and let f(z)−z has no critical points in D except z = 0. Suppose that, for some

z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0, ℜf
′(z0) =

1−α
2 . Then f

has the second non-tangential derivative at z0 and we have the inequality

(1.15) |f ′′(z0)| ≥
1 + α

4






p−

2(p+ 1) |cp+1|
(

ln
(

(p+1)|cp+1|

1+α

))2

2(p+ 1) |cp+1| ln
(

(p+1)|cp+1|

1+α

)

− (p+ 2) |cp+2|







and

(1.16) |cp+2| ≤
2

p+ 2

∣

∣

∣

∣

(p+ 1)cp+1 ln

(

(p+ 1) |cp+1|

1 + α

)∣

∣

∣

∣

.

In addition, the equality in (1.15) occurs for the function f(z) =
∫ z

0
1−αtp

1+tp
dt

and the equality in (1.16) occurs for the function

f(z) =

∫ z

0

1 + αtpeQ

1− tpeQ
dt,

where 0 < cp+1 < 1, ln
(

(p+1)cp+1

1+α

)

< 0 and Q = 1+t
1−t

ln
(

(p+1)cp+1

1+α

)

.

Proof. Let cp+1 > 0 be in the expression of the function f(z). Let Θ(z), ϕ(z)
and ϑ(z) be as in the proof of Theorem 2.5. Having in mind the inequality
(1.14) and the function f(z) − z has no critical points in D except D − {0},
we denote by lnϕ(z) the holomorphic branch of the logarithm normed by the
condition

lnϕ(0) = ln

(

1 + p

1 + α
cp+1

)

< 0.

The composite function

γ(z) =
lnϕ(z)− lnϕ(0)

lnϕ(z) + lnϕ(0)

is a holomorphic in the unit disc D, |γ(z)| < 1, γ(0) = 0 and |γ(z0)| = 1 for
z0 ∈ ∂D. It can be easily shown a non-tangential derivative of γ at z0 ∈ ∂D (see
[19]). Therefore, the second non-tangential derivative of f at z0 is obtained.

From (1.3), we obtain

2

1 + |γ′(0)|
≤ |γ′(z0)| =

|2 lnϕ(0)|

|lnϕ(z0) + lnϕ(0)|2

∣

∣

∣

∣

ϕ′(z0)

ϕ(z0)

∣

∣

∣

∣

=
−2 lnϕ(0)

ln2 ϕ(0) + arg2 ϕ(z0)
{|Θ′(z0)| − |ϑ′(z0)|} .

Replacing arg2 ϕ(z0) by zero, then

1

1−
(p+2)|cp+2|

2(p+1)|cp+1| ln( 1+p

1+α
|cp+1|)

≤
−1

lnϕ(0)

{

(1 + α) |f ′′(z0)|

|f ′(z0) + α|
2 − p

}
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≤
−1

ln
(

1+p
1+α

|cp+1|
)

{

4

1 + α
|f ′′(z0)| − p

}

.

Thus, we obtain the inequality (1.15) with an obvious equality case.
Likewise, γ(z) function satisfies the assumptions of the Schwarz lemma, we

obtain

1 ≥ |γ′(0)| =
|2 lnϕ(0)|

|lnϕ(0) + lnϕ(0)|2

∣

∣

∣

∣

ϕ′(0)

ϕ(0)

∣

∣

∣

∣

=
−1

2 ln
(

1+p
1+α

|cp+1|
)

p+2
c+1 |ap+2|
1+p
1+α

|cp+1|

and

1 ≥
−1

2 ln
(

1+p
1+α

|cp+1|
)

(p+ 2) |cp+2|

(p+ 1) |cp+1|
.

Therefore, we have

|cp+2| ≤
2

p+ 2

∣

∣

∣

∣

(p+ 1)cp+1 ln

(

(p+ 1) |cp+1|

1 + α

)∣

∣

∣

∣

.

We shall show that the inequality (1.16) is sharp. Let

f(z) =

∫ z

0

1 + αtpeQ

1− tpeQ
dt.

Thus, we get

f ′(z) =
1 + αzpeQ

1− zpeQ

and

f ′(z) = 1 + zpg(z),

where

g(z) = (1 + α)
e

1+z

1−z
ln( p+1

1+α
cp+1)

1− zpe
1+z

1−z
ln( p+1

1+α
cp+1)

.

Then

g′(0) = (p+ 2) cp+2.

