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A WEIGHTED-PATH FOLLOWING INTERIOR-POINT

ALGORITHM FOR CARTESIAN P∗(κ)-LCP OVER

SYMMETRIC CONES

Hossein Mansouri, Mohammad Pirhaji, and Maryam Zangiabadi

Abstract. Finding an initial feasible solution on the central path is the
main difficulty of feasible interior-point methods. Although, some algo-
rithms have been suggested to remedy this difficulty, many practical im-
plementations often do not use perfectly centered starting points. There-
fore, it is worth to analyze the case that the starting point is not exactly
on the central path. In this paper, we propose a weighted-path follow-
ing interior-point algorithm for solving the Cartesian P∗(κ)-linear com-
plementarity problems (LCPs) over symmetric cones. The convergence
analysis of the algorithm is shown and it is proved that the algorithm

terminates after at most O
(
(1 + 4κ)

√
r log Tr(x0⋄s0)

ε

)
iterations.

1. Introduction

The symmetric cone linear complementarity problem (SCLCP) in the stan-
dard form is the problem of finding (x, s) ∈ K ×K such that

s = Ax+ q, 〈x, s〉 = 0,(1)

where A : V −→ V is a linear operator, q ∈ V and K is the symmetric cone
related to the Euclidean Jordan algebra (V , ◦) which is equipped with the
standard inner product 〈x, s〉 := Tr(x ◦ s). The SCLCP is called monotone if
A is a positive semidefinite operator, i.e., for each x ∈ V , 〈x,A(x)〉 ≥ 0.

The SCLCPs are a general class of mathematical problems which include
symmetric cone optimization (SO) problems, convex quadratic symmetric cone
optimization (CQSCO) problems, second-order cone linear complementarity
problems (SOLCPs), semidefinite optimization (SDO) problems and semidef-
inite linear complementarity problems (SDLCPs). So, this is an interesting
research to investigate and analyze the algorithms of solving SCLCPs. There
are many approaches for solving this class of problems. Among them, the path
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following interior-point methods (IPMs) are the most efficient and fundamental
methods which obtain the best complexity bounds.

There are two types of IPMs based on choosing the starting point. Feasible
IPMs, when the initial point and the subsequent iterates are in the interior of
the feasible region and infeasible IPMs (IIPMs) when the initial point and the
subsequent iterates are not necessary feasible. For monotone LCPs (LCPs over
non-negative orthant with positive semidefinite operator), several interior-point
algorithms have been proposed by researchers (for example [11, 12]). In conic
optimization, Faybusovich [5] made the first attempt to generalize IPMs to
SO and SCLCP by using Euclidean Jordan algebras (EJAs). Rangarajan [14]
proved the polynomial time convergence of IPMs for SO. Potra [13] proposed
an infeasible corrector-predictor IPM for monotone SCLCPs.

Gu et al. [7] extended Roos’s algorithm [15] for LO to SO by using the
Nesterov-Todd (NT) search directions. Yoshise [24] analyzed some IPMs for
symmetric cone nonlinear complementarity problem (SCNCP) and proposed
a homogeneous interior-point algorithm for solving this class of mathematical
problems. A theoretical framework of path-following IPMs for Cartesian P∗(κ)-
SCLCP has been established by Luo and Xiu [10]. Wang and Lesaja [23]
proposed a feasible IPM for Cartesian P∗(κ)-SCLCPs and proved that the
complexity bound of their algorithm is O

(

(1 + 4κ)
√
r log 1

ε

)

which coincides
with the currently best-known iteration bound for feasible IPMs. Wang and
Bai [22] presented a class of polynomial interior-point algorithms for Cartesian
P -matrix SCLCPs.

The most of above mentioned algorithms are feasible and therefore they need
to start from an initial feasible solution on the central path. Some difficulties
and shortages with these methods can be expressed as follow.

Sometimes, finding an initial feasible solution of the underlying problem is
arduous. In some other times, the starting point is feasible but it is not exactly
on the central path. The first difficulty has been solved by suggesting the in-
feasible IPMs while the weighted-path following methods have been proposed
for the remedy of second difficulty. About the monoton complementarity prob-
lems, although we can find a starting feasible solution on the central path by
using the embedding model introduced by Kojima et al. [9], practical imple-
mentations often do not use perfectly centered starting points. Therefore, it is
worth to study and analyze the case when the starting point is not exactly on
the central path.

