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ON INDEFINITE LOCALLY CONFORMAL

COSYMPLECTIC MANIFOLDS

Fortuné Massamba, Ange Maloko Mavambou, and Samuel Ssekajja

Abstract. We prove that there exist foliations whose leaves are the max-
imal integral null manifolds immersed as submanifolds of indefinite locally
conformal cosymplectic manifolds. Necessary and sufficient conditions for
such leaves to be screen conformal, as well as possessing integrable dis-
tributions are given. Using Newton transformations, we show that any
compact ascreen null leaf with a symmetric Ricci tensor admits a totally
geodesic screen distribution. Supporting examples are also obtained.

1. Introduction

Almost contact structures provide a counterpart of almost complex struc-
tures in odd dimension and include several classes of special importance as
contact, Sasakian and cosymplectic ones [3]. The notion of almost cosym-
plectic manifolds was introduced by Goldberg and Yano in [10]. In fact, they
extended earlier results on almost Kähler manifolds which says that if the cur-
vature transformation of the almost Kähler metric commutes with the almost
complex metric, then the latter is integrable. The simplest examples of such
manifolds are those locally formed by the products of almost Kählerian mani-
folds and the real line R (or the circle S1).

In this paper, we are specially interested in indefinite locally conformal de-
formations of almost cosymplectic manifolds, by paying attention to the geom-
etry of one of its canonical foliations. In the Riemannian case and under some
special conformal deformation, Olszak in [16] proved that such manifolds are
almost α-Kemnotsu. In the same case, the first two authors in [13] proved that
the class of these deformations contain the one of bundle-like metric structures.

Null geometry of submanifolds of semi-Riemannian manifolds is remarkably
different from the geometry of submanifolds immersed in a Riemannian mani-
fold by the fact that the normal vector bundle of a null submanifold intersects
with its tangent bundle. This aspect makes null geometry difficult to study
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despite having numerous applications in other fields like mathematical physics.
The study of null submanifolds of a semi Riemannian manifold was initiated
by Duggal-Bejancu [8] and Kupeli [12] and later by many authors [11], [14],
[6] and many other references therein. Geometry of submanifolds in locally
conformal cosymplectic manifolds as well as cosymplectic manifolds has also
been studied by many authors, for instance [5], [10], [13], [15] and [16].

We consider a locally conformal cosymplectic manifold endowed with an
indefinite metric, and we study the leaves (as submanifolds) of the foliations
which are coming from the distributions generated by the Pfaffian equation
ω = 0, ω being the characteristic 1-form of the ambient manifold under con-
sideration, P : x ∈ M(c) 7→ RVx ⊕ RBx, where c = g(Bx, Bx) and RVx and
RBx denotes line bundles locally spanned by Vx and Bx, respectively. In this
case the Lee form ω is not required to be parallel as it is the case with locally
conformal Kähler. But according to different positions of the Lee vector field
B with respect to the structure vector ξ and due to the causal character of
the Lee vector field, we obtain some rich informations about the geometry of
leaves in M . We give the necessary and sufficient conditions for leaves to be
screen conformal as well as some distributions on them to be integrable. Also,
we give the necessary condition for the induced connection on the leaves to be
a metric connection. By considering a suitable conformal vector field on M , we
show that any ascreen null leaf, with a symmetric Ricci tensor admits a totally
geodesic screen distribution, using the concept of Newton transformations [1],
[2], and [6].

The paper is arranged as follows. In Section 2 we list the basic notions on
locally conformal cosymplectic manifolds as well null geometry. In Section 3
we discuss the geometry of leaves admitting a non-tangential structure vector
field. Finally, in Section 4 we consider a special conformal vector on M and
use it to study the geometry of screen distributions of leaves with a symmetric
induced Ricci tensor.

2. Preliminaries

Let M be a (2m+1)-dimensional almost contact manifold endowed with an
almost contact metric structure (φ, ξ, η), where φ is tensor field of type (1, 1)
on M , a vector field ξ and a 1-form η satisfying the following relations

(2.1) φ2 = −I+ η ⊗ ξ, η(ξ) = 1, φξ = 0, ηφ = 0.

Then the structure (φ, ξ, η, g) is called an indefinite almost contact metric
structure on M if (φ, ξ, η) is an almost contact structure on M and g is a
semi-Riemannian metric on M such that

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M . It follows that η(X) = g(X, ξ). The
fundamental 2-form of M is defined by Φ(X,Y ) = g(X,φY ) for any vector
fields X and Y on M .
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M is said to be almost cosymplectic if the forms η and Φ are closed, that
is, dη = 0 and dΦ = 0, d being the operator of the exterior differentiation (see
[10]). If M is almost cosymplectic and its almost contact structure (φ, ξ, η) is
normal, then M is called cosymplectic. The normality condition says that the
torsion tensor field

(2.3) [φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ defined by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ].

It is well-known that a necessary and sufficient condition for the almost contact
metric manifold M to be cosymplectic is ∇φ = 0, where ∇ is the Levi-Civita
connection of M .

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote by Γ(Ξ) the set of smooth sections of the vector bundle Ξ.

Now, let (M,φ, ξ, η, g) be an almost contact metric manifold. Such a mani-
fold is said to be l.c. almost cosymplectic [16] if M has an open covering {Ut}t∈I

endowed with smooth functions σt : Ut −→ R such that over each Ut the almost
contact metric structure (φt, ξt, ηt, gt) defined by

(2.4) φt = φ, ξt = exp(σ(t))ξ, ηt = exp(−σ(t))η, gt = exp(−2σ(t))g,

is almost cosymplectic. If the structures (φt, ξt, ηt, gt) defined in (2.4) are cosym-
plectic, then M is called l.c. cosymplectic.

L.c. almost cosymplectic manifolds were characterized by Vaisman in [17].
This is stated as follows: An almost contact metric manifold M is an l.c. al-

most cosymplectic manifold if and only if there exists a 1-form ω on M such

that

(2.5) dΦ = 2ω ∧ Φ, dη = ω ∧ η and dω = 0.

Moreover, an l.c. almost cosymplectic (respectively, an l.c. cosymplectic) man-
ifold M is almost cosymplectic (respectively, cosymplectic) if and only if ω = 0.
If ω has no singular points, M was termed, by Capursi and Dragomir in [4],
strongly non-cosymplectic.

Assume that (M,φ, ξ, η, g) is an l.c. almost cosymplectic manifold. Then
the relations in (2.5) are satisfied for a certain 1-form ω. For any t, over open
set Ut, the structure (φt, ξt, ηt, gt) given by (2.4) is almost cosymplectic and
dσt = ω.

