Canal Surfaces in Galilean 3-Spaces

Yılmaz Tuncer
Department of Mathematics, Usak University, Usak 64200, Turkey
e-mail: yilmaz.tuncer@usak.edu.tr

Abstract. In this paper, we defined the admissible canal surfaces with isotropic radial vector in Galilean 3-spaces and obtained their position vectors. Also we gave some important results by using their Gauss and mean curvatures.

1. Introduction

A canal surface is defined as envelope of a one-parameter set of spheres, centered at a spine curve $\gamma(s)$ with radius $r(s)$. When $r(s)$ is a constant function, the canal surface is the envelope of a moving sphere and is called a pipe surface. Canal surfaces have wide applications in CAGD, such as construction of blending surfaces, shape reconstruction, transition surfaces between pipes, robotic path planning, etc. An envelope of a 1-parameter family of surfaces is constructed in the same way that we constructed a 1-parameter family of curves. The family is described by a differentiable function $F(x, y, z, \lambda) = 0$, where λ is a parameter. When λ can be eliminated from the equations

$$F(x, y, z, \lambda) = 0$$

and

$$\frac{\partial F(x, y, z, \lambda)}{\partial \lambda} = 0,$$

we get the envelope, which is a surface described implicitly as $G(x, y, z) = 0$. For example, for a 1-parameter family of planes we get a develople surface([1], [2], [3], [5], [7] and [9]).

A general canal surface is an envelope of a 1-parameter family of surfaces. The envelope of a 1-parameter family $s \mapsto S^2(s)$ of spheres in IR^3 is called a general canal surface [3]. The curve formed by the centers of the spheres is called center curve of the canal surface. The radius of general canal surface is the function r such that $r(s)$ is the radius of the sphere $S^2(s)$. Suppose that the center curve of...
a canal surface is a unit speed curve $\alpha : I \to \mathbb{R}^3$. Then the general canal surface can be parametrized by the formula

$$C(s, t) = \alpha(s) - R(s)T - Q(s)\cos(t)N + Q(s)\sin(t)B,$$

where

$$R(s) = r(s)r'(s),$$

$$Q(s) = \pm r(s)\sqrt{1 - r'(s)^2}.$$

All the tubes and the surfaces of revolution are subclass of the general canal surface.

Theorem 1.1 ([3]). Let M be a canal surface. The center curve of M is a straight line if and only if M is a surface of revolution for which no normal line to the surface is parallel to the axis of revolution. The following conditions are equivalent for a canal surface M:

i. M is a tube parametrized by (1.1);

ii. the radius of M is constant;

iii. the radius vector of each sphere in family that defines the canal surface M meets the center curve orthogonally.

2. Canal Surfaces in Galilean Space

The Galilean space G_3 is a Cayley-Klein space defined from a 3-dimensional projective space $P(\mathbb{R}3)$ with the absolute figure that consists of an ordered triple $\{\omega, f, I\}$, where ω is the ideal (absolute) plane, f the line (absolute line) in ω and I the fixed elliptic involution of points off. We introduce homogeneous coordinates in G_3 in such a way that the absolute plane ω is given by $x_0 = 0$, the absolute line f by $x_0 = x_1 = 0$ and the elliptic involution by $(0 : 0 : x_2 : x_3) \mapsto (0 : 0 : x_3 : -x_2)$. With respect to the absolute figure, there are two types of lines in the Galilean space, isotropic lines which intersect the absolute line f and non-isotropic lines which do not. A plane is called Euclidean if it contains f, otherwise it is called isotropic. In the given affine coordinates, isotropic vectors are of the form $(0, y, z)$, whereas Euclidean planes are of the form $x = k, k \in \mathbb{R}$.