As it is usual for the algorithms following the central path, we can associate
a target sequence on the central path. This observation lead to the concept
of target-following methods introduced by Jansen et al. [8]. After the initial
weighted-path following algorithm for linear optimization presented by Darvay
[3], some authors generalized this algorithm to various classes of optimization
problems. Achache [1] and Wang and Bai [19–21] respectively extended Dar-
vay’s algorithm [3] for LO to CQO, second order cone optimization (SOCO),
SDO problems and SO problems. Motivated by these works, the main goal of
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this paper is to generalize the Darvay’s weighted-path following algorithm [3]
for LO to the Cartesian P∗(κ)-SCLCPs. The convergence analysis of the algo-
rithm is proved and it is shown that the proposed algorithm has quadratically
convergent with polynomial-time complexity.

The paper is organized as follows. In Section 2, we state some concepts and
definitions in Cartesian EJAs and the related symmetric cones. We also recall
some well-known and key lemmas which are required in our analysis. Section
3 describes the idea of path following IPMs and presents the well-known NT-
search directions. The generic path following interior-point algorithm for the
Cartesian P∗(κ)-SCLCP is presented in Section 4. Section 5 is devoted to prove
the convergence analysis of the algorithm. Finally, the paper ends with some
concluding remarks in Section 6.

2. Preliminaries

In this section, we review some basic definitions and imperative lemmas
which will be used in convergence analysis of the algorithm. The classical EJA
(V , ◦) is a finite dimensional vector space over R equipped with the bilinear
map o : (x, y) −→ x ◦ y ∈ V and the standard inner product 〈x, s〉 = Tr(x ◦ s).
The related cone of squares corresponding with (V , ◦) is called the classical
symmetric cone K. For each x ∈ V , L(x)y := x◦y and P (x) := 2L(x)2−L(x2),
where L(x)2 := L(x)L(x), denote the linear and quadratic representation of V ,
respectively.

The general state of these definitions known as the Cartesian EJA (V , ⋄)
and the Cartesian symmetric cone K can be defined as the product of a finite
number of the classical EJAs (Vj , ◦) and the classical symmetric cones Kj for
j = 1, 2, . . . , N . That is, V := V1 ×V2× · · ·×VN and K = K1 ×K2× · · ·×KN .
According to these definitions, the Cartesian EJA (V , ⋄) has the dimension

n =
∑N

j=1 nj and the rank r =
∑N

j=1 rj where nj and rj are the dimension and

rank of the classical EJAs (Vj , ◦). Some other basic definitions in Cartesian
EJA are listed as follow:

• Bilinear map ⋄: For any

x :=
(

x(1), x(2), . . . , x(N)
)T

, s :=
(

s(1), s(2), . . . , s(N)
)T

,

in Cartesian EJA (V , ⋄), we define

x ⋄ s :=
(

x(1) ◦ s(1), x(2) ◦ s(2), . . . , x(N) ◦ s(N)
)T

.

• Identity element: Let e(j) be the identity element of the classical EJA

(Vj , ◦) then e :=
(

e(1), e(2), . . . , e(N)
)T

is the identity element of the Cartesian
EJA (V , ⋄).
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• Trace(x): Let λi
(

x(j)
)

be the i-th eigenvalue of the x(j), then

Tr(x) :=

N
∑

j=1

Tr
(

x(j)
)

,

where Tr
(

x(j)
)

:=
∑rj

i=1 λi
(

x(j)
)

.

• Determinate(x): For any x ∈ (V , ⋄), we define det(x) :=
∏N

j=1 det
(

x(j)
)

where det
(

x(j)
)

:=
∏rj

i=1 λi
(

x(j)
)

.

• Inner product: While 〈x(j), s(j)〉 := Tr
(

x(j) ◦ s(j)
)

is the inner product
related to the classical EJAs (Vj , ◦) for j = 1, 2, . . . , N, the inner product
related to the Cartesian EJA (V , ⋄) will be defined as follows:

〈x, s〉 := Tr(x ⋄ s) =

N
∑

j=1

Tr
(

x(j) ◦ s(j)
)

.

• Min(Max) eigenvalue: Considering

λmin(x
(j)) := min{λi(x

(j)) | i = 1, 2, . . . , rj}, j = 1, 2, . . . , N,

λmax(x
(j)) := max{λi(x

(j)) | i = 1, 2, . . . , rj}, j = 1, 2, . . . , N,

we define for any x ∈ (V , ⋄)

λmin(x) := min{λmin(x
(j)) | j = 1, 2, . . . , N},

λmax(x) := max{λmax(x
(j)) | j = 1, 2, . . . , N}.