Now, we give a proof to the formula (3.3) in [16]. Let ∇ and ∇t be the Levi-
Civita connections associated with the metrics g and gt, respectively. Then,
for any vector fields X and Y on M ,

(2.6) ∇t
XY = ∇XY − ω(X)Y − ω(Y )X + g(X,Y )B,

where B is the vector field defined by g(B,X) = ω(X).
Note that the vector field B defined in (2.6) is explicitly given by B =

gradσt, over any Ut.
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As proved in [13], an almost contact metric manifold M is l.c. almost cosym-

plectic if and only if there exists a 1-form ω on M such that dω = 0 and

2g((∇Xφ)Y, Z) = g(N1(Y, Z), φX) + 2ω(φY )g(X,Z)− 2ω(φZ)g(X,Y )

− 2ω(Y )g(φX,Z)− 2ω(Z)g(X,φY )(2.7)

for any vector fields X , Y and Z on M , where N1(X,Y ) = [φ, φ](X,Y ) +
2dη(X,Y )ξ.

For the covariant derivative ∇φ and using (2.7), we have

(2.8) (∇ξφ)ξ = φB and (∇ξφ)X = ω(φX)ξ + η(X)φB.

Let us consider a (1, 1)-tensor field h on M by [16]

(2.9) hX = ∇Xξ − ω(ξ)X + η(X)B

for any X ∈ Γ(TM). This leads to

(2.10) ∇ξξ = −B + ω(ξ)ξ.

Using (2.4) and (2.1), we obtain on each Ut, exp(−σt)∇
t
Xξt = hX . Note that

the linear operator h is symmetric and satisfies (see [16] for details)

(2.11) hφ+ φh = 0, hξ = 0 and trace(h) = 0.

As an example of l.c. almost cosymplectic manifold, we have the following.

Example 2.1. Consider a 9-dimensional semi-Riemannian manifold M9 =
{p ∈ R

9 |x1 > 1, y1 > 1}, where p = (x1, x2, x3, x4, y1, y2, y3, y4, z) are the
standard coordinates in R

9. The vectors fields X1 = e−z−x1y1{∂x1 + ∂y1},
X2 = e−z−x1y1{∂x2 + ∂y2}, X3 = e−z−x1y1∂x3, X4 = e−z−x1y1∂x4, Y1 =
e−z−x1y1{∂x1 − ∂y1}, Y2 = e−z−x1y1{∂x2 − ∂y2}, Y3 = −e−z−x1y1∂y3, Y4 =
−e−z−x1y1∂y4, Z = e−z−x1y1∂z are linearly independent at each point of M .
Let g be the indefinite metric on M defined by g(Xi, Xi) = g(Yi, Yi) = −1 for
i = 1, 2 and g(Xi, Xi) = g(Yi, Yi) = 1 for i = 3, 4, g(Xi, Yj) = 0 and g(ξ, ξ) = 1.
Let η be the 1-form on M defined by η = ez+x1y1dz, then the structure vector
field is ξ = e−z−x1y1∂z. Let φ be the (1, 1)-tensor field defined by, φX1 = −Y1,
φY1 = X1, φX2 = −Y2, φY2 = X2, φX3 = Y3, φY3 = −X3, φX4 = Y4,
φY4 = −X4, φξ = 0. By linearity of φ and g, the relations (2.2) are satisfied
thus, (φ, ξ, η, g) defines an almost contact metric structure on M9. We have
also dη = ez+x1y1{y1dx1 ∧ dz + x1dy1 ∧ dz}. By straightforward calculations
we obtain Φ = e2(z+x1y1){ 1

2dx1 ∧ dy1 +
1
2dx2 ∧ dy2 + dx3 ∧ dy3 + dx4 ∧ dy4}.

By letting ω = y1dx1 + x1dy1 + dz, we have dη = ω ∧ η and dΦ = 2ω ∧ Φ and
dω = 0, which show that (M9, φ, ξ, η, g) is an l.c. almost cosymplectic manifold
with the dual vector field B of ω given by B = e−2(z+x1y1){ y1

2 ∂x1+x1∂y1+∂z}.

Let M be a (2n+1)-dimensional indefinite l.c. almost cosymplectic manifold
of index q, 0 < q < 2n + 1. Let us set c = g(B,B) ∈ C∞(M) and Sign(B) =
{x ∈ M : Bx = 0}. Note that c and Sing(B) determine the causal character of
B, so it may be c = 0 and Sing(B) = ∅ when B is null.
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From now on, the characteristic 1-form ω given in (2.5) does not vanish,
unless otherwise started.

Since M is an l.c. almost cosymplectic, it admits a canonical foliation F of
codimension r whose leaves are the maximal connected integral manifolds of
the Pfaffian equation ω = 0 (see [4] for details and references therein).

Let (TF)c be the complementary distribution to TF in TM . Then, its
dimension is r.

First, assume that c = g(B,B) 6= 0. Then, if it is easy to see that the index
of each leaf L of F is given by

ind(L) = q − s,

where s = ind((TF)c) with 0 ≤ s ≤ r.
Now we assume that c = 0. Then B ∈ TF . Set

Rad(TF)x = (TF)x ∩ (TF⊥)x, x ∈ M.

It is easy to see that B ∈ Rad(TF). Let S(TF) be a distribution on M such
that

(2.12) TF = S(TF) ⊥ Rad(TF).

The screen distribution S(TF) is seen as the complementary bundle ofRad(TF)
in TF . It is then a rank (n− p− dimR Rad(TF)) non-degenerate distribution
overF . In fact, there are infinitely many possibilities of choices for such a distri-
bution provided the foliation F is paracompact, but each of them is canonically
isomorphic to the factor vector bundle TF/Rad(TF).

Case 1 : If ω(ξ) = 0, i.e., ξ ∈ TF and using (2.2), one has g(φB, φB) =
g(B,B) − ω(ξ)2 = 0, and since g(φB,B) = 0, the vector field φB belongs to
TF and is also null and it may be in the radical distribution or not.

As the structure vector field ξ belongs to TF , we assume that ξ ∈ S(TF).
If r = 1, then by Proposition 2.2 in [8] dimR(Rad(TF))x = 1 for any x ∈ M .