Under the simple calculations, we obtain

(p+ 2) cp+2 = 2 ln

(

p+ 1

1 + α
cp+1

)

(p+ 1) cp+1

and

|cp+2| =
2

p+ 2

∣

∣

∣

∣

(p+ 1) cp+1 ln

(

p+ 1

1 + α
|cp+1|

)∣

∣

∣

∣

.
�
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Relation (1.16) shows that inequality (1.15) is stronger than inequality (1.13).
We can note that the inequality (1.3) has been used in the proofs of Theorem
2.5 and Theorem 2.6. Thus, there are both cp+1 and cp+2 in the right side of
the inequalities. But, if we use (1.4) instead of (1.3), we obtain weaker but
more simpler inequality (without cp+2).

Theorem 2.7. Let f(z) = z+ cp+1z
p+1+ cp+2z

p+2+ · · · , cp+1 > 0, p ≥ 2 be a

holomorphic function in the unit disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1

and let f(z)−z has no critical points in D except z = 0. Suppose that, for some

z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0, ℜf
′(z0) =

1−α
2 . Then f

has the second non-tangential derivative at z0 and

(1.17) |f ′′(z0)| ≥
1 + α

4

(

p−
1

2
ln

(

(p+ 1) |cp+1|

1 + α

))

.

The inequality (1.17) is sharp and the equality is achieved if and only if f(z)
is the function of the form

f(z) =

∫ z

0

1 + αtpeQ

1− tpeQ
dt,

where 0 < cp+1 < 1, ln
(

(p+1)cp+1

1+α

)

< 0, Q = 1+teiθ

1−teiθ
ln
(

(p+1)cp+1

1+α

)

and θ is a

real number.

Proof. Let cp+1 > 0. Using the inequality (1.4) for the function γ(z), we obtain

1 ≤ |γ′(z0)| =
|2 lnϕ(0)|

|lnϕ(z0) + lnϕ(0)|2

∣

∣

∣

∣

ϕ′(z0)

ϕ(z0)

∣

∣

∣

∣

=
−2 lnϕ(0)

ln2 ϕ(0) + arg2 ϕ(z0)
{|Θ′(z0)| − |ϑ′(z0)|} .

Replacing arg2 ϕ(z0) by zero, then

1 ≤ |γ′(z0)| ≤
−2

lnϕ(0)

{

(1 + α) |f ′′(z0)|

|f ′(z0) + α|
2 − p

}

(1.18)

≤
−2

ln
(

1+p
1+α

|cp+1|
)

{

4

1 + α
|f ′′(z0)| − p

}

.

Therefore, we obtain the inequality (1.17).

If |f ′′(z0)| =
1+α
4

(

p− 1
2 ln

(

(p+1)|cp+1|

1+α

))

from (1.18) and |γ′(z0)| = 1, we

obtain

f(z) =

∫ z

0

1 + αtpe
1+te

iθ

1−teiθ
ln
(

(p+1)cp+1
1+α

)

1− tpe
1+teiθ

1−teiθ
ln
(

(p+1)cp+1
1+α

) dt.
�

In the following theorem, we shall give an estimate below |f ′′(z0)| according
to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and
z1 6= 0.
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Theorem 2.8. Let f(z) = z+ c2z
2+ · · · be a holomorphic function in the unit

disc D such that ℜf ′(z) > 1−α
2 , −1 < α < 1 and f ′(z1) = 0, for 0 < |z1| < 1.

Assume that, for some z0 ∈ ∂D, f ′ has a non-tangential limit f ′(z0) at z0 and

ℜf ′(z0) =
1−α
2 . Then f has the second non-tangential derivative at z0 and

|f ′′(z0)| ≥
1 + α

4

(

1 +
1− |z1|

2

|1− z1|
2 +

(1 + α) |z1| − |f ′′(0)|

(1 + α) |z1|+ |f ′′(0)|

×


1 +
(1 + α)

2
|z1|

2
+ |f ′′(0)|

(

1− |z1|
2
)

|f ′′(z1)| − (1 + α)
(

1− |z1|
2
)

|f ′′(z1)| − (1 + α) |f ′′(0)|

(1 + α)
2
|z1|

2
+ |f ′′(0)|

(

1− |z1|
2
)

|f ′′(z1)|+ (1 + α)
(

1− |z1|
2
)

|f ′′(z1)|+ (1 + α) |f ′′(0)|

1− |z1|
2

|1− z1|
2







.(1.19)

The inequality (1.19) is sharp, with equality for each possible values |f ′′(0)| =
(1 + α) c and |f ′′(z1)| = (1 + α) d.

