DOI QR코드

DOI QR Code

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
  • Received : 2017.07.19
  • Accepted : 2017.07.26
  • Published : 2017.07.31

Abstract

Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

Keywords

References

  1. G. Ingrosso, "Free radical chemistry and its concern with indoor air quality: an open problem," Microchem. J., Vol. 73, No. 1, pp. 221-236, 2002. https://doi.org/10.1016/S0026-265X(02)00067-X
  2. A. Anderson, A. Cheung, and M. Lei, "Evaluation of Hong Kong's indoor air quality management programme: certification scheme, objectives, and technology," Bachelor of Sci. Proj. Rep., Polytechnic Institute, Worchester, MA 2014.
  3. J. J. Zhang and K. R. Smith, "Indoor air pollution: a global health concern," Br. Med. Bull. Vol. 68, No. 1, pp. 209-225, 2003. https://doi.org/10.1093/bmb/ldg029
  4. J. W. Yoon, S. H. Choi, J. S. Kim, H. W. Jang, Y. C. Kang, and J.-H. Lee, "Trimodally Porous $SnO_2$ Nanospheres with Three-Dimensional Interconnectivity and Size Tunability: A One-Pot Synthetic Route and Potential Application as an Extremely Sensitive Ethanol Detector," NPG Asia Mater., Vol. 8, No. 3, e244, 2016. https://doi.org/10.1038/am.2016.16
  5. H. J. Gwon, H. G. Moon, H. W. Jang, S.-J. Yoon, and K. S. Yoo, "Sensitivity Enhancement of Nanostructured $SnO_2$ Gas Sensors Fabricated Using the Glancing Angle Deposition Method," J. Nanosci. Nanotechno., Vol. 13, No. 4, pp. 2740-2744, 2013. https://doi.org/10.1166/jnn.2013.7352
  6. Y.-S. Shim, H. G. Moon, D. H. Kim, H. W. Jang, C.-Y. Kang, Y. S. Yoon, and S.-J. Yoon, "Transparent conducting oxide electrodes for novel metal oxide gas sensors," Sens. Actuator B-chem., Vol. 160, No. 1, pp. 357-363, 2011. https://doi.org/10.1016/j.snb.2011.07.061
  7. H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, and J.-H. Lee, "Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Crdoped NiO hierarchical nanostructures," Nanoscale, Vol. 5, No. 15, pp. 7066-7073, 2013. https://doi.org/10.1039/c3nr01281f
  8. H. Kim, M. H. Hong, H. W. Jang, S.-J. Yoon, and H.-H. Park, "CO gas sensing properties of direct-patternable TiO2 thin films containing multi-wall carbon nanotubes," Thin Solid Films, Vol. 529, pp. 89-93, 2013. https://doi.org/10.1016/j.tsf.2012.07.062
  9. H. G. Moon, Y.-S. Shim, D. H. Kim, H. W. Jang, S. H. Han, H.-H. Park, and S.-J. Yoon, "Highly Ordered Large-Area Colloid Templates for Nanostructured $TiO_2$ Thin Film Gas Sensors," J. Nanosci. Nanotechno., Vol. 12, No. 4, pp. 3496-3500, 2012. https://doi.org/10.1166/jnn.2012.5589
  10. H. G. Moon, H. W. Jang, J.-S. Kim, H.-H. Park, and S.-J. Yoon, "Mechanism of the sensitivity enhancement in $TiO_2$ hollow-hemisphere gas sensors," Electron. Mater. Lett., Vol. 6, No. 4, pp. 135-139, 2010. https://doi.org/10.3365/eml.2010.12.135
  11. K. Lee, Y.-S. Shim, Y. G. Song, S. D. Han, Y.-S. Lee, and C.-Y. Kang, "Highly sensitive sensors based on metal-oxide nanocolumns for fire detection," Sensors, Vol. 17, No. 2, p. 303, 2017. https://doi.org/10.3390/s17020303
  12. S. D. Han, M.-S. Noh, S. Kim, Y.-S. Shim, Y. G. Song, K. Lee, H. R. Lee, S. Nahm, S.-J. Yoon, and J.-S. Kim, "Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of $In_2O_3$ based gas sensor," Sens. Actuator B-chem., Vol. 248, pp. 894-901, 2017. https://doi.org/10.1016/j.snb.2017.01.108