Let RB be the line bundle spanned by the vector field B. Since Sign(B) = ∅,
we have Rad(TF) = RB. Also φB /∈ Rad(TF) which means that φB ∈
S(TF). Therefore L is a null hypersurface immersed in (M, g). Let S(TF)⊥

be an orthogonal complementary vector bundle to S(TF) in TM |F . Consider
a complementary vector bundle F of RB in S(TF)⊥ and take V ∈ Γ(F |U) a
locally non-zero section defined on the open subset U ⊂ M . Then ω(V ) 6= 0,
otherwise S(TF)⊥ would be degenerate at a point of U (see [8, p. 79] for more
details). We define on U a vector field

(2.13) NV =
1

ω(V )

{

V −
g(V, V )

2ω(V )
B

}

.

It is easy to see that

(2.14) ω(NV ) = 1 and g(NV , NV ) = g(NV ,W ) = 0

for any W ∈ Γ(S(TF)|U). If we consider another coordinate neighborhood
U∗ ⊆ M such that U ∩ U∗ 6= ∅. As both RB and F are vector bundles over
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F of rank 1, we have B∗ = βB and V ∗ = γV , where β and γ are non-
zero smooth functions on U ∩ U∗. It follows that N∗

V ∗
is related with NV on

U ∩ U∗ by N∗

V ∗
= (1/β)NV . Therefore, the vector bundle F induces a vector

bundle tr(TF) of rank 1 over F such that, locally, the equations in (2.14)
are satisfied. Finally, we consider another complementary vector bundle E to
RB in S(TF)⊥ and by using (2.13), for both F and E, we obtain the same
tr(TF). As g(φNV , NV ) = 0, we have φNV ∈ S(TF). From (2.2), we have
g(φNV , φB) = 1. Therefore, {φRB ⊕ φRNV } (direct sum but not orthogonal)
is a non-degenerate vector subbundle of S(TF) of rank 2. Since ξ ∈ S(TF) and
g(φNV , ξ) = g(φB, ξ) = 0, there exists a non-degenerate invariant distribution
D0 of rank 2n− 4 such that

(2.15) S(TF) = {φRB ⊕ φRNV } ⊥ D0 ⊥ Rξ,

and the tangent space of F is decomposed as follows:

TF = {φRB ⊕ φRNV } ⊥ D0 ⊥ Rξ ⊥ RB.(2.16)

If r > 1, then the radical Rad(TF) is of rank p with 1 ≤ p < min{2n+1− r, r}
and L is a p-null submanifold.

Case 2 : If ω(ξ) 6= 0, i.e., ξ /∈ TF . Therefore, L is a null submanifold
immersed in M . This holds even when φB /∈ Rad(TF). In this case, ξ takes
the form

ξ = ξTF + ξtr(TF),

where ξTF and ξtr(TF) are the tangential and transversal components of ξ in M ,
respectively. But if φB ∈ Rad(TF), then r ≥ 2 and there exists a distribution
D2 of k with 0 ≤ k < min{2n+ 1− r, r} in TF such that

(2.17) Rad(TF) = D1 ⊕D2,

where D1 = {B, φB}. This means D1 is invariant under φ. By Lemma 1.2
given in [8, p. 142], we have the following. Choose a screen transversal bundle
S(TF⊥), which is semi-Riemannian and complementary to Rad(F) in TF⊥.
Since, for any local basis {E0 = B,E1 = φB,Ek} of Rad(TF), there exists a
local null frame {N0, N1 = φN0, Nk} of sections with values in the orthogo-
nal complement of S(TM⊥) in S(TM)⊥ such that g(Ei, Nj) = δij , it follows
that there exists a null transversal vector bundle ltr(TF) locally spanned by
{N0, N1 = φN0, Nk} [8]. Then,

tr(TF) = ltr(TF) ⊥ S(TF⊥),(2.18)

TM = S(TF) ⊥ S(TF⊥) ⊥ {Rad(TF)⊕ ltr(TF)}.(2.19)

It is easy to check that φD2 ⊆ S(TF). The latter means there exists a subbun-
dle L2 of rank k in ltr(TF) such that φL2 ⊆ S(TF). Also there exists a sub-
bundle S in S(TF⊥) such that φS ⊆ S(TF). The bundle {φD2⊕φL2⊕φS} is a
subbundle of S(TF) of rank at least 2. Therefore there exists a non-degenerate
invariant distribution D0 of even rank such that

(2.20) S(TF) = {φD2 ⊕ φL2 ⊕ φS} ⊥ D0.
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Thus, in this case, L is a quasi generalized CR-null submanifold immersed in
M (see [14] for more details of quasi generalized CR concept). Therefore, we
have the following theorem.

Theorem 2.2. Let M be a (2n+ 1)-dimensional indefinite l.c. almost cosym-

plectic manifold of index q, where 0 < q < 2n+ 1 with Sign(B) = ∅. Then

(i) If c 6= 0, then the index of each leaf L of F is given by ind(L) = q − s,

where s = ind((TF)c) with 0 ≤ s ≤ r. Moreover, L is totally geodesic

r codimensional semi-Riemannian submanifold of (M, g) if and only if

the Lee form ω is parallel.

(ii) If c = 0, then each leaf of F is either a null hypersurface or a quasi

generalized CR-null submanifold of (M, g).

Example 2.1 shows that c = g(B,B) = 1
2e

−2(z+x1y1){−2x2
1 − y21 + 2}, which

is always different from zero, since −2x2
1 − y21 + 2 6= 0 for x1 > 0 and y1 > 0.

The item (ii) in Theorem 2.2 is supported by the following example.

Example 2.3. Consider M a 7-dimensional semi-Riemannian manifold M7 =
{p ∈ R

7 |x1 > 0, y3 > 0}, where p = (x1, x2, x3, y1, y2, y3, z) are the standard
coordinates in R

