DOI QR코드

DOI QR Code

Characteristics of Hydrolytic Enzymes that Produced by Bacillus subtilis CK-2 Isolated from Doenjang

된장으로부터 분리한 Bacillus subtilis CK-2가 생산하는 가수분해효소의 활성 특성

  • Lee, Sang-Hyup (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Chul-Ho (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 이상협 (경남과학기술대학교 제약공학과) ;
  • 김철호 (경남과학기술대학교 제약공학과)
  • Received : 2017.03.08
  • Accepted : 2017.07.19
  • Published : 2017.07.30

Abstract

In the previous paper, we isolated a bacterium that can hydrolyze various organic materials from soybean paste, including cellulose, lipids, starch, and protein. The activity and chemical properties of the crude enzymes produced by the isolate Bacillus subtilis CK-2 were further investigated. Cellulase showed the highest activity at pH 5.0 and $55^{\circ}C$. The stability of cellulase was maintained within the ranges of pH 5.0~10.0 and $20{\sim}50^{\circ}C$. Cellulolytic enzymes were activated by a $Co^{2+}$ ion, demonstrating the highest activity at a 0.45%(w/v) concentration of $Co^{2+}$. The optimal conditions for amylase were pH 5.0 and $50^{\circ}C$. The activity of amylase was stable within the ranges of pH 4.0~5.0 and $20{\sim}50^{\circ}C$. The $Co^{2+}$ ion was also necessary for amylase activity, which was the highest at a 0.2%(w/v) concentration of $Co^{2+}$. The optimal pH and temperature conditions of protease were pH 8.0 and $50^{\circ}C$. The activity of protease was stable within the ranges of pH 7.0~8.5 and $20{\sim}50^{\circ}C$. Protease activity was catalyzed by $Mn^{2+}$, which was the highest at a 0.125%(w/v) concentration of $Mn^{2+}$. The isolate B. subtilis CK-2 demonstrated a high activity of autolysin. Based on these results, we identified and suggested the optimal pH, temperature, and metal ion concentration in the use of the hydrolytic enzymes of B. subtilis CK-2 for industrial purposes.

이전의 논문에서 된장으로부터 섬유소와 지질, 녹말, 그리고 단백질을 포함하는 다양한 유기물을 가수분해하는 세균을 분리한 바 있다. 본 연구에서는 분리균주인 Bacillus subtilis CK-2가 생산하는 각종 가수분해효소의 조효소 특성을 확인하였다. 섬유소분해효소의 경우 적정 수소이온농도는 pH 5.0, 적정온도는 $55^{\circ}C$로 확인되었으며, pH 5.0~10.0과 $20{\sim}50^{\circ}C$의 범위에서 높은 활성을 나타내었다. 섬유소분해효소는 $Co^{2+}$ 이온에 의해 활성이 높아지며, 0.45%(w/v)의 $Co^{2+}$ 이온 농도에서 가장 높은 활성을 보였다. 녹말분해효소의 경우 적정 수소이온농도는 pH 5.0, 적정온도는 $50^{\circ}C$로 확인되었으며, pH 4.0~5.0과 $20{\sim}50^{\circ}C$의 범위에서 높은 활성을 나타내었다. 녹말분해효소는 $Co^{2+}$ 이온에 의해 활성이 높아지며, 0.2%(w/v)의 $Co^{2+}$ 이온 농도에서 가장 높은 활성을 보였다. 단백질분해효소의 경우 적정 수소이온농도는 pH 8.0, 적정온도는 $50^{\circ}C$로 확인되었으며, pH 7.0~8.5과 $20{\sim}50^{\circ}C$의 범위에서 높은 활성을 나타내었다. 섬유소분해효소는 $Mn^{2+}$ 이온에 의해 활성이 높아지며, 0.125%(w/v)의 $Mn^{2+}$ 이온 농도에서 가장 높은 활성을 보였다. 이러한 결과로부터 B. subtilis CK-가 생산하는 가수분해효소를 산업적으로 이용하기 위해서는 효소의 종류에 따라 수소이온농도와 온도, 그리고 금속이온을 적절하게 조절할 필요가 있다는 것을 알 수 있다.

