DOI QR코드

DOI QR Code

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin (Department of Statistics, Sungkyunkwan University) ;
  • Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
  • Received : 2017.06.24
  • Accepted : 2017.07.20
  • Published : 2017.07.31

Abstract

To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

Keywords

References

  1. Agresti, A. (2002). Categorical data analysis, Wiley and Sons, New York.
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions Automatic Control, 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  3. Alosh, M. (2010). Modeling longitudinal count data with dropouts. Pharmaceutical Statistics, 9, 35-45. https://doi.org/10.1002/pst.366
  4. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 125-134.
  5. Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
  6. Daniels, M. J. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22, 1631-1647 https://doi.org/10.1002/sim.1470
  7. Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. (2002). Analysis of longitudinal data, Oxford University Press, Oxford.
  8. Faught, E., Wilder, B. J., Ramsay, R. E., Reife, R. A., Kramer, L. D., Pledger, G. W. and Karim, R. M. (1996). Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 46, 1684-1690. https://doi.org/10.1212/WNL.46.6.1684
  9. Han, E. J. and Lee, K. (2016). Dynamic linear mixed models with ARMA covariance matrix. Communications for Statistical Applications and Methods, 23, 575-585. https://doi.org/10.5351/CSAM.2016.23.6.575
  10. Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
  11. Jeon, J. and Lee, K. (2014). Review and discussion of marginalized random effects models. Journal of the Korean Data & Information Science Society, 25, 1263-1272. https://doi.org/10.7465/jkdi.2014.25.6.1263
  12. Judge, G. G., Griffths, W. E., Hill, R. C., and Lee, T. C. (1980). The Theory and practice of ecomometrics, Wiley, New York.
  13. Kim, J., Sohn, I., and Lee, K. (2017). Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models. Communications for Statistical Applications and Methods, 24, 81-96. https://doi.org/10.5351/CSAM.2017.24.1.081
  14. Lee, K., Baek, C. and Daniels, M. J. (2017). ARMA Cholesky factor models for the covariance matrix of linear models. Computational Statistics and Data Analysis, In press.
  15. Lee, K. and Daniels, M. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
  16. Lee, K., Jung, H. and Yoo, J. K. (2017a). Modeling of the ARMA random effects covariance matrix in logistic random effects models. Working paper.
  17. Lee, K. and Kim, S. (2016). Modeling of random effects covariance matrix in marginalized random effects models. Journal of the Korean Data & Information Science Society, 27, 815-825. https://doi.org/10.7465/jkdi.2016.27.3.815
  18. Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models. Communications for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
  19. Lee, K., Lee, J., Hagan, J. and Yoo, J. K. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models. Computational Statistics and Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
  20. Lee, K. and Sung S. (2014). Autoregressive Cholesky factor model for marginalized random effects model. Communications for Statistical Applications and Methods, 21, 169-181. https://doi.org/10.5351/CSAM.2014.21.2.169
  21. Lee, K. and Yoo, J. K. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models. Computational Statistics and Data Analysis, 80, 111-116. https://doi.org/10.1016/j.csda.2014.06.016
  22. Li, J., Yang, X., Wu, Y., and Shoptaw, S. (2007). A random-effects Markov transition model for Poisson-distributed repeated measures with nonignorable missing values. Statistics in Medicine, 26, 2519-2532. https://doi.org/10.1002/sim.2717
  23. Nam, S. and Lee, K. (2017). Comparison of the covariance matrix for general linear model. The Korean Journal of Applied Statistics, 30, 103-117. https://doi.org/10.5351/KJAS.2017.30.1.103
  24. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
  25. Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
  26. Wuertz, D. (2005). fOptions: Financial software collection-fOptions, R package version 220.10063. (http://www.rmetrics.org).
  27. Zeger, S. L. (1988). A regression model for time series of counts. Biometrika, 75, 621-629. https://doi.org/10.1093/biomet/75.4.621
  28. Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics, 44, 1019-1031. https://doi.org/10.2307/2531732
  29. Zhang, W. and Leng, C. (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068