7.
The vectors fields X1 = 1

x1+y3
∂x1, Y1 = 1

x1+y3
∂y1, X2 = 1

x1+y3
∂x2, Y2 =

1
x1+y3

∂y2, X3 = 1
x1+y3

∂x3, Y3 = − 1
x1+y3

∂y3, Z = 1
x1+y3

∂z are linearly inde-

pendent at each point of M . Let g be the indefinite metric on M defined by
g(Xi, Xj) = g(Yi, Yj) = −δi,j for any i, j = 1, 2, g(X3, X3) = g(Y3, Y3) = 1,
g(ξ, ξ) = 1, g(Xl, Xk) = g(Yl, Yk) = 0 for all l 6= k, l, k = 1, 2, . . . , 7. Let η

be the 1-form on M defined by η = (x1 + y3)dz and the structure vector field
given by ξ = 1

x1+y3
∂z. Let φ be the (1, 1)-tensor field defined by, φX1 =

−Y1, φY1 = X1, φX2 = −Y2, φY2 = X2, φX3 = Y3, φY3 = −X3, φX4 =
Y4, φY4 = −X4, φξ = 0. By linearity of φ and g the quadruplet (φ, ξ, η, g)
defines an almost contact metric structure on M7. Take σ = ln(x1 + y3). It
follows that ω = 1

x1+y3
(dx1+dy3), then clearly we have dη = ω∧η. The 2-form

fundamental is given by Φ = (x1+y3)
2{−dx1∧dy1−dx2∧dy2+dx3∧dy3}, which

satisfies dΦ = 2ω ∧ Φ. The Lee vector field (i.e., the dual vector field of ω) is
given by B = 1

(x1+y3)2
(X1 + Y3). It follows that c = g(B,B) = 0 and thus B is

a null vector field. It is easy to see that ω(ξ) = 0 and for p ∈ M7, the distribu-
tion Dp = {X ∈ TpM

7 : ω(X) = 0} is spanned by {X2, X3, Y1, Y2, B, ξ}. The
non-vanishing components of the Lie brackets are [X2,3, B] = 2

(x1+y3)4
X2,3 and

[Y1,2, B] = 2
(x1+y3)4

Y1,2, which prove that the distribution D is integrable and

therefore admits a foliation F whose leaves are null hypersurfaces immersed in
M7. In this case the anti-Lee vector field V = −φB = 1

(x1+y3)2
{X3−Y1} ∈ TF .

The transversal vector field is given by N = 1
2 (x1 + y3)

2{−X1 + Y3}.

Note that if the ambient space M is an indefinite l.c. cosymplectic manifold,
then h = 0 and B = ω(ξ)ξ (see [13] and [16]). In this case the condition c = 0
implies ω(ξ) = 0. Therefore, we have the following.



732 F. MASSAMBA, A. M. MAVAMBOU, AND S. SSEKAJJA

Lemma 2.4. There exist no null hypersurfaces immersed in an indefinite l.c.

cosymplectic manifold with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0.

From now on, we consider the leaf L of the foliation F to be a null hypersur-

face immersed in M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0 (Theorem
2.2).

According to the terminology in [8, p. 79], the portion of tr(TF) over a
leaf L of F is the null transversal vector bundle of L with respect to the
screen distribution S(TF)|L (see [7] for more details). By definition of null
hypersurface, (2.18) and (2.19), we obtain the decomposition

(2.21) TM = S(TF) ⊥ {TF⊥ ⊕ tr(TF)} = TF ⊕ tr(TF).

Let tan : TM −→ TF and tra : TM −→ tr(TF) be the projections associated
with (2.21). We set

∇F

XY = tan(∇XY ), H(X,Y ) = tra(∇XY )

AV X = −tan(∇XV ), ∇tr
XV = tra(∇XV )

for any X , Y ∈ TF and any V ∈ tr(TF). Then ∇F is a connection in
TF −→ M , H is a symmetric tr(TF)-valued bilinear form on TF , AV is an
endomorphism of TF , and ∇tra is a connection in tr(TF) −→ M . Then, the
Gauss and Weingarten formulae of F in (M, g) are giving by

(2.22) ∇XY = ∇F

XY +H(X,Y ), ∇XV = −AV X +∇tr
XV.

Similarly, if P denotes the projection morphism of TF onto S(TF) with respect
to the decomposition (2.12), we obtain

(2.23) ∇F

XPY = ∇∗F

X PY +H∗(X,PY ), ∇F

XU = −A∗

UX −∇∗tr
X U.

The details given in [8, p. 83 and 85] show clearly that the pointwise restrictions
of ∇F , ∇tr, H and AV to a leaf L of the foliation F are respectively the
induced connections, the second fundamental form and the shape operator of
L in (M, g). The pointwise restrictions of∇∗F , H∗ and A∗

U to L are respectively
the linear connection, the second fundamental form and the shape operator on
the vector bundle S(TL) −→ L, while the pointwise restriction of ∇∗tr to L is
linear of connection on the vector bundle TL⊥ −→ L.

Keeping the same notations of geometric objects above for the pointwise
restrictions to a leaf L of F , and locally supposing {B,N} is a pair of sections
on a coordinate neighborhood U ∩L ⊂ L (see [8, Theorem 1.1, p. 79], then the
local Gauss-Weingarten equations of F are given by

∇XY = ∇F

XY + B(X,Y )N, ∇XN = −ANX + τ(X)N,(2.24)

∇F

XPY = ∇∗F

X PY + C(X,PY )B, ∇F

XB = −A∗

BX − τ(X)B(2.25)

for all B ∈ Γ(TL⊥), N ∈ Γ(tr(TL)), where B and C are the local second
fundamental forms of L and S(TL), respectively, and τ is a differential 1-form
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on L. Notice that ∇∗F is a metric connection on S(TL) while ∇F is generally
not a metric connection and satisfies the following relation

(∇F

Xg)(Y, Z) = B(X,Y )λ(Z) + B(X,Z)λ(Y )(2.26)

for all X,Y, Z ∈ Γ(TF), where λ is a 1-form on L given λ(·) = g(·, N). It is
well-known from [8] that B is independent of the choice of S(TL) and it satisfy

(2.27) B(X,B) = 0, X ∈ Γ(TL).

The local second fundamental forms B and C are related to their shape op-
erators by the following equations g(A∗

BX,Y ) = B(X,Y ), g(A∗

BX,N) = 0,
g(ANX,PY ) = C(X,PY ) and g(ANX,N) = 0 for all X,Y ∈ Γ(TL). Note
that A∗

B is S(TF)-valued, self-adjoint and satisfies A∗

BB = 0.
In this case, ξ is decomposed as follows.

(2.28) ξ = ξS + aB + bN,

where ξS denotes the component of ξ on S(TL) while a and b are non-zero
smooth functions on M . If ξS = 0, then L is called an ascreen null hypersurface

[11].

Theorem 2.5. Let L be a leaf of a foliation F in an l.c. almost cosymplec-

tic manifold M such that c = 0 and ω(ξ) 6= 0. Then L is an ascreen null

hypersurface of F if and only if φRad(TF) = φltr(TF).