Keywords

References

  1. Ahn, J. W., Oh, T. K., Park, Y. H. and Park, K. H. 1989. Partial purification and characterization of the alkaline protease from Bacillus sp. Kor. J. Microbiol. Biotech. 18, 344-351.
  2. Anson, M. L. 1939. The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J. Gen. Physiol. 22, 79-89.
  3. Ariffin, H., Abdullah, N., Kalsom, M. S. U., Shirai, Y. and Hassan, M. A. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. J. Engineer. Technol. 3, 47-53.
  4. Bailey, M. J., Biely, P. and Poutanen, K. 1992. Inter-laboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  5. Bernfeld, P., Colowick, S. P. and Kaplan, N. O. 1955. Methods in Enzymology, pp. 149-154, Acad. Press: New York.
  6. Chandra, A. K., Medda, S. and Bhadra, A. K. 1980. Production of extracellular thermostable ${\alpha}$-amylase by Bacillus licheniformis. J. Ferment. Technol. 58, 1-10.
  7. Choi, C., Choi, K. S., Cho, Y. J., Lim, S. I. and Kim, S. 1996. Characteristics and action pattern of protease from Bacillus subtilis CCKS-111 in korean traditinal soy sauce. J. Kor. Soc. Food Sci. Nutr. 25, 915-921.
  8. Chung, M. J., Taniguchi, H., Maruyama, Y. and Lee, M. J. 1982. Studies on ${\alpha}$-amylase of Bacillus circulans F-2. Part II. Enaymatic characteristics of the purified ${\alpha}$-amylase. Kor. J. Microbiol. Bioeng. 10, 123-132.
  9. Chung, S. J., Kim, Y. S., Sung, H. C., Choi, Y. J. and Yang, H. C. 1988. A study on the alkaline protease produced from Bacillus subtilis. J. Kor. Agric. Chem. Soc. 31, 356-360.
  10. Cowan, D., Daniel, R. and Moran, H. 1985. Thermophilic protease, properties and potential applications. Trends Biotechnol. 3, 68. https://doi.org/10.1016/0167-7799(85)90080-0
  11. Hiyama, R., Gisusi, S. and Harada, A. 2011. Evaluation of waste mushroom medium from cultivation of shiitake mushroom (Lentinula edodes) as feedstock of enzymic saccharification. J. Wood Sci. 57, 429-435. https://doi.org/10.1007/s10086-011-1185-y
  12. Horikoshi, K., Nakao, M., Kurono, Y. and Sashihara, N. 1984. Cellulases of an alkalophilic Bacillus strain isolated from soil. Can. J. Microbiol. 30, 774-779. https://doi.org/10.1139/m84-118
  13. Hwang, J. S., Yoo, H. J., Kim, S. J. and Kim, H. B. 2008. Characterization of ${\beta}$-1,4-glucanase activity of Bacillus licheniformis B1 in Chungkookjang. Kor. J. Microbiol. 44, 69-73.
  14. Hwang, S. Y. 1995. Purification and Characterization of An extracellula serine protease from Bacillus sp. strain KUN-17. Kor. J. Microbiol. Biotechnol. 23, 53-59.
  15. Im, M. 1982. Fish protein hydrolysates. Process Biochemistry 1, 26.
  16. Ishede, K. I. and Nagasaki, M. 1989. Effect of protease on textural properties of wheat flour dough. Nippon Shocuhin Kogyo Gakkaishi 36, 1003. https://doi.org/10.3136/nskkk1962.36.12_1003
  17. Ito, S., Shikata, S., Ozaki, K., Kawai, S., Okamoto, K., Inoue, S., Takei, A., Ohta, Y. and Satoh, T. 1989. Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric. Biol. Chem. 53, 1275-1281.
  18. Johansson, T. and Nyman, P. O. 1993. Isoenzymes of lignin peroxidase and manganese peroxidase from the white-rot Basidiomycete. Arch. Biochem. Biophys. 300, 49-56. https://doi.org/10.1006/abbi.1993.1007
  19. Kim, C. H. and Lee, S. H. 2011. Isolation of Bacillus subtilis CK-2 hydrolysing various organic materials. J. Life Sci. 21, 1716-1720. https://doi.org/10.5352/JLS.2011.21.12.1716