  13. S. D. Han, H. G. Moon, M.-S. Noh, J. J. Pyeon, Y.-S. Shim, S. Nahm, J.-S. Kim, K. S. Yoo, and C.-Y. Kang, "Selfdoped nanocolumnar vanadium oxides thin films for highly selective $NO_3$ gas sensing at low temperature," Sens. Actuator B-chem., Vol. 241, pp. 40-47, 2017. https://doi.org/10.1016/j.snb.2016.10.029
  14. C. S. Lee, Z. Dai, S. Y. Jeong, C.-H. Kwak, B.-Y. Kim, D. H. Kim, H. W. Jang, J.-S. Park, and J.-H. Lee, "Monolayer $Co_3O_4$ Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds," Chem-Eur. J., Vol. 22, No. 21, pp. 7102-7107, 2016. https://doi.org/10.1002/chem.201505210
  15. S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, "Reduced graphene oxide conjugated $Cu_2O$ nanowire mesocrystals for high-performance $NO_2$ gas sensor," J. Am. Chem. Soc., Vol. 134, No. 10, pp. 4905-4917, 2012. https://doi.org/10.1021/ja211683m
  16. Y. R. Choi, Y.-G. Yoon, K. S. Choi, J. H. Kang, Y.-S. Shim, Y. H. Kim, H. J. Chang, J.-H. Lee, C. R. Park, S. Y. Kim, and H. W. Jang, "Role of oxygen functional group in graphene oxide for reversible room-temperature $NO_2$ sensing," Carbon, Vol. 91, pp. 178-187, 2015. https://doi.org/10.1016/j.carbon.2015.04.082
  17. Y. H. Kim, S. J. Kim, Y. J. Kim, Y.-S. Shim, S. Y. Kim, B. H. Hong, and H. W. Jang, "Self-Activated Transparent All Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending," ACS Nano, Vol. 9, No. 10, pp. 10453-10460, 2015. https://doi.org/10.1021/acsnano.5b04680
  18. J.-M Jeon, T. L. Kim, Y.-S. Shim, Y. R. Choi, S. Lee, K. C. Kwon, S.-H. Hong, Y.-W. Kim, S. Y. Kim, M. Kim, and H. W. Jang, "Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration induced Reduction of Graphene Oxide," Adv. Mater., Vol. 29, No. 15, 2017.
  19. Y. H. Kim, K. Y. Kim, Y. R. Choi, Y.-S. Shim, J.-M. Jeon, J.-H. Lee, S. Y. Kim, S. Han, and H. W. Jang, "Ultrasensitive Reversible Oxygen Sensing in Liquid-Exfoliated $MoS_2$ Nanoparticles," J. Mater. Chem. A, Vol. 4, No. 16, pp. 6070-6076, 2016. https://doi.org/10.1039/C6TA01277A
  20. T. H. Kim, Y. H. Kim, S. Y. Park, S. Y. Kim, and H. W. Jang, "Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges," Chemosensors, Vol. 5, No. 2, p. 15, 2017. https://doi.org/10.3390/chemosensors5020015
  21. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  22. N. Yamazoe, "New approaches for improving semiconductor gas sensors," Sens. Actuator B-chem., Vol. 5, No. 1- 4, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4
  23. H. G. Moon, Y.-S. Shim, D. Su, H.-H. Park, S.-J. Yoon, and H. W. Jang, "Embossed $TiO_2$ Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas-Sensing Properties," J. Phys. Chem. C, Vol. 115, No. 20, pp. 9993-9999, 2011. https://doi.org/10.1021/jp2020325
  24. Y.-S. Shim and H. W. Jang, "Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors," J. Sens. Sci. Tech., Vol. 25, No. 3, pp. 178-183, 2016. https://doi.org/10.5369/JSST.2016.25.3.178
  25. Y.-S. Shim, D. H. Kim, H. Y. Jeong, Y. H. Kim, S. H. Nahm, C.-Y. Kang, J.-S. Kim, W. Lee, and H. W. Jang, "Utilization of both-side metal decoration in close-packed $SnO_2$ nanodome arrays for ultrasensitive gas sensing," Sens. Actuator B-chem., Vol. 213, pp. 314-321, 2015. https://doi.org/10.1016/j.snb.2015.02.103