• Frobenius norm: For any x ∈ (V , ⋄), the Frobenius norm of x will be
defined as follows:

‖x‖
2
F :=

N
∑

j=1

∥

∥

∥
x(j)

∥

∥

∥

2

F
,

where
∥

∥

∥
x(j)

∥

∥

∥

2

F
:=

r
∑

i=1

λ2i (x
(j)).

• Infinty norm: Let x ∈ (V , ⋄). The infinity norm of x, denoted by ‖x‖2, will
be defined as follows:

‖x‖2 := max
j

∥

∥

∥
x(j)

∥

∥

∥

2
,

where
∥

∥

∥
x(j)

∥

∥

∥

2
:= max

i
{λi(x

(j))}.

• Spectral decomposition: Let
∑rj

i=1 λi(x
(j))cji be the spectral decomposi-

tion of the vector x(j) ∈ Vj , then

x :=
(

r1
∑

i=1

λi(x
(1))c1i ,

r2
∑

i=1

λi(x
(2))c2i , . . . ,

rN
∑

i=1

λi(x
(N))cNi

)T

,
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is the spectral decomposition of x ∈ (V , ⋄) where the set {cj1, c
j
2, . . . , c

j
k} is the

Jordan frame related to the classical EJA (Vj , ◦).
Let x ∈ V . The vector-valued function ψ(x) is defined as

ψ(x) :=
(

ψ(x(1)), ψ(x(2)), . . . , ψ(x(N))
)T

,

in which

ψ(x(j)) := ψ
(

λ1

(

x(j)
))

c
j
1 + · · ·+ ψ

(

λrj

(

x(j)
))

cjrj , j = 1, 2, . . . , N.

Definition 2.1. The linear operator H : V −→ V has the Cartesian P∗(κ)
property, if for some nonnegative constant κ

(1 + 4κ)
∑

j∈I+(x)

〈x(j), (Hx)(j)〉+
∑

j∈I−(x)

〈x(j), (Hx)(j)〉 ≥ 0,

or equivalently

〈x,H(x)〉 ≥ −4κ
∑

j∈I+(x)

〈x(j), (Hx)(j)〉

for all x ∈ (V , ⋄), where

I+(x) := {j | 〈x(j), (Hx)(j)〉 > 0}, I−(x) := {j | 〈x(j), (Hx)(j)〉 ≤ 0}.

Here, we recall some lemmas which are required in our analysis.

Lemma 2.2 ([6, Lemma 3.2]). Let intK, be the interior of K. For x, s ∈ intK
there exists a unique w̄ ∈ intK such that

x = P (w̄)s,

where

w̄ := P (x
1
2 )
(

P (x
1
2 )s

)

−1

2

[

:= P (s
−1

2 )
(

P (s
1
2 )x

)
1
2

]

.

The point w̄ is called the scaling point related to x and s.

Lemma 2.3 ([16, Lemma 28]). Let u ∈ intK. Then

x ⋄ s = µe⇔ P (u)x ⋄ P (u)−1s = µe.

Lemma 2.4 ([16, Lemma 30]). Let x, s ∈ intK. Then
∥

∥

∥
P (x)

1
2 s− µe

∥

∥

∥

F
≤ ‖x ⋄ s− µe‖F .

Lemma 2.5 ([17, Theorem 4]). Let x, s ∈ intK. Then

λmin

(

P (x)
1
2 s
)

≥ λmin(x ⋄ s).
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3. The central path and feasible weighted-IPM

Let (V , ⋄) be an n-dimensional Cartesian EJA with rank r equipped with the
standard inner product 〈x, s〉 := Tr(x ⋄ s) and K be the Cartesian symmetric
cone related to (V , ⋄). For the P∗(κ)-linear transformation A : V −→ V and a
vector q ∈ V , the Cartesian P∗(κ)-SCLCP is to find a pair (x, s) ∈ K ×K such
that

s = Ax+ q, x ⋄ s = 0.(P )

The basic idea of the primal-dual interior-point algorithm is to replace the
so-called complementarity equation x ⋄ s = 0 by the parameterized equation
x ⋄ s = µe, with µ > 0. Thus, we consider the following equivalent system

(2)
s = Ax+ q, x ∈ K,

x ⋄ s = µe, s ∈ K.