  20. Kim, J. Y. 2007. Isolation and characterization of an alkaline peotease produced by Bacillus subtilis JK-1. Kor. J. Microbiol. 43, 331-336.
  21. Kim, J. Y., Hur, S. H. and Hong, J. H. 2004. Isolation and characterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-810. Kor. J. Microbiol. 40, 139-146.
  22. Kim, K. P., Kim, N. H., Rhee, C. H., Woo, C. J. and Bae, D. H. 2002. Isolation and characterization of protease producing bacteria from soil. J. Kor. Soc. Food Sci. Nutr. 31, 754-759. https://doi.org/10.3746/jkfn.2002.31.5.754
  23. Kim, T. H., Park, S. H., Lee, D. S., Kwon, E. K., Kim, J. K. and Hong, S. D. 1990. Properties of alkaline protease produced by an alkalophilic Bacillus sp. Kor. J. Appl. Microbiol. Biotech. 18, 159-164.
  24. Kim, T. I., Han, J. D., Jeon, B. S., Ha, S. W., Yang, C. B. and Kim, M. K. 1999. Isolation and characterization of Bacillus subtilis CH-10 secreting cellulase from cattle manure. Kor. J. Microbiol. 35, 277-282.
  25. Lee, B. W., You, Y. S., Im, G. H. and Choi, X. U. 1991. Purification and properties of protease from Bacillus subtilis LY-353. J. Kor. Soc. Food Sci. Nutr. 20, 21-26.
  26. Lee, J. S., Kim, J. Y., Kim, H. B. and Lee, D. S. 2000. Cloning and expression of an acidophilic ${\alpha}$-amylase gene from Bacillus circulans in Escherichia coli. J. Microbiol. 36, 112-118.
  27. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  28. Nakasaki, K. and Akiyama, T. 1988. Effect of seeding on thermophilic composting of household organic waste. J. Ferment. Technol. 66, 37-42. https://doi.org/10.1016/0385-6380(88)90127-6
  29. Oh, D. H., Lee, K. P., Pyun, Y. R. and Yu, J. H. 1981. Studies on the production of thermostable amylase. Kor. J. Appl. Microbiol. Bioeng. 9, 91-97.
  30. Park G. W., Kim, M. D., Ahn, J. W., Kim, Y. B. and Seo, J. H. 1998. Characterzation of enzymatic properties of Sterptomyces albus amylase expressed in recombinant Bacillus subtilis. Kor. J. Food Sci. Technol. 30, 1426-1431.
  31. Park, C. S., Kang, D. O. and Choi, N. S. 2012. Characterization of cellulase and xylanase from Bacillus subtilis NC1iIsolated from environmental soil and determination of its genes. J. Life Sci. 22, 912-919. https://doi.org/10.5352/JLS.2012.22.7.912
  32. Park, J. D., Kim, Y. A. and Yoon, K. H. 2009. Properties of a Bacillus licheniformis cellulase produced by Recombinant Escherichia coli. Kor. Microbiol. 45, 257-262.
  33. Roh, S. B., Son, H. J. and Lee, J. K. 1997. Thermodtable ${\alpha}$-amylase production by thermophilic Bacillus sp. TR-25 Isolated from extreme environment. J. Life Sci. 7, 30-38.
  34. Shikata, S. K., Saeki, H., Okoshi, T., Yoshimatsu, K., Ozaki, S. and Ito, S. 1990. Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agric. Biol. Chem. 54, 91-96.
  35. Shin, S. U., Kwon, M. A., Jang, M. S., Jung, K. J. and Seo, H. J. 2004. Production conditions of alkaline protease by Bacillus megaterium. Kor. J. Food Preser. 11, 227-232.
  36. Williams B. C., Mcmullan, J. T. and McCahey, S. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 79, 227-230. https://doi.org/10.1016/S0960-8524(01)00073-6
  37. Yi, Y. P. 2003. Study on the produces of Bacillus lentu ${\alpha}$-amylase. MS thesis, Chongju University.
  38. Yun, S. H., Kim, M. J., Kim, J. W., Kwun, G. S., Lee, I. W. and Park, K. H. 1995. Purification and characterization of a novel maltooligosaccharide forming ${\alpha}$-amylase from Bacillus sp. SUH4-2. Kor. J. Microbiol. Biotechnol. 23, 573-579.