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SOME PROPERTIES OF THE BEREZIN TRANSFORM

IN THE BIDISC

Jaesung Lee

Abstract. Let m be the Lebesgue measure on C normalized to m(D) =
1, µ be an invariant measure on D defined by dµ(z) = (1−|z|2)−2 dm(z).
For f ∈ L1(Dn,m × · · · ×m), Bf the Berezin transform of f is defined
by,

(Bf)(z1, . . . , zn)=

∫
D

· · ·

∫
D

f
(
ϕz1

(x1), . . . , ϕzn
(xn)

)
dm(x1) · · · dm(xn).

We prove that if f ∈ L1(D2, µ×µ) is radial and satisfies
∫ ∫

D
2 fdµ×dµ =

0, then for every bounded radial function ℓ on D2 we have

lim
n→∞

∫ ∫
D

2

(Bnf)(z, w)ℓ(z,w)dµ(z)dµ(w) = 0.

Then, using the above property we prove n-harmonicity of bounded func-
tion which is invariant under the Berezin transform. And we show the
same results for the weighted the Berezin transform in the polydisc.

1. Introduction

Let D be the unit disc of C and let m be the Lebesgue measure on C

normalized to m(D) = 1. For u ∈ L1(D,m), the Berezin transform Tu on D
is defined by,

(Tu)(z) =

∫

D

u
(

ϕz(x)
)

dm(x) for z ∈ D,

where ϕz is the canonical automorphism given by

ϕz(x) =
z − x

1− z̄x
.

Equivalently we can write

(1.1) (Tu)(z) =

∫

D

u(x)
(1− |z|2)2

|1− z̄x|4
dm(x).
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Let µ be a measure on D defined by dµ(z) = (1− |z|2)−2dm(z), then we have
∫

D

udµ =

∫

D

Tudµ =

∫

D

u ◦ ψdµ

for u ∈ L1(D,µ) and ψ ∈ Aut(D). It is known that (Lemma 3.3 of [4]), for
1 ≤ p ≤ ∞, T is a self-adjoint bounded operator on Lp(D,µ) with ‖T ‖p ≤ 1.
The advantage of using the invariant measure µ is that even though µ is not
a finite measure on D, the space L∞(D,m) is the dual space of L1(D, dµ) on
which the operator T has a nice behavior.

If u ∈ L1(D,m) is harmonic, then it is obvious that u satisfies Tu = u.
In 1993, Ahern, Flores and Rudin ([1]) showed that if u ∈ L1(D,m) satisfies
Tu = u, then it is harmonic.

We can define the Berezin transform of a function on the polydisc. For
f ∈ L1(Dn), Bf the Berezin transform of f is defined by,

(Bf)(z1, . . . , zn) =

∫

D

· · ·

∫

D

f
(

ϕz1(x1), . . . , ϕzn(xn)
)

dm(x1) · · · dm(xn).

If f ∈ L1(Dn,m × · · · ×m) is n-harmonic, then it is obvious that f satisfies
Bf = f . In 1998 the author ([4]) showed that, for 1 ≤ p < ∞, a function
f ∈ Lp(D2,m × m) satisfying Bf = f needs not be 2-harmonic while f ∈
L∞(Dn) satisfying Bf = f has to be n-harmonic. Earlier, Furstenberg ([2],
[3]) proved that, on any dimensional symmetric domain, a bounded function
which satisfies an invariant mean value property is harmonic with respect to
the intrinsic metric. The proof of n-harmonicity in [4], which is completely
analytic, is based on Lemma 3.5 stated as follows: If u ∈ L1(D,µ) is radial and
∫

D
udµ = 0, then

lim
n→∞

∫

D

∣

∣T nu
∣

∣ dµ = 0.

In this paper, we extend Lemma 3.5 of [4] to functions on the polydisc. We
denote the space Lp

R(D
n) as the subspace of Lp(Dn) which consists of all radial

functions, i.e.,

L
p
R(D

n) = {f ∈ Lp(Dn) | f(z1, . . . , zn) = f(|z1|, . . . , |zn|)

for every (z1, . . . , zn) ∈ Dn}.

We also denote for f ∈ Lp(D2, µ×µ) and q ∈ Lq(D2, µ×µ) (1 ≤ p ≤ ∞, 1/p +
1/q = 1),

〈f, g〉 =

∫ ∫

D2

f · gdµ× dµ.