Proof. Let

s(z) =
z − z1

1− z1z

and l : D → D be a holomorphic function and a point z1 ∈ D in order to
satisfy

(1.20) |l(z)| ≤
|l(z1)|+ |s(z)|

1 + |l(z1)| |s(z)|
.

If k : D → D is a holomorphic function and 0 < |z1| < 1, letting

l(z) =
k(z)− k(0)

z
(

1− k(0)k(z)
)

in (1.20), we obtain

∣

∣

∣

∣

∣

k(z)− k(0)

1− k(0)k(z)

∣

∣

∣

∣

∣

≤ |z|

∣

∣

∣

∣

k(z1)−k(0)

z1(1−k(0)k(z1))

∣

∣

∣

∣

+ |s(z)|

1 +

∣

∣

∣

∣

k(z1)−k(0)

z1(1−k(0)k(z1))

∣

∣

∣

∣

|s(z)|

and

(1.21) |k(z)| ≤
|k(0)|+ |z| |H|+|s(z)|

1+|H||s(z)|

1 + |k(0)| |z| |H|+|s(z)|
1+|H||s(z)|

,

where

H =
k(z1)− k(0)

z1

(

1− k(0)k(z1)
) .

Without loss of generality, we will assume that z0 = 1. If we take

k(z) =
Θ(z)

z z−z1
1−z1z

,

then

k(0) =
Θ′(0)

−z1
, k(z1) =

Θ′(z1)
(

1− |z1|
2
)

z1
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and

H =

Θ′(z1)(1−|z1|
2)

z1
+ Θ′(0)

z1

z1

(

1 + Θ′(0)
z1

Θ′(z1)(1−|z1|
2)

z1

) ,

where |H | ≤ 1. Let |k(0)| = κ and

M =

∣

∣

∣

∣

Θ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

+
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

|z1|

(

1 +
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

∣

∣

∣

∣

Θ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

) .

From (1.21), we take

|Θ(z)| ≤ |z| |s(z)|
κ+ |z| M+|s(z)|

1+M|s(z)|

1 + κ |z| M+|s(z)|
1+M|s(z)|

and
(1.22)

1− |Θ(z)|

1− |z|
≥

1 + κ |z| M+|s(z)|
1+M|s(z)| − κ |z| |s(z)| − |s(z)| |z|

2 M+|s(z)|
1+M|s(z)|

(1− |z|)
(

1 + κ |z| M+|s(z)|
1+M|s(z)|

) = Σ(z).

Let q(z) = 1 + κ |z| M+|s(z)|
1+M|s(z)| and v(z) = 1 +M |s(z)|. Then

Σ(z) =
1− |z|

2
|s(z)|

2

(1− |z|) q(z)v(z)
+M |s(z)|

1− |z|
2

(1− |z|) q(z)v(z)
+Mκ

1− |s(z)|
2

(1− |z|) q(z)v(z)
.

Since

lim
z→1

q(z) = 1 + κ, lim
z→1

v(z) = 1 +M

and

1− |s(z)|
2
= 1−

∣

∣

∣

∣

z − z1

1− z1z

∣

∣

∣

∣

2

=

(

1− |z1|
2
)(

1− |z|
2
)

|1− z1z|
2 ,

passing to the non-tangential limit in (1.22) gives

|Θ′(1)| ≥
2

(1 + κ) (1 +M)

(

1 +
1− |z1|

2

|1− z1|
2 +M + κM

1− |z1|
2

|1− z1|
2

)

= 1 +
1− |z1|

2

|1− z1|
2 +

1− κ

1 + κ

(

1 +
1−M

1 +M

1− |z1|
2

|1− z1|
2

)

.

In addition, since

1− κ

1 + κ
=

1− |k(0)|

1 + |k(0)|
=

1−
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

1 +
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

=
(1 + α) |z1| − |f ′′(0)|

(1 + α) |z1|+ |f ′′(0)|
,
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1−M

1 +M
=

1−

∣

∣

∣

∣

∣

Θ′(z1)(1−|z1|

2)
z1

∣

∣

∣

∣

∣

+
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

|z1|

(

1+
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

∣

∣

∣

∣

Θ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

)