The scalar product in Galilean space G_3 is defined by

$$g(A, B) = \begin{cases} a_1b_1, & \text{if } a_1 \neq 0 \lor b_1 \neq 0, \\ a_2b_2 + a_3b_3, & \text{if } a_1 = 0 \land b_1 = 0, \end{cases}$$

where $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$. The Galilean cross product is defined by

$$A \wedge_{G_3} B = \begin{vmatrix} 0 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}, \text{ if } a_1 \neq 0 \lor b_1 \neq 0.$$
The unit Galilean sphere is defined by

\[S^2_\pm = \{ X \in G_3 \mid g(X, X) = \mp r^2 \}. \]

An admissible curve \(\alpha : I \subseteq \mathbb{R} \to G_3 \) in the Galilean space \(G_3 \) which parameterized by the arc length \(s \) defined by

\[\alpha(s) = (s, y(s), z(s)), \]

where \(s \) is a Galilean invariant and the arc length on \(\alpha \). The curvature \(\kappa(s) \) and the torsion \(\tau(s) \) are defined by

\[\kappa(s) = \sqrt{(y''(s))^2 + (z''(s))^2}, \quad \tau(x) = \frac{\det (\alpha'(s), \alpha''(s), \alpha'''(s))}{\kappa^2(s)}. \]

The orthonormal frame in the sense of Galilean space \(G_3 \) is defined by

\[T(s) = \alpha'(s) = (1, y'(s), z'(s)), \]
\[N(s) = \frac{1}{\kappa(s)} (0, y''(s), z''(s)), \]
\[B(s) = \frac{1}{\kappa(s)} (0, -z''(s), y''(s)). \]

The vectors \(T, N \) and \(B \) in (2.3) are called the vectors of the tangent, principal normal and the binormal line of \(\alpha \), respectively. They satisfy the following Frenet equations

\[T' = \kappa N, \quad N' = \tau B, \quad B' = -\tau N. \]

A \(C^r \)-surface \(M, r \geq 1 \), immersed in the Galilean space, \(x : U \to M, U \subset \mathbb{R}^2 \),

\[x(u, v) = (x(u, v), y(u, v), z(u, v)), \]

has the following first fundamental form

\[I = (g_1 du + g_2 dv)^2 + \epsilon(h_{11} du^2 + 2h_{12} du dv + h_{22} dv^2), \]

where the symbols \(g_i = x_i \) and \(h_{ij} = g(\tilde{x}_i, \tilde{x}_j) \) stand for derivatives of the first coordinate function \(x(u, v) \) with respect to \(u, v \) and for the Euclidean scalar product of the projections \(\tilde{x}_k \) of vectors \(x_k \) onto the \(yz \)-plane, respectively. Furthermore,

\[\epsilon = \begin{cases} 0, & \text{if direction } du : dv \text{ is non-isotropic,} \\ 1, & \text{if direction } du : dv \text{ is isotropic.} \end{cases} \]

In every point of a surface there exists a unique isotropic direction defined by \(g_1 du + g_2 dv = 0 \). In that direction, the arc length is measured by

\[ds^2 = \frac{1}{(g_1)^2} \left\{ h_{11} (g_2)^2 - 2h_{12} g_1 g_2 + h_{22} (g_1)^2 \right\} dv^2 = \frac{W^2}{(g_1)^2} dv^2, \quad g_1 \neq 0, \]
where
\[h_{11} = \frac{x_1^2}{W^2}, \quad h_{12} = -\frac{x_1x_2}{W^2}, \quad h_{12} = \frac{x_2^2}{W^2}, \]
\[x_1 = \frac{\partial x}{\partial u}, \quad x_2 = \frac{\partial x}{\partial v}, \quad W^2 = (x_2x_1 - x_1x_2)^2. \]

A surface is called *admissible* if it has no Euclidean tangent planes. Therefore, for an admissible surface \(g_1 \neq 0 \) or \(g_2 \neq 0 \) holds. An admissible surface can always locally be expressed as \(z = f(x, y) \).