Then by self-adjointness of the Berezin operator B, we get 〈Bf, g〉 = 〈f,Bg〉.
In Section 2, we extend Lemma 3.5 of [4] to functions on Dn so that the

same statement is true in the polydisc. And then we give more straightforward
proof of the n-harmonicity of functions which are invariant under the Berezin
transform. Proposition 2.1 is the main result of the paper. And for notational
simplicity, we will prove our main result in the bidisc D2. In Section 3, we do
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the same thing as in Section 2 for a weighted Berezin transform of a function
in the polydisc.

2. Main result

For u ∈ Lp(D,µ) with 1 ≤ p ≤ ∞, let T n be the iteration of T for n times,
then by induction we can write

(2.1) (T nu)(z) =

∫

D

u(x)Kn(z, x)dm(x),

where for every z ∈ D and n ∈ N satisfying

(2.2)

∫

D

Kn(z, x)dm(x) = 1.

The next proposition is the main result of this paper.

Proposition 2.1. If f ∈ L1
R(D

2, µ × µ) satisfies 〈f, 1〉 = 0, then for every

ℓ ∈ L∞

R (D2)

lim
n→∞

∫ ∫

D2

(Bnf)(z, w)ℓ(z, w)dµ(z)dµ(w) = 0.

Proof. The proof consists of three steps.
Step (i). Basic notations and preliminaries.
Given f ∈ L1

R(D
2, µ× µ) such that

〈f, 1〉 =

∫ ∫

D2

fdµ× dµ = 0,

we define u on D by

(2.1) u(x) =

∫

D

f(x, y)dµ(y).

Then u ∈ L1
R(D,µ) with

∫

D

udµ = 0.

We also define g on D ×D by

(2.2) g(x, y) = (1− |y|2)2u(x) = (1 − |y|2)2
∫

D

f(x, z)dµ(z).

Then, we can write for v ∈ L1
R(D,µ) ,

(2.3) (T nv)(x) =

∫

D

v(y)Kn(x, y)dm(y),

where
∫

D

Kn(x, y)dm(y) = 1.

Then we can express

(2.4) (Bnf)(x, y) =

∫ ∫

D2

f(t, s)Kn(x, t)Kn(y, s)dm(t)dm(s).
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Now choose ℓ ∈ L∞

R (D2), then define ℓn on D by

(2.5) ℓn(x) =

∫ ∫

D2

ℓ(x, s)Kn(y, s)dm(s)dm(y),

to get ‖ℓn‖∞ ≤ ‖ℓ‖∞.
To prove the proposition is to show 〈Bnf, ℓ〉 → 0 as n→ ∞. And we have

(2.6) 〈Bnf, ℓ〉 = 〈f,Bnℓ〉 = 〈g,Bnℓ〉+ 〈f − g,Bnℓ〉.

Hence to complete the proof , we will show

〈g,Bnℓ〉 → 0 in step (ii)

and

〈f − g,Bnℓ〉 → 0 in step (iii).

Step (ii). Proof of 〈g,Bnℓ〉 → 0.
By using Fubini’s theorem, we get

〈g,Bnℓ〉

=

∫

D

(1− |y|2)2u(x)

(
∫

D

Bnℓ(x, y)dµ(y)

)

dµ(x)

=

∫

D

u(x)

(
∫

D

Bnℓ(x, y)dm(y)

)

dµ(x)

=

∫

D

u(x) ·

(
∫

D

{

∫ ∫

D2

ℓ(t, s)Kn(x, t)Kn(y, s)dm(s)dm(t)}dm(y)

)

dµ(x)

=

∫

D

u(x) ·

(
∫

D

{

∫ ∫

D2

ℓ(t, s)Kn(y, s)dm(s)dm(y)}Kn(x, t)dm(t)

)

dµ(x)

=

∫

D

u(x)

(
∫

D

ℓn(t)Kn(x, t)dm(t)

)

dµ(x)

=

∫

D

u(x)(T nℓn)(x)dµ(x)

=

∫

D

(T nu)(x)ℓn(x)dµ(x).

Hence we have
∣

∣〈g,Bnℓ〉
∣

∣ =
∣

∣

∫

D

(T nu)(x)ℓn(x)dµ(x)
∣

∣

≤ ‖T nu‖1 · ‖ℓn‖∞

≤ ‖T nu‖1 · ‖ℓ‖∞.

Since u ∈ L1
R(D,µ) and

∫

D
udµ = 0, Lemma 3.5 of [4] implies that

lim
n→∞

‖T nu‖1 = 0.