Throughout this paper, we assume that (P ) satisfies the interior point condi-
tion (IPC), i.e., there exists (x0, s0) ∈ intK × intK such that s0 = Ax0 + q.
The solution of (2) is denoted by (x(µ), s(µ)), and called the µ-center of the
Cartesian P∗(κ)-SCLCP. The set of all µ-centers, is called the central path and
it is used as a guide line to solution of the Cartesian P∗(κ)-SCLCP. As µ tends
to zero, x(µ) and s(µ) converge to an ε-approximate solution of (P ). For more
details see [10].

The target-following approach starts from the observation that system (2)
can be generalized by replacing the vector µe with an arbitrary positive vector
w2 = w ⋄ w. Thus, we obtain the following system

(3)
s = Ax+ q, x ∈ K,

x ⋄ s = w2, s ∈ K,

where w ∈ intK. Following Darvay’s strategy in [2] for LO, we replace the
standard centering equation x⋄s = w2 by ϕ(x ⋄ s) = ϕ(w2), where ϕ(t) is a real
valued function on [0,+∞) and differentiable on (0,+∞) such that ϕ′(t) > 0
for all t > 0. Then, system (3) can be rewritten as follows:

(4)
s = Ax+ q, x ∈ K,

ϕ(x ⋄ s) = ϕ(w2), s ∈ K.

Applying Newton’s method to system (4), we proceed to find its approximate
solutions. After using Newton’s method and neglecting the quadratic term
∆x ⋄∆s, we obtain the following search direction system:

(5)

A (∆x)−∆s = 0, x ∈ K,

x ⋄∆s+ s ⋄∆x =
(

ϕ′(x ⋄ s)
)

−1

⋄
(

ϕ(w2)− ϕ(x ⋄ s)
)

, s ∈ K.

Note that linearizing the second equation in (5) may not lead to an element in
(V , ⋄). Thus, it is necessary to symmetrize that equation before linearizing it.
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To this end, replacing the second equation in (2) with P (u)x ⋄ P (u)−1s = µe

and applying Newton’s method, we obtain the following system

(6)

A (∆x)−∆s = 0,

P (u)x ⋄ P (u)−1∆s+ P (u)−1s ⋄ P (u)∆x

=
(

ϕ′
(

P (u)x ⋄ P (u)−1s
)

)

−1

⋄
(

ϕ(w2)− ϕ
(

P (u)x ⋄ P (u)−1s
)

)

.

Let u := w̄
−1

2 , where w̄ is the NT-scaling point of x and s defined in Lemma 2.2.
Since A is a P∗(κ)-mapping, then due to Proposition 2.1 in [25] and Lemma 4.1
in [9] system (6) uniquely defines the search directions ∆x and ∆s. In analysis
of IPMs, it is convenient to associate to any (x, s) ∈ intK × intK, the scaled
vector υ and the scaled search directions dx and ds according to

(7) v := P (w̄)
1
2 s

[

:= P (w̄)
−1

2 x
]

, dx := P (w̄)
−1

2 ∆x, ds := P (w̄)
1
2∆s.

Using these definitions, the linear system (6) can be rewritten in the following
form

(8)
Ā (dx)− ds = 0,

dx + ds = pυ,

where Ā := P (w̄)
1
2AP (w̄)

1
2 and

pυ = υ−1 ⋄

(

ϕ′−1
(υ2) ⋄

(

ϕ(w2)− ϕ(υ2)
)

)

.(9)

Since A is a P∗(κ)-operator, it follows from Proposition 3.4 in [10], Ā also has
the Cartesian P∗(κ)-property.

4. The algorithm

In this section, let ϕ(x) :=
√
x. Then, we present a weighted-path following

interior point algorithm based on the appropriate search directions. Making
the substitution ϕ(x) :=

√
x in (9), we get

pυ = 2(w − υ).(10)

In the analysis of our algorithm, we define a norm based proximity measure
δ(x, s;w) as follows:

δ(x, s;w) :=
‖pυ‖F

2λmin(w)
=

‖w − υ‖F
λmin(w)

.(11)

We also define another proximity measure to measure the distance of the target
point w2 to the central path. To this end, we define δc(w) as follows:

δc(w) :=
λmax(w

2)

λmin(w2)
.(12)