Proof. The proof follows from a straightforward calculation. �

Example 2.6. Consider a 7-dimensional semi-Riemannian manifold M7 =
{p ∈ R

7 |x1 > 0, y1 > 0, z > 0} with a metric of signature (−,+,+,−,+,+,+)
with respect to the canonical basis {∂xi, ∂yi, ∂z} for i = 1, 2, 3. The vectors
fields X1 = e−σ∂x1, Y1 = e−σ∂y1, X2 = e−σ∂x2, Y2 = e−σ∂y2, X3 = e−σ∂x3,
Y3 = −e−σ∂y3, Z = e−σ∂z, where σ = x1 + y1 +

√
2z, are linearly inde-

pendent at each point of M . Let g be the indefinite metric on M defined
by g(X1, X1) = g(Y1, Y1) = −1, g(Xi, Xj) = g(Yi, Yj) = δij for i, j = 2, 3,
g(Xl, Xk) = g(Yl, Yk) = 0 for any l 6= k, l, k = 1, 2, 3 and g(ξ, ξ) = 1. Let
η be the 1-form on M defined by η = eσdz and the structure vector field
given by ξ = e−σ∂z. Let φ be the (1, 1)-tensor field defined by, φX1 =
−Y1, φY1 = X1, φX2 = −Y2, φY2 = X2, φX3 = Y3, φY3 = −X3, φX4 =
Y4, φY4 = −X4, φξ = 0. By linearity of φ and g the quadruplet (φ, ξ, η, g)
defines an almost contact metric structure on M . The smooth 1-form ω is lo-
cally given by ω = dσ = dx1+dy1+

√
2dz and satisfies dη = ω∧η. The 2-form

fundamental Φ is given by Φ = e−2σ{−dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3}, and

verifies dΦ = 2ω ∧ Φ. The Lee vector field is given by B = ∂x1 + ∂y1 +
√
2∂z

and satisfies c = g(B,B) = 0. Thus B is a null vector field. It is easy to see

ω(ξ) = e−σ
√
2 6= 0. The distribution Dp = kerωp with p ∈ M7 is spanned

by {X2, X3, Y2, Y3, B}. The non-vanishing components of the Lie brackets are
[X2,3, B] = 4X2,3 and [Y2,3, B] = 4Y2,3, which prove that the distribution D is
integrable and therefore admits a foliation F of codimension 1 and its leaves
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are null hypersurfaces immersed in M7. The transversal vector field is given

by N = − 1
4{∂x1 + ∂y1 −

√
2∂z}. We can easily see that ξ = e−σ

2
√

2
(B +4N) and

also φB = −4φN . Hence, the leaves of F are ascreen null hypersurfaces of M7.

From Theorem 2.5, we notice that if L is an ascreen null hypersurface of F
then dim(φRB ⊕ φRNV ) = 1 and hence TL decomposes as follows

TL = RB ⊥ φRB ⊥ D0,(2.29)

where D0 is a non-degenerate φ invariant distribution, i.e., φD0 = D0.
As the geometry of null hypersurfaces depends on the vector bundles S(TL)

and tr(TL), it is important to investigate the relationship between geometric
objects induced by two screen distributions. The components of the structural
vector field ξ in (2.28) depends on both the screen distribution S(TL) and
the transversal bundle tr(TL) and this is proven as follows. Suppose a screen
S(TL) changes to another screen S(TL)′. The following are some of the local
transformation equations due to this change (see [8] for details):

K ′

i =

2n−1
∑

j=1

K
j
i (Kj − ǫjcjB) ,(2.30)

N ′(X) = N −
1

2
g(K,K)B +K,(2.31)

∇F
′

X Y = ∇F

XY + B(X,Y ){
1

2
g(K,K)B −K}(2.32)

for any X , Y ∈ Γ(TL|U∩L), where K =
∑2n−1

i=1 ciKi, {Ki} and {K ′

i} are
the local orthonormal bases of S(TF) and S(TF)′ with respective transversal

sectionsN andN ′ for the same null section B. Here ci andK
j
i are smooth func-

tions on U and {ǫ1, . . . , ǫ2n−1} is the signature of the basis {K1, . . . ,K2n−1}.
Denote by κ is the dual 1-form of K, characteristic vector field of the screen
change, with respect to the induced metric g = g|L of L →֒ M [8], that is,

(2.33) κ(X) = g(X,K), ∀ X ∈ Γ(TL).

Suppose that the structure vector field ξ in (2.28) is written for a given
screen distribution S(TL). Let ξ = ξS′ + a′B + b′N ′ be another form of the
structure vector field ξ in the distribution S(TL)′. Then we have the following.

Lemma 2.7. If the screen distribution S(TL) changes to another screen

S(TL)′, then b′ = b and ξS′ = ξS + {a − a′ + 1
2g(K,K)b}B − bK. More-

over, the combination in (2.28) is independent of S(TL) if and only if 1-form

κ vanishes identically on L.

3. Geometry of non-tangential leaves of F

This section deals with the geometry of the leaves of the foliations F . First
of all, we define the following.
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A leaf L of F is called non-tangential if ξ satisfies relation (2.28). From
(2.9) we can set

∇Xξ = hX +AX, ∀X ∈ Γ(TF),(3.1)

where A is a (1, 1)-tensor field defined by AX := ω(ξ)X − η(X)B. It is easy to
see that A is symmetric with respect to g, i.e., g(AX,Y ) = g(X,AY ) for any
X,Y ∈ Γ(TF), Aξ = ω(ξ)ξ −B, AB = 0 and AφX − φAX = η(X)φB.

A null hypersurface L of F with c = 0 is said to be screen conformal [8]
if there exists a non-vanishing smooth function ϕ such that AN = ϕA∗

B , and
screen homothetic if ϕ is a constant function.

Theorem 3.1. Let L be a leaf of a foliation F in an l.c. almost cosymplectic

manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Suppose that L is

a non-tangential null hypersurface. Then L is screen conformal if h satisfies

h = ∇∗FξS + {2η − bλ− λ ◦ h} ⊗B − (ω ◦ h)⊗N − bI,

where I denotes the identity on F .