  26. Y.-S. Shim, L. Zhang, D. H. Kim, Y. H. Kim, Y. R. Choi, S. H. Nahm, C.-Y. Kang, W. Lee, and H. W. Jang, "Highly sensitive and selective $H_2$ and $NO_2$ gas sensors based on surface-decorated $WO_3$ nanoigloos," Sens. Actuator Bchem., Vol. 198, pp. 294-301, 2014. https://doi.org/10.1016/j.snb.2014.03.073
  27. Y.-S. Shim, H. G. Moon, D. H. Kim, L. Zhang, S.-J. Yoon, Y. S. Yoon, C.-Y. Kang, and H. W. Jang, "Au-decorated $WO_3$ cross-linked nanodomes for ultrahigh sensitive and selective sensing of $NO_2$ and $C_2H_5OH$," RSC Adv., Vol. 3, No. 26, pp. 10452-10459, 2013. https://doi.org/10.1039/c3ra41331d
  28. D. H. Kim, Y.-S. Shim, H. G. Moon, H. J. Chang, D. Su, S. Y. Kim, J.-S. Kim, B. K. Ju, S.-J. Yoon, and H. W. Jang, "Highly Ordered $TiO_2$ Nanotubes on Patterned Substrates: Synthesis in-Place for Ultrasensitive Chemiresistors," J. Phys. Chem. C, Vol. 117, No. 34, pp. 17824-17831, 2013. https://doi.org/10.1021/jp405150b
  29. D. H. Kim, Y.-S. Shim, J.-M. Jeon, H. Y. Jeong, S. S. Park, Y.-W. Kim, J.-S. Kim, J.-H. Lee, and H. W. Jang, "Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor," ACS Appl. Mater. Interfaces, Vol. 6, No. 17, pp. 14779-14784, 2014. https://doi.org/10.1021/am504156w
  30. W. Huan-Hua, S. Yi-Jian, W. Chu, and Y. Blum, "Strong Surface Diffusion Mediated Glancing-Angle Deposition: Growth, Recrystallization and Reorientation of Tin Nanorods," Chin. Phys. Lett., Vol. 25, No. 1, p. 234, 2008. https://doi.org/10.1088/0256-307X/25/1/064
  31. H. G. Moon, Y. R. Choi, Y.-S. Shim, K.-I. Choi, J.-H. Lee, J.-S. Kim, S.-J. Yoon, H.-H. Park, C.-Y. Kang, and H. W. Jang, "Extremely sensitive and selective NO probe based on villi-like $WO_3$ nanostructures for application to exhaled breath analyzers," ACS Appl. Mater. Interfaces, Vol. 5, No. 21, pp. 10591-10596, 2013. https://doi.org/10.1021/am402456s
  32. H. G. Moon, Y.-S. Shim, H. Y. Jeong, M. H. Jeong, J. Y. Jung, S. M. Han, J. K. Kim, J.-S. Kim, H.-H. Park, J.-H. Lee, H. L. Tuller, S.-J. Yoon, and H. W. Jang, "Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors," Sci. Rep., Vol. 2, 2012.
  33. J.-M. Jeon, Y.-S. Shim, S. D. Han, D. H. Kim, Y. H. Kim, C.-Y. Kang, J.-S. Kim, M. Kim, and H. W. Jang, "Vertically ordered $SnO_2$ nanobamboos for substantially improved detection of volatile reducing gases," J. Mater. Chem. A, Vol. 3, No. 35, pp. 17939-17945, 2015. https://doi.org/10.1039/C5TA03293H
  34. J. M. Suh, Y.-S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J.-M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J.-H. Lee, C.-Y. Kang, and H. W. Jang, "Synergetically Selective Toluene Sensing in Hematite- Decorated Nickel Oxide Nanocorals," Adv. Mater. Technol., Vol. 2, No. 3, 2017.
  35. H. G. Moon, Y. Jung, S. D. Han, Y.-S. Shim, B. Shin, T. Lee, J.-S. Kim, S. Lee, S. C. Jun, H.-H. Park, C. Kim, and C.-Y. Kang, "Chemiresistive electronic nose toward detection of biomarkers in exhaled breath," ACS appl. Mater. Interfaces, Vol. 8, No. 32, pp. 20969-20976, 2016. https://doi.org/10.1021/acsami.6b03256
  36. S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S.-J. Yoon, and J. K. Kim, "A near single crystalline $TiO_2$ nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose," Analyst, Vol. 138, No. 2, pp. 443-450, 2013. https://doi.org/10.1039/C2AN35932D
  37. K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications," J. Vac. Sci. Technol. A, Vol. 15, No. 3, pp. 1460-1465, 1997.