1 +

∣

∣

∣

∣

Θ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

+
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

|z1|

(

1+
∣

∣

∣

Θ′(0)
z1

∣

∣

∣

∣

∣

∣

∣

Θ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

)

and

1−M

1 +M
=

(1+α)2|z1|
2+|f ′′(0)|(1−|z1|

2)|f ′′(z1)|−(1+α)(1−|z1|
2)|f ′′(z1)|−(1+α)|f ′′(0)|

(1+α)2|z1|
2+|f ′′(0)|(1−|z1|

2)|f ′′(z1)|+(1+α)(1−|z1|
2)|f ′′(z1)|+(1+α)|f ′′(0)|

,

we obtain

|Θ′(1)| ≥ 1 + 1−|z1|
2

|1−z1|
2 +

(1+α)|z1|−|f ′′(0)|
(1+α)|z1|+|f ′′(0)|

×
[

1 +
(1+α)2|z1|

2+|f ′′(0)|(1−|z1|
2)|f ′′(z1)|−(1+α)(1−|z1|

2)|f ′′(z1)|−(1+α)|f ′′(0)|
(1+α)2|z1|

2+|f ′′(0)|(1−|z1|
2)|f ′′(z1)|+(1+α)(1−|z1|

2)|f ′′(z1)|+(1+α)|f ′′(0)|

1−|z1|
2

|1−z1|
2

]

.

From definition of Θ(z), we have

Θ′(z) =
(1 + α) f ′′(z)

(f ′(z) + α)
2

and

|Θ′(1)| =
(1 + α) |f ′′(1)|

|f ′(1) + α|
2 ≤

4

1 + α
|f ′′(1)| .

Therefore, we obtain the inequality (1.19).
Now, we shall show that the inequality (1.19) is sharp.
Since

k(z) =
Θ(z)

z z−z1
1−z1z

is a holomorphic function in the unit disc and |k(z)| ≤ 1 for |z| < 1, we obtain

|Θ′(0)| ≤ |z1|

and

|Θ′(z1)| ≤
|z1|

1− |z1|
2 .

We take z1 ∈ (−1, 0) and arbitrary two numbers c and d, such that 0 ≤ c ≤

(1 + α) |z1|, 0 ≤ d ≤ (1 + α) |z1|

1−|z1|
2 .

Let

W =

(1−|z1|
2)d

z1
+ c

z1

z1

(

1 + cd
1−|z1|

2

z1

) =
1

z21

d
(

1− |z1|
2
)

+ c

1 + cd
1−|z1|

2

z1

.
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The auxiliary function

τ(z) = z
z − z1

1− z1z

−c
z1

+ z
W+

z−z1
1−z1z

1+W
z−z1
1−z1z

1− c
z1
z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

is holomorphic in D and |τ(z)| < 1 for |z| < 1. Let

f ′(z)− 1

f ′(z) + α
= z

z − z1

1− z1z

−c
z1

+ z
W+

z−z1
1−z1z

1+W
z−z1
1−z1z

1− c
z1
z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

and

(1.23) f ′(z) =

1 + αz z−z1
1−z1z

−c

z1
+z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

1− c

z1
z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

1− z z−z1
1−z1z

−c

z1
+z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

1− c

z1
z

W+
z−z1
1−z1z

1+W
z−z1
1−z1z

.

Thus, we take |f ′′(0)| = (1 + α) c,

|f ′′(z1)|

1 + α
=

z1

1− z21

−c
z1

+Wz1

1− c
z1
z1W

=
z1

1− z21

−c
z1

+ 1
z2
1

d(1−|z1|
2)+c

1+cd
1−|z1|

2

z1

z1

1− c
z1
z1

1
z2
1

d(1−|z1|
2)+c

1+cd
1−|z1|

2

z1

and

|f ′′(z1)| = (1 + α) d.

From (1.23), with the simple calculations, we obtain

|f ′′(1)| =
1 + α

4



1 +
1−z2

1

(1−z1)
2 +

(

1+
1−z

2
1

(1−z1)2
1−W 2

(1+W )2

)

(

1−
c
z1

)

+
c
z1

(

1+
1−z

2
1

(1−z1)2
1−W 2

(1+W )2

)

(

1−
c
z1

)

(

1−
c
z1

)2





=
1 + α

4

[

1 +
1−z2

1

(1−z1)
2 +

1+
c
z1

1−
c
z1

(

1 +
1−z2

1

(1−z1)
2

1−W 2

(1+W )2

)

]

=
1 + α

4

[

1 +
1−z2

1

(1−z1)
2 + c+z1

−c+z1

(

1 +
1−z2

1

(1−z1)
2

z2
1+cd(1−z2

1)−d(1−z2
1)−c

z2
1+cd(1−z2

1)+d(1−z2
1)+c

)]

.

Since z1 ∈ (−1, 0), the last equality show that (1.19) is sharp. �
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