This completes step (ii).
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Step (iii). Proof of 〈f − g,Bnℓ〉 → 0.
Now fix x ∈ D, then define (ℓx)n on D by

(2.7) (ℓx)n(y) =

∫

D

ℓ(t, y)Kn(x, t)dm(t)

then ‖(ℓx)n(y)‖∞ ≤ ‖ℓ‖∞. And we get

T n(ℓx)n(y) =

∫ ∫

D2

ℓ(t, s)Kn(x, t)Kn(y, s)dm(t)dm(s)

= (Bnℓ)(x, y).(2.8)

We define Vx on D by Vx(y) = f(x, y)− g(x, y). Then Vx ∈ L1
R(D,µ) and

∫

D

Vx(y)dµ(y) =

∫

D

f(x, y)dµ(y)− u(x)

∫

D

(1− |y|2)2dµ(y)

= u(x)− u(x) = 0.

Now, we have
∣

∣

∣

∣

∫

D

(

f(x, y)− g(x, y)
)

(Bnℓ)(x, y)dµ(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

D

Vx(y)T
n(ℓx)n(y)dµ(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

D

(T nVx)(y)(ℓx)n(y)dµ(y)

∣

∣

∣

∣

≤ ‖(ℓx)n‖∞ · ‖T nVx‖1

≤ ‖ℓ‖∞ · ‖T nVx‖1.

Once again by Lemma 3.5 of [4], we get

(2.9) lim
n→∞

∣

∣

∣

∣

∫

D

(

f(x, y)− g(x, y)
)

(Bnℓ)(x, y)dµ(y)

∣

∣

∣

∣

= 0

for fixed x ∈ D. But
∣

∣

∣

∣

∫

D

Vx(y)T
n(ℓx)n(y)dµ(y)

∣

∣

∣

∣

≤ ‖ℓ‖∞

∫

D

|Vx(y)|dµ(y)

≤ ‖ℓ‖∞

∫

D

(

|f(x, y)|+ |g(x, y)|

)

dµ(y)

and the function
∫

D

(

|f(·, y)|+ |g(·, y) |

)

dµ(y) ∈ L1(D, dµ).

Hence by dominated convergence theorem,

lim
n→∞

∣

∣

∣

∣

〈f − g,Bnℓ〉

∣

∣

∣

∣

≤

∫

D

lim
n→∞

∣

∣

∣

∣

∫

D

Vx(y)T
n(ℓx)n(y)dµ(y)

∣

∣

∣

∣

dµ(x) = 0.
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This completes step (iii). And the proof of the proposition is complete if we
combine steps (i), (ii) and (iii). �

The next corollary, which comes directly from Proposition 2.1, is the bidisc
version of Lemma 3.5 of [4].

Corollary 2.2. Let f ∈ L1
R(D

2, µ× µ). Then

lim
n→∞

∫ ∫

D2

|Bnf |dµ× dµ = 0

if and only if 〈f, 1〉 = 0.

Proof. For f ∈ L1
R(D

2, µ× µ), we have

(2.1) ‖Bnf‖1 = sup
ℓ∈L∞

R
(D2)

{|〈 Bnf, ℓ〉| : ‖ℓ‖∞ ≤ 1}.

But we showed in the proof of the proposition that for f ∈ L1
R(D

2) and ℓ ∈
L∞

R (D2)

〈Bnf, ℓ〉 = 〈g,Bnℓ〉+ 〈f − g,Bnℓ〉,

where

|〈g,Bnℓ〉| ≤ ‖T nu‖1 · ‖ℓ‖∞

and

|〈f − g,Bnℓ〉| ≤

(
∫

D

‖T nVx‖1dµ(x)

)

‖ℓ‖∞.

Thus

(2.2) |〈Bnf, ℓ〉| ≤

(

‖T nu‖1 +

∫

D

‖T nVx‖1dµ(x)

)

· ‖ℓ‖∞.

Since
∫

D
udµ =

∫

D
Vxdµ = 0, by dominated convergence theorem

lim
n→∞

‖Bnf‖1 = lim
n→∞

(

‖T nu‖1 +

∫

D

‖T nVx‖1dµ(x)

)

= 0.

This completes the proof. �

Now by using Proposition 2.1, we give more straightforward proof of the
2-harmonicity of functions which are invariant under the Berezin transform,
which was given as Theorem 3.1 of [4].

Corollary 2.3. Let f ∈ L∞(D2) satisfy Bf = f . Then f is 2-harmonic.

Proof. First, we assume that f ∈ L∞

R (D2). Then for every g ∈ L1
R(D

2, µ× µ),

lim
n→∞

∫ ∫

D2

(Bng)(z, w)f(z, w)dµ(z)dµ(w) = 0

by Proposition 2.1. Since B is self-adjoint and Bf = f , we have

〈Bng, f〉 = 〈g,Bnf〉 = 〈g, f〉.
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Hence
∫ ∫

D2

gfdµ× dµ = 0

for every g ∈ L1
R(D

2, dµ× dµ) satisfying
∫ ∫

D2

gdµ× dµ = 0.