In order to have an easy understanding of our analysis, let us introduce

qυ := dx − ds,(13)
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then, one may easily obtain

dx =
pυ + qυ

2
and ds =

pυ − qυ

2
,

which implies,

dx ⋄ ds =
p2υ − q2υ

4
.(14)

The new scaled search directions dx and ds are obtained by solving (8) while
∆x and ∆s are computed via (6). If (x, s) 6= (x(µ), s(µ)), then (∆x, ∆s) is
nonzero. Applying (7), the new iterates are given by

x+ = x+∆x = P (w̄)
1
2 (v + dx), s

+ = s+∆s = P (w̄)−
1
2 (v + ds).(15)

The generic form of the weighted-path following interior-point algorithm is
described bellow.

Algorithm 1: The Full NT-step weighted-path following algorithm

Step 0 (Initialize): Choose an accuracy parameter ε > 0, a barrier update
parameter θ, 0 < θ < 1 and an initial feasible solution

(

x0, s0
)

, such that
∥

∥w0
∥

∥

F
=

√

Tr(x0 ⋄ s0) and δ
(

x0, s0;w0
)

≤ τ = 1
1+4κ . Set (x, s) =

(

x0, s0
)

.

Step1 (Test convergence): If Tr(x ⋄ s) ≤ ε, declare convergence and stop.
Otherwise, proceed to the next step.
Step2 (Computation): Compute the Newton search directions ∆x and ∆s
by solving system (6) and compute (x+, s+) by using (15). Update the vector
w by the factor 1− θ and go to the next step.
Step3 (Update iterate): Set (x, s) = (x+, s+) and go to the Step 1.

5. Convergence analysis

In this section, we prove that Algorithm 1 obtains an ε-approximate solution
of the Cartesian P∗(κ)-SCLCP in polynomial time complexity. To this end, we
first need to obtain an upper and lower bound for the term 〈dx, ds〉 which plays
a key role in our analysis.

Lemma 5.1. Let δ := δ(x, s;w). Then

−4κλmin(w
2)δ2 ≤ 〈dx, ds〉 ≤ λmin(w

2)δ2.(16)

Proof. The most right hand side inequality in (16) can be concluded by using
(11) and (13) as follows:

‖pv‖
2
F = ‖qv‖

2
F + 4〈dx, ds〉 ≥ 4〈dx, ds〉.(17)

Using the first equation of (8), (17) and the fact that Ā has the Cartesian
P∗(κ)-property, the most left hand side inequality in (16) can be proved as
follows:

〈dx, ds〉 = (1 + 4κ)
∑

j∈I+(dx)

〈djx, d
j
s〉+

∑

j∈I−(dx)

〈djx, d
j
s〉 − 4κ

∑

j∈I+(dx)

〈djx, d
j
s〉
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≥ −4κ
∑

j∈I+(dx)

〈djx, d
j
s〉 ≥ −κ ‖pv‖

2
F = −4κλmin(w

2)δ2.

This completes the proof. �

Corollary 5.2. Let δ := δ(x, s;w). Then

‖qv‖
2
F ≤ 4(1 + 4κ)λmin(w

2)δ2.(18)

Lemma 5.3. Let δ := δ(x, s;w) and x, s ∈ (V , ⋄). Then

|λj(dx ⋄ ds)| ≤ (1 + 4κ)λmin(w
2)δ2.(19)

Proof. From dx ⋄ ds =
1
4

(

p2v − q2v
)

, the elementary relations of norms, (16) and
(18), we obtain

‖dx ⋄ ds‖2 ≤
1

4
max

{

‖pv‖
2
2 , ‖qv‖

2
2

}

≤
1

4
max

{

‖pv‖
2
F , ‖qv‖

2
F

}

= (1 + 4κ)λmin(w
2)δ2.

The proof is completed. �

5.1. Convergence analysis

In this section, we investigate the convergence analysis of Algorithm 1. To
this end, we need to prove that the generated points by the algorithm are
strictly feasible and show that the algorithm is quadratic convergent. The
following lemma states a necessary condition which guaranties the strictly fea-
sibility of the iterates x+ and s+.

Lemma 5.4. Let δ := δ(x, s;w) and δ < 1
√

1+4κ
. Then the iterates x+ and s+

are strictly feasible.