Proof. By straightforward calculations using (3.1), (2.28) and Gauss-Weinge-
tein formulas for L one gets, for any X ∈ Γ(TF),

aA∗

BX + bANX = ∇∗F

X ξS + {X(a)− aτ(X) + C(X, ξS)}B

+ {X(b) + bτ(X) + B(X, ξS)}N −AX − hX.(3.2)

Then taking the g-product of (3.2) with B and N in turn, we get

X(b) + bτ(X) + B(X, ξS) = −g(AX,B)− g(hX,B) and(3.3)

X(a)− aτ(X) + C(X, ξS) = −g(AX,N)− g(hX,N)(3.4)

for any X ∈ Γ(TF). Applying the definition of A to (3.3) and (3.4), we get
g(AX,B) = 0 and g(AX,N) = bλ(X)− η(X). Hence, (3.2) reduces to

aA∗

BX + bANX = ∇∗F

X ξS + {η(X)− bλ(X)− g(hX,N)}B

− g(hX,B)N −AX − hX,(3.5)

from which our assertion follows and ϕ = −a
b
, which completes the proof. �

Theorem 3.2. Let L be a leaf of a foliation F in an l.c. almost cosymplectic

manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Suppose that L is

non-tangential null hypersurface in M . Then S(TL) is integrable if and only

if g(∇∗F

X ξS , Y ) = g(∇∗F

Y ξS , X) for all X,Y ∈ (S(TL)).

Proof. By straightforward calculations using (3.5) and the fact that h is sym-
metric, we have g([X,Y ], N) = 1

b
{g(∇∗F

X ξS , Y )− g(∇∗F

Y ξS , X)} for any X,Y ∈
Γ(S(TL)), which completes the proof. �

The following corollary is obvious.
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Corollary 3.3. Let L be a leaf of a foliation F in an l.c. almost cosymplectic

manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. If L is an ascreen

null hypersurface, then S(TL) is integrable.

Using the Koszul’s formula, the non-vanishing components of the covariant
derivatives on the basis of the TL defined in Example 2.6 are given by ∇XiXi =
−4N and∇Y iYi = −4N for i = 2, 3, from which we deduce B(Xi, Xi) = −4 and
B(Yi, Yi) = −4 and zero otherwise. Also, g(∇UB,N) = 0 for all U ∈ Γ(TF)
which means ∇F

UB has no component along RadTL and hence C = 0 on F .
This means that S(TL) is totally geodesic and therefore integrable.

Next, we study the geometry of distribution D0 in (2.29). Suppose that
ξS = 0, that is L is an ascreen null hypersurface immersed in M . First, we
notice that if Y ∈ Γ(D0), then ω(Y ) = ω(φY ) = 0. Let F be the projection of
TL on to D0. Then by decomposition (2.29) we have

X = FX + λ(X)B −
1

b2
g(X,φB)φB, ∀X ∈ Γ(TF).(3.6)

Applying φ to (3.6) we get

φX = fX +
1

b2
g(X,φB)B + λ(X)φB −

1

b
g(X,φB)ξ(3.7)

for all X ∈ Γ(TF), where fX = φFX .

Theorem 3.4. Let L be a leaf of a foliation F in an l.c. almost cosymplec-

tic manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Suppose

that L is an ascreen null hypersurface. Then D0 is integrable if and only

if, for any X,Y ∈ Γ(D0) and Z ∈ Γ(S(TL)), 2g((∇F

Xf)Y − (∇F

Y f)X,Z) =
g(N1(Y, Z), fX) − g(N1(X,Z), fY ), and in this case f is anti-symmetric on

S(TL).

Proof. Let X,Y ∈ Γ(D0), then ∇XφY = ∇XfY . Then, using this equation
together with (2.7) we derive

2g((∇F

Xf)Y, Z)

= − 2λ(Z)B(X, fY )− 2λ(∇F

XY )ω(φZ) +
2

b2
g(∇F

XY, φB)ω(Z)

−
2

b
g(∇F

XY, φB)η(Z) − 2g(X,φY )ω(Z)B − g(X,Y )ω(φZ)

g(N1(Y, Z), φX), ∀Z ∈ Γ(TF).(3.8)

Then from (3.8) we get

2g((∇F

Xf)Y − (∇F

Y f)X,Z) + 2λ(Z){B(X, fY )− B(Y, fX)}

=
2

b2
g([X,Y ], φB)ω(Z)− 2λ([X,Y ])ω(φZ)−

2

b
g([X,Y ], φB)η(Z)

+ g(N1(Y, Z), φX)− g(N1(X,Z), φY ) + 4g(φX, Y )ω(Z).(3.9)
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Hence, from (3.9) we can see that if D0 is integrable, then

2g((∇F

Xf)Y − (∇F

Y f)X,Z) = g(N1(Y, Z), fX)− g(N1(X,Z), fY )

for all Z ∈ Γ(S(TF)). Conversely, using this relation and (3.9) we can easily
see that g([X,Y ], φB) = 0 and λ([X,Y ]) = 0, which together shows that D0 is
integrable. �

Corollary 3.5. Let L be a leaf of a foliation F in an l.c. almost cosymplectic

manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Suppose that L is

an ascreen null hypersurface. Then D0 is integrable if and only if, B(X, fY )−
B(Y, fX) = 1

2λ(Z){g(N1(Y, Z), fX)− g(N1(X,Z), fY )}, ∀X,Y ∈ Γ(D0), Z ∈

Γ((TL⊥)).

A leaf L of F will be called D0-totally geodesic if for any X,Y ∈ Γ(D0) we
have h(X,Y ) = 0, or equivalently, B(X,Y ) = 0.

Theorem 3.6. Let L be a leaf of a foliation F in an l.c. almost cosymplectic

manifold M with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Suppose that L

is an ascreen null hypersurface. Then L is D0-totally geodesic if and only if

h+A = −ω(ξ)AN on D0.

Proof. By straightforward calculations, using (2.2), (2.24) and (3.1), we have

g(H(X,Y ), B) = g(φ∇XY, φB)− ω(ξ)g((h+A)X,Y )(3.10)

for any X,Y ∈ Γ(D0). Now, applying (2.24) to (3.10) we get

g(H(X,Y ), B) =
1

2
B(X,Y )− b2λ(∇F

XY )− ω(ξ)g((h+A)X,Y ),

from which we deduce that B(X,Y ) = −2b2λ(∇F

XY ) − 2ω(ξ)g((h + A)X,Y ),
which completes the proof. �

It is important to investigate the relationship between some geometric ob-
jects induced, studied above, with the change of the screen distributions. We
know that the local second fundamental form B of L on U ∩L is independent of
the vector bundles (S(TL), S(TL⊥)) and tr(TL). This means that all results
above depending only on B are stable with respect to any change of those vector
bundles. Let P and P ′ be projections of TL on S(TL) and S(TL)′, respectively,
with respect to the orthogonal decomposition of TL. Any vector field X on
L →֒ M can be written as X = PX + λ(X)B = P ′X + λ′(X)B with λ′(X) =
λ(X)+κ(X). Then we have P ′X = PX−κ(X)B and C′(X,P ′X) = C′(X,PY ).
The relationship between the local second fundamental forms C and C′ of the
screen distributions S(TL) and S(TL)′, respectively is given using (2.31) by
C′(X,PY ) = C(X,PY )− 1