Therefore, f is a constant.
The rest of the proof is identical to the step 2 of the proof of Theorem 3.1

of [4]. �

3. Weighted Berezin transform

For c > −1, we define a finite measure νc on C by dνc(z) = (c + 1)(1 −
|z|2)c dm(z) so that νc(D) = 1. If a function u ∈ L1(D, νc) is harmonic, then
u ◦ ψ is also harmonic for every ψ ∈ Aut(D). Thus u satisfies a mean value
property

(3.1)

∫

D

(u ◦ ψ) dνc = f(ψ(0)) for every ψ ∈ Aut(D),

which is equivalent to saying that
∫

D
(u ◦ ϕz) dνc = u(z) for every z ∈ D. Now

for c > −1, u ∈ L1(D, νc) and z ∈ D, we define Tcu the weighted Berezin
transform of u by

(

Tcu
)

(z) =

∫

D

(u ◦ ϕz)dνc.

We can easily see that, for 1 ≤ p ≤ ∞, Tc is a self-adjoint bounded operator on
Lp(D,µ) with ‖T ‖p ≤ 1. For c1, c2 > −1 and f ∈ L1(D2, νc1 × νc2), we define
the weighted Berezin transform Bc1,c2f on D2 by

(

Bc1,c2

)

f(z, w) =

∫

D

∫

D

f
(

ϕz(x), ϕw(y)
)

dνc1(x) dνc2(y).

If f is 2-harmonic, then just as the case in one complex variable we see
that Bc1,c2f = f for every c1, c2 > −1 and conversely, from the theorem of
Furstenberg, it is already known that if f ∈ L∞(D2) satisfies Bc1,c2f = f for
some c1, c2 > −1, then it 2-harmonic. The author ([5]) proved that for every
1 ≤ p <∞ and c1, c2 > −1, a function f ∈ Lp(D2, νc1 × νc2) which is invariant
under the weighted Berezin transform; Bc1,c2f = f needs not be 2-harmonic.
In Lemma 2.1 of [6] the author showed that

lim
n→∞

∥

∥T n
c (I − Tc)

∥

∥ = 0 on L1
R(D,µ).

By using this, we can prove the following lemma.

Lemma 3.1. If u ∈ L1(D,µ) is radial and
∫

D
udµ = 0, then for c > −1

lim
n→∞

∫

D

∣

∣T n
c u

∣

∣dµ = 0.
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Proof. By Lemma 2.1 of [6], we have

lim
n→∞

∫

D

∣

∣T n
c u

∣

∣dµ = 0 for all u ∈ (I − Tc) L
1
R(µ).

Now let X be the subspace of L1
R(µ) defined by

X =

{

u ∈ L1
R(µ) |

∫

D

u dµ = 0

}

.

Then, since
∫

D
u dµ =

∫

D
Tcu dµ for u ∈ L1

R(µ), we get

(I − Tc) L
1
R ⊂ X.

Hence the proof is complete when we show that (I − Tc)L
1
R is dense in X .

Now let w ∈ L∞

R (D) satisfy that
∫

D

(v − Tcv) · wdµ = 0 for every v ∈ L1
R(D,µ).

Then by self-adjointness we get
∫

D

v · (w − Tcw)dµ = 0 for every v ∈ L1
R(D,µ).

Thus w = Tcw and by Furstenberg ([2], [3]) or Theorem 1.1 of [6] w is radial
and harmonic, which means w is a constant. Therefore we get

∫

D

u · wdµ = 0 for every u ∈ X.

Thus Hahn-Banach Theorem implies that (I−Tc)L
1
R is dense in X . This proves

the lemma. �

Using Lemma 3.1 we can prove the following proposition. Since the proof is
literally line by line identical to that of Proposition 2.1, we omit the proof of
Proposition 3.2.

Proposition 3.2. If f ∈ L1
R(D

2, µ × µ) satisfies 〈f, 1〉 = 0, then for every

ℓ ∈ L∞

R (D2) and c1, c2 > −1

lim
n→∞

∫ ∫

D2

(Bn
c1,c2

f)(z, w)ℓ(z, w)dµ(z)dµ(w) = 0.

Once again, by using Proposition 3.2, we can provide a straightforward
proof of the 2-harmonicity of functions which are invariant under the weighted
Berezin transform.

Corollary 3.3. If f ∈ L∞(D2) satisfies Bc1,c2f = f for some c1, c2 > −1,
then f is 2-harmonic.
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