Proof. We first define vx(α) := v+ αdx and vs(α) := v+ αds for all α ∈ [0, 1].
Thus,

vx(α) ⋄ vs(α) = υ2 + αv ⋄ (dx + ds) + α2dx ⋄ ds

= υ2 + αv ⋄ pv +
1

4
α2

(

p2v − q2v
)

= (1− α)υ2 + α(υ2 + υ ⋄ pυ) + α2
(p2v
4

−
q2v
4

)

= (1− α)υ2 + α

(

w2 − (1− α)
p2v
4

− α
q2v
4

)

,(20)

where the last equality is due to

υ2 + υ ⋄ pυ = w2 − (w − v)2 = w2 −
p2υ
4
.

Clearly, vx(α) ⋄ vs(α) ∈ intK, if
∥

∥

∥

∥

(1− α)
pυ

2

4
+ α

qυ
2

4

∥

∥

∥

∥

2

< λmin(w
2).
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Using (11) and (18), we have
∥

∥

∥

∥

(1− α)
p2v
4

+ α
q2v
4

∥

∥

∥

∥

2

≤ (1− α)

∥

∥

∥

∥

p2v
4

∥

∥

∥

∥

F

+ α

∥

∥

∥

∥

q2v
4

∥

∥

∥

∥

F

≤ (1− α)
‖pv‖

2
F

4
+ α

‖qv‖
2
F

4

≤ (1− α)δ2λmin(w
2) + αδ2(1 + 4κ)λmin(w

2)

≤ (1 + 4κ)δ2
[

(1− α)λmin(w
2) + αλmin(w

2)
]

< λmin(w
2),

where the last inequality is due to δ < 1
√

1+4κ
. This implies

w2 − (1− α)
p2v
4

− α
q2v
4

∈ intK.

Thus, for all α ∈ [0, 1]

(1− α)v2 + α
(

w2 − (1 − α)
p2v
4

− α
q2v
4

)

∈ intK.

This implies vx(α)⋄vs(α) ∈ intK for all α ∈ [0, 1]. Using Lemma 2.15 in [7], we
conclude the terms det(vx(α)) and det(vs(α)) cannot vanish when α ∈ [0, 1].
Hence, since det(vx(0)) = det(vs(0)) = det(v) > 0, by continuity, det(vx(α))
and det(vs(α)) stay positive for any such α, especially for α = 1. Hence, all
the eigenvalues of vx(1) and vs(1) are positive. Therefore, v + dx ∈ intK and

v + ds ∈ intK. Since P (w̄)
1
2 and its inverse P (w̄)

−1

2 are automorphisms of K,
Proposition 2.2 in [4] guarantees the iterates x+ and s+ belong to intK. This
completes the proof. �

Considering w̄+ as the scaling point of the new iterates x+ and s+, we define
the v-vector at the new iterates x+ and s+, as follows:

v+ := P (w̄+)
1
2 s+

[

:= P (w̄+)
−1

2 x+
]

.(21)

Lemma 5.5 (Proposition 5.9.3 in [18]). One has

(v+)2 ∼ P (v + dx)
1
2 (v + ds).(22)

In next lemmas, we proceed to prove the local quadratic convergence of the
full NT-step.

Lemma 5.6. After a new iteration

λmin(v
+) ≥ λmin(w)

√

1− (1 + 4κ)δ2.(23)

Proof. Using Lemmas 5.5 and 2.5 and substituting α = 1 in (20), we have

|λmin((v
+)2) = λmin

(

P (v + dx)
1
2 (v + ds)

)

≥ λmin

(

(v + dx) ⋄ (v + ds)
)
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= λmin

(

w2 −
q2v
4

)

≥ λ2min(w) −
‖qv‖

2
F

4
= λ2min(w)

(

1− (1 + 4κ)δ2
)

,

where the last equality follows from Corollary 5.2. This completes the proof.
�

The following lemma investigates the quadratic convergence of the algo-
rithm.

Lemma 5.7. Let δ := δ(x, s;w) < 1
√

1+4κ
. Then

δ(x+, s+;w) <
(1 + 4κ)δ2

1 +
√

1− (1 + 4κ)δ2
.

Proof. From (20) with α = 1, we have

(24) (v + dx) ⋄ (v + ds) = w ⋄ w − qv⋄qv
4 .

On the other hand, due to (18), (23), (24) and Lemma 14 in [16], we have

∥

∥w − v+
∥

∥

F
=

∥

∥

∥

∥

w ⋄ w − v+ ⋄ v+

w + v+

∥

∥

∥

∥

F

≤
‖w ⋄ w − (v + dx) ⋄ (v + ds)‖F

λmin(w) + λmin(v+)

≤
1

λmin(w) + λmin(w)
√

1− (1 + 4κ)δ2

∥

∥

∥

qv ⋄ qv
4

∥

∥

∥

F

≤
1

λmin(w) + λmin(w)
√

1− (1 + 4κ)δ2
‖qv‖

2
F

4

≤
(1 + 4κ)λmin(w)

2δ2

λmin(w) + λmin(w)
√

1− (1 + 4κ)δ2
.

Substituting the last inequality in (11), we conclude the lemma. �

The following lemma gives an upper bound of the duality gap after a full
NT-step.

Lemma 5.8. After a full NT-step,

〈x+, s+〉 =
∥

∥w2
∥

∥

F
−

∥

∥q2v
∥

∥

F

4
,

hence, 〈x+, s+〉 ≤ ‖w‖
2
F .

Proof. From (24), we have

〈x+, s+〉 = Tr(x+ ⋄ s+) = Tr ((v + dx) ⋄ (v + ds)) = Tr
(

w ⋄ w −
qv ⋄ qv

4

)

=
∥

∥w2
∥

∥

F
−

∥

∥q2v
∥

∥

F

4
,
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which implies the result and ends the proof. �

5.2. Updating the target parameter w

In this subsection, we discuss the influence of the Newton process on the
proximity measure. We assume that vector w will be updated by the constant
factor 1− θ. It should be noted δc(w) = δc(w

0) for all iterates produced by the
algorithm.

Lemma 5.9. Let δ := δ(x, s;w) < 1
√

1+4κ
and r be the rank of Cartesian EJA

(V , ⋄) and w+ = (1− θ)w, where 0 ≤ θ ≤ 1. Then

δ(x+, s+;w+) ≤
1

1− θ

(

θ
√
rδc(w) + δ(x+, s+;w)

)

.

Proof. Due to the definition of δ, we have

δ(x+, s+;w+) =
1

λmin(w+)

∥

∥w+ − v+
∥

∥

F

≤
1

λmin(w+)

(

∥

∥w+ − w
∥

∥

F
+
∥

∥w − v+
∥

∥

F

)

=
1

(1 − θ)

(

1

λmin(w)
‖θw‖F + δ(x+, s+; w)

)

≤
1

1− θ

(

θ
√
rδc(w) + δ(x+, s+;w)

)

,

where the last inequality follows from ‖w‖F ≤
√
rλmax(w). This ends the

proof. �

5.3. Complexity analysis

We are ready to state the main result of the paper. First, let to investigate
the proposed algorithm is well-defined. The following lemma tasks this goal.

Lemma 5.10. Let δ := δ(x, s;w) ≤ 1
2(1+4κ) , θ = 1

5(1+4κ)
√

rδc(w)
and r ≥ 4.

Then, after a w-update, we have

δ(x+, s+;w+) ≤
1

2(1 + 4κ)
.

Proof. Let θ = 1

5(1+4κ)
√

rδc(w)
. Clearly, δc(w) ≥ 1 and for r ≥ 4 we have θ ≤

1
10(1+4κ) . If δ ≤

1
2(1+4κ) , due to Lemma 5.7, we deduce δ(x+, s+;w) ≤ 1

4(1+4κ) .

Finally, Lemma 5.9 yields δ(x+, s+;w+) ≤ 1
2(1+4κ) . The proof is completed. �

Theorem 5.11. Suppose that the pair (x0, s0) is strictly feasible and let w0 =
(

x0, s0
)

. If θ = 1

5(1+4κ)
√

rδc(w0)
, then the algorithm requires at most

⌈

5(1 + 4κ)
√

rδc(w0) log
Tr〈x0⋄, s0〉

ε

⌉

,
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iterations.

6. Concluding remarks

In this paper, we developed the proposed weighted-path following interior-
point algorithm for LO by Darvay [2] to Cartesian P∗(κ)-SCLCP. The algorithm
uses the NT-direction as the search directions and takes the full-Newton steps to
obtain an ε-solution of the underlying problem. We showed that the proposed
algorithm is well-defined and derived the currently best known iteration bound
for feasible IPMs with the small-update method, namely,

O

(

(1 + 4κ)
√
r log

Tr(x0 ⋄ s0)

ε

)

.
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