2κ(∇
F

XPY +B(X,Y )K). All equations in this section
depending only on the local second fundamental form C (making equations non
unique), are independent of S(TL) if and only if κ(∇F

XPY + B(X,Y )K) = 0.
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Using the changes τ ′(X) = τ(X)+B(X,K) and A∗
′

BX = A∗

BX−B(X,K)B,

the linear connections ∇∗F and ∇∗F
′

associated to the change are related by

∇∗F
′

X P ′Y = ∇∗F

X PY − B(X,PY )K − κ(Y )A∗

BX −X(κ(Y ))B

− {κ(Y )τ(X) +
1

2
κ(∇F

XPY + B(X,Y )K)

−
1

2
B(X,PY )g(K,K)}B.(3.11)

4. Higher order geodesibility of leaves of F

Let L be a leaf of the foliation. In this section L is considered to be an
ascreen null hypersurface immersed in an l.c. almost cosymplectic manifold M

with Sign(B) = ∅ such that c = 0 and ω(ξ) 6= 0. Denote the vector ξt given in
(2.4) by Q. Since L is an ascreen null hypersurface, we have

Q = ξt = eσ(t)ξ = eσ(t)(aB + bN).(4.1)

Let denote the tangential part aeσtB of Q by Q. Then

(4.2) Q = Q− beσ(t)N.

Now, we study the umbilicity of L via the divergence of TrQ, where Tr denotes
the Newton transformation with respect to the operator AN . Applying ∇X to
Q and using (3.1) we have

∇XQ = X(σ(t))Q + eσ(t)(h+A)X, ∀X ∈ Γ(TF).(4.3)

In a similar way using (4.2) and (4.3) we have

∇F

XQ = eσ(t)(h+A)X + beσ(t)ANX +X(σ(t))Q

− {X(b)eσ(t) +X(σ(t))beσ(t) + beσ(t)τ(X) + B(X,Q)}N(4.4)

for any X ∈ Γ(TF). Then from (4.4) we deduce that

g(∇F

XQ, Y ) = eσ(t)g((h+A)X,Y ) + beσ(t)g(ANX,Y ) and,(4.5)

g(∇F

XQ,N) = X(σ(t))g(Q,N) + eσ(t)g(hX,N)(4.6)

for any X ∈ Γ(TF) and Y ∈ Γ(S(TF)).

Proposition 4.1. Let (L, g, c = 0) be an ascreen null hypersurface immersed

in an l.c. almost cosymplectic manifold, with Sign(B) = ∅, ω(ξ) 6= 0 and a

conformal vector field Q = eσ(t)ξ. If the Ricci tensor of the induced connection

∇F is symmetric, then there exists a pair {B,N} on U ⊂ L such that the

corresponding 1-form τ vanishes on any U ∩ L. Moreover, g(Q,B) 6= 0 and

g(Q,N) 6= 0.

Proof. Since L is ascreen, thenQ = eσ(t)ξ = eσ(t)(aB+bN) and thus, g(Q,B) =
beσ(t) 6= 0 and g(Q,N) = aeσ(t) 6= 0. Furthermore, since the Ricci tensor with
respect ∇F is symmetric, then the induced 1-form τ is closed [8]. That is
dτ = 0; so we can set τ = dα. Thus, τ(X) = X(α). If we take B = fB and
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N = 1
f
N , then the corresponding 1-form τ is given by τ (X) = g(∇t

XN,B) =

−X(log f)+ τ(X), where f is a smooth function. Then, one can choose f = eα

and hence τ (X) = 0 for anyX ∈ Γ(TF|U). Since g(Q,B) 6= 0 and g(Q,N) 6= 0,
then {B,N} are the corresponding vectors which satisfies Proposition 4.1. �

We have seen that if L is ascreen null hypersurface immersed in an l.c. almost
cosymplectic manifold M with Sign(B) = ∅, c = 0 and ω(ξ) 6= 0, then S(TL)
is integrable (see Corollary 3.3). Further still, A is screen-valued and AB = 0,
which leads to ANB = 0. The operator AN is also symmetric on S(TL)
and hence diagonalizable. Let l0 = 0, l1, . . . , lm its principal curvatures with
respect to the quasi-orthonormal basis {B,Z1, . . . , Zm}, where {Z1, . . . , Zm} is
the basis S(TL). Associated to the operator AN are the m algebraic invariants
Sr = er(l0, l1, . . . , lm), where er : R

m+1 −→ R denotes the r-th symmetric
polynomial in variables l0, l1, . . . , lm. We usually set S0 = 1 and it is also easy
to see that S1 = tr(AN ), the mean curvature. Furthermore, Sr is called the
r-th mean curvature with respect to AN . Then the Newton transformations Tr

with respect to the operator AN are defined by Tr : TL −→ TL and explicitly
given by the recurrence relation

Tr = (−1)rSrI+AN ◦ Tr−1, 0 ≤ r ≤ m.(4.7)

It is important to know that Tr is also symmetric and commutes with AN . Let

Hr = (m+1
r )

−1
Sr denote the normalized mean curvature with respect to AN

and let further cr = (m+ 1− r) (m+1
r ). The following properties of Tr can be

deduced from (4.7).

tr(Tr) = (−1)r(m+ 1− r)Sr = (−1)rcrHr,(4.8)

tr(AN ◦ Tr) = (−1)r(r + 1)Sr+1 = (−1)rcrHr+1.(4.9)

Details on Newton transformations can be found in [1], [6] and many more
references therein.