The Gaussian \(K \) and mean curvature \(H \) are \(C^{r-2} \)-functions, \(r \geq 2 \), defined by
\[K = \frac{L_{11}L_{22} - L_{12}^2}{W^2}, \quad H = \frac{(g_2)^2 L_{11} - 2g_1g_2L_{12} + (g_1)^2 L_{22}}{2W^2}, \]
where
\[L_{ij} = g \left(\frac{x_1x_{ij} - x_{ij}x_1}{x_1}, \eta \right), \quad x_1 = g_1 \neq 0. \]

The unit normal vector \(\eta \) given by an isotropic vector is defined by
\[\eta = \frac{x_1 \land G_3 x_2}{W} = \frac{1}{W}(0, -x_2z_1 + x_1z_2, x_2y_1 - x_1y_2) \]
([4], [6], [8]).

In Galilean geometry, there are two types sphere depending radious vector whether it is a isotropic or non-isotropic. Spheres with non-isotropic radious vector are Euclidean circles in yoz-plane and spheres with isotropic radious vector are parallel planes such as \(x = \pm r \). We denote the Euclidean circles by \(S^1_{\pm}(s) \).

Definition 2.1. The envelope of a 1-parameter family \(s \rightarrow S^1_{\pm}(s) \) of the circles in \(G_3 \) is called a *canal surface* in Galilean 3-space. The curve formed by the centers of the Euclidean circles is called *center curve* of the canal surface. The radius of the canal surface is the function \(r \) such that \(r(s) \) is the radius of the Euclidean circles \(S^1_{\pm}(s) \).

Let \(\gamma(s) \) be an admissible curve as centered curve and canal surface is a patch that parametrizes the envelope of Euclidean circles which can be defined as
\[C(s, t) = \gamma(s) + \psi(s, t) T(s) + \varphi(s, t) N(s) + \omega(s, t) B(s) \]
with the regularity conditions \(C_s \neq 0, C_t \neq 0 \) and \(C_s \times C_t \neq 0 \), where \(\varphi(s, t) \) and \(\omega(s, t) \) are \(C^\infty \)-functions of \(s \) and \(t \). Since \(C(s, t) - \gamma(s) \) is the surface normal of \(S^1_{\pm}(s) \) and \(C(s, t) \) is non-isotropic then \(\psi(s, t) = 0 \) and
\[g(C(s, t) - \gamma(s), C(s, t) - \gamma(s)) = \varphi(s, t)^2 + \omega(s, t)^2 = r(s)^2 \]
and by differentiating (2.6) with respect to \(s \) and \(t \) we get
\[\varphi_t(s, t) \varphi(s, t) + \omega_t(s, t) \omega(s, t) = 0, \]
Canal Surfaces in Galilean 3-Spaces

\[
\varphi_s(s,t) \varphi(s,t) + \omega_s(s,t) \omega(s,t) = r'(s) r(s),
\]

\[
g(C(s,t) - \gamma(s), C_s(s,t)) = 0,
\]

\[
g(C(s,t) - \gamma(s), C_t(s,t)) = 0,
\]

and also we find the functions \(\varphi(s,t) \) and \(\omega(s,t) \) are

\[
\varphi(s,t) = r(s) \cos(t), \quad \omega(s,t) = r(s) \sin(t)
\]

by using (2.6), (2.7) and (2.8). Thus, we give the following corollary.

Corollary 2.2. Let \(\gamma(s) \) be an admissible curve. Then the position vector of canal surface with isotropic radius vector and centered curve \(\gamma(s) \) is

\[
C(s,t) = \gamma(s) + r(s) \cos(t) N(s) + r(s) \sin(t) B(s).
\]

The natural basis \(\{C_s, C_t\} \) are given by

\[
C_s = T + \{r' \cos(t) - r \tau \sin(t)\} N + \{r' \sin(t) + r \tau \cos(t)\} B,
\]

\[
C_t = -r \sin(t) N + r \cos(t) B.
\]

From (2.4) and (2.12), the components \(h_{ij} \) and \(g_i \) are

\[
h_{11} = (r'(s))^2 + r^2(s) \tau^2(s), \quad h_{12} = r^2(s) \tau(s), \quad h_{22} = r^2(s),
\]

\[
g_1 = 1, \quad g_2 = 0.
\]

Thus, the first fundamental form of canal surface is

\[
I_C = \left(1 + (r'(s))^2 + r^2(s) \tau^2(s)\right) du^2 + 2r^2(s) \tau(s) du dv + r^2(s) dv^2.
\]

By using (2.4), the second derivations of (2.12)

\[
C_{ss} = \left\{k + (r'' - r \tau^2) \cos(t) - (2r' \tau + r \tau') \sin(t)\right\} N
\]

\[
+ \left\{(2r' \tau + r \tau') \cos(t) + (r'' - r \tau^2) \sin(t)\right\} B
\]

\[
C_{tt} = -r \cos(t) N - r \sin(t) B
\]

\[
C_{st} = -(r' \sin(t) + r \tau \cos(t)) N + (r' \cos(t) - r \tau \sin(t)) B
\]

and the unit normal vector

\[
\eta(s,t) = -\cos(t) N(s) - \sin(t) B(s)
\]

coefficients \(L_{ij} \) are
\[
L_{11} = - \left\{ \kappa(s) \cos(t) + r''(s) - r(s) \tau^2(s) \right\}, \quad L_{12} = r(s) \tau(s), \quad L_{22} = r(s)
\]
so the second fundamental form is
\[
II_C = - \left\{ \kappa(s) \cos(t) + r''(s) - r(s) \tau^2(s) \right\} \, du^2 + 2r(s) \tau(s) \, dudv + r(s) \, dv^2.
\]
The Gauss curvature and mean curvature of a non-isotropic canal surface in the Galilean space are given by
\[
K(s,t) = r''(s) - \kappa(s) \cos(t) r(s), \quad H(s,t) = \frac{1}{2r(s)}.
\]
In the case \(K(s,t) = 0\), the centered curve has to be planar and there are two K-flat canal surfaces for \(r(s) = c_1 s + c_2\) and \(r(s) = c\). Thus, we conclude the following cases.

Theorem 2.3. Let \(M\) be a canal surface in Galilean 3-space. Then followings are true.

i. There is no minimal canal surface.

ii. The Gauss and mean curvatures of canal surface satisfy the relation
\[
K(s,t) + 2H(s,t) \{ \kappa(s) \cos(t) - r''(s) \} = 0,
\]

iii. \(M\) is a \(K\)-flat canal surface if and only if \(M\) is a elliptic cone and its position vector is
\[
C(s,t) = (s, (c_1 s + c_2)(c_3 \cos(t) \mp \sqrt{1 - (c_3)^2} \sin(t))
, (c_1 s + c_2)(\mp \sqrt{1 - (c_3)^2} \cos(t) - c_3 \sin(t))),
\]
where \(c_1 \neq 0, c_2 \in IR, c_3 \in [0,1]\), see Figure 1(a).

iv. \(M\) is a \(K\)-flat tubular surface if and only if \(M\) is a elliptic cylinder and its position vector is
\[
C(s,t) = (s, c_1 c_2 \cos(t) \mp c_1 \sqrt{1 - (c_2)^2} \sin(t), \mp c_1 \sqrt{1 - (c_2)^2} \cos(t) - c_1 c_2 \sin(t)),
\]
where \(c_1 \in IR^+, c_2 \in [0,1]\), see Figure 1(b).

v. All the tubes are surface with constant mean curvature.

On the other hand, a surface is said to be a Weingarten surface if its Gauss and mean curvatures satisfy the Jacobi condition \(\Phi(H,K) = K_t H_s - H_t K_s = 0\). Thus, we can give also following theorem.
Theorem 2.4. Let \(M \) be a canal surface in Galilean 