Note that the interrelation between the second fundamental forms of the null
hypersurface L and its screen distribution and their respective shape operators
indicates that the null geometry depends on the choice of a screen distribution.
By [8, p. 87], AN and A′

N ′
are related by

A′

N ′X = ANX + δ(X)B +
2n−1
∑

j=1

µj(X)Kj −
2n−1
∑

j=1

cj∇
F

XKj

−
1

2
g(K,K)A∗

BX,(4.10)

where δ =
∑2n−1

j=1 {ǫjcjX(cj) − τ(X)ǫj(cj)
2 + 1

2ǫj(cj)
2B(X,K)− cjC(X,Kj)}

and µj = cj(τ(X) + B(X,K))−X(cj).
The dependence of Tr on S(TL) is as follows. Let Zi ∈ Γ(S(TL)) be an

eigenvector of AN , then it is easy to show that TrZi = (−1)rSi
rZi. Notice that
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(−1)rSi
r is an eigenvalue of Tr corresponding to eigenvector Zi. Then by direct

calculations we have

TrZi = (−1)rSrI+ (−1)r−1Si
r−1ANZi, and(4.11)

T ′

rZi = (−1)rS′

rI+ (−1)r−1S
′i
r−1A

′

N ′Zi.(4.12)

Subtracting (4.11) from (4.12) we deduce that

T ′

r = Tr + (−1)r(S′

r − Sr)I+Sr−1AN

+ (−1)r−1S′i
r−1







δB +

2n−1
∑

j=1

µjKj −

2n−1
∑

j=1

cj∇
FKj −

1

2
g(K,K)A∗

B







,(4.13)

where Sr = (−1)r(S′i
r −Si

r). Hence, from (4.13) we can see that the operators
Tr depends on a chosen section N and on S(TL). Note that Tr is unique if and
only if M is r-maximal (i.e., Sr = 0 for all r).

Next, the divergence of Tr on the screen distribution will be denoted by

div∇
∗

(Tr) and given by

div∇
∗

(Tr) =

m
∑

i=1

(∇F

Zi
Tr)Zi.(4.14)

Since L is null, the divergence div∇
F

(Y ) of a vector Y ∈ Γ(TF) with respect
to the degenerate metric g on L is intrinsically defined by (see [9, p. 136], for
more details and references therein)

div∇
F

(Y ) = div∇
∗

(Y ) + g(∇F

BY,N).(4.15)

Let dVM be the volume element of M with respect to g and a given orientation.
Then, we denote the volume form on F by

dV = iNdVM ,

where iN is the contraction with respect to the vector field N . We have the
following.

Theorem 4.2. Let (L, g, c = 0) be a compact ascreen null hypersurface of a

F in an l.c. almost cosymplectic manifold M of constant sectional curvature,

with Sign(B) = ∅, ω(ξ) 6= 0 and a conformal vector field Q = eσ(t)ξ. If the

Ricci tensor of the induced connection ∇F is symmetric, then
∫

L

(B · g(TrQ,N) + eσ(t)tr(Tr ◦ h) + (−1)rcrω(Q){Hr +Hr+1})dV = 0.

Proof. Our proof follows by computation of the divergence of the vector field
TrQ from (4.15). That is;

div∇
F

(TrQ) = div∇
∗

(TrQ) + g(∇F

BTrQ,N).(4.16)
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Applying (4.14) to (4.16) we obtain

div∇
F

(TrQ) = g(div∇
∗

(Tr), Q) +

m
∑

i=1

ǫig(∇
F

Zi
Q, TrZi) + g(∇BTrQ,N),

from which, after applying (4.5), Proposition 4.1 and the fact that M is a space
form of constant sectional curvature, we get

div∇
F

(TrQ) = eσ(t)tr(Tr ◦ h) + eσ(t)tr(Tr ◦ A)

+ beσ(t)tr(Tr ◦AN ) +B · g(TrQ,N).(4.17)

When L is ascreen, we see from (3.5) that A is screen-valued operator and in
fact AX = ω(ξ)X for any X ∈ Γ(S(TF)). Thus, (4.16) reduces to

div∇
F

(TrQ) = eσ(t)tr(Tr ◦ h) + eσ(t)ω(ξ)tr(Tr)

+ beσ(t)tr(Tr ◦AN ) +B · g(TrQ,N).(4.18)

Finally, our result follows from (4.18) by considering (4.14) and the fact that
L is compact. �

Next we look at some applications of Theorem 4.2 in which the functions
a = η(N), b = η(B) = ω(ξ) and σ(t) are all constants. Hypersurfaces with
constant higher order mean curvatures are of great importance to modern dif-
ferential geometry and have been a focal point of study for the past decades.
For instance, in the analysis of minimal surfaces (surfaces with zero mean curva-
tures) and in the study of physical interfaces between fluids, which are assumed
to have constant mean curvatures (see [2] and many more references therein).
We suppose that L is of constant higher order mean curvature in the rest of
the paper.

Theorem 4.3. Under the assumptions of Theorem 4.2, if the functions a, b

and σ are all constant, then
∫

L

(aB(Sr) + (−1)r−1tr(Tr ◦ h) + ω(ξ)cr{Hr +Hr+1})dV = 0.(4.19)

Proof. By Proposition 4.1 and the fact that B(g(TrQ,N)) = (−1)rB(Srλ(Q))
= (−1)raeσ(t)B(Sr), we complete the proof. �

Theorem 4.4. Let (L, g, c = 0) be a compact ascreen null hypersurface of a

F in an l.c. almost cosymplectic manifold M of constant sectional curvature,

with Sign(B) = ∅, ω(ξ) 6= 0 and a conformal vector field Q = eσ(t)ξ. Let a,

b and σ be constant such that h is tangent to F . If the Ricci tensor of the

induced connection ∇F is symmetric and H1 is constant, then S(TL) is totally
geodesic.
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Proof. By considering r = 0 in (4.19) and multiplying the resultant equation
by H1, we get

∫

L

(H1 +H2
1 )dV = 0.(4.20)

Then substituting r = 1, (4.19) and using T1, properties of h, the fact that
B(S1) = 0, we get

∫

L

(H1 +H2)dV = 0.(4.21)

Then, from (4.20) and (4.21) we have
∫

L
(H2

1 −H2)dV = 0. But, for l1 = · · · =
lm we have

H2
1 −H2 =

1

m(m− 1)





m− 1

m

(

m
∑

i=1

li

)2

− 2

m
∑

i=1

l2i



 .(4.22)

Using Cauchy-Schwarz inequality on (4.22) we get that

H2
1 −H2 ≥

m− 2

m(m− 1)

m
∑

i=1

l2i ≥ 0,(4.23)

with equality if l1 = · · · = lm = 0. Hence, S(TF) is totally geodesic. �

Corollary 4.5. Under the assumptions of Theorem 4.4, if H2 is a positive

constant (or Hr−1 and Hr for r = 1, . . . ,m, are both constant) and tr(Tr ◦h) =
0, then S(TL) is also totally geodesic.

Note that all results above depending only on the local second fundamental
form B are independent of any change of screen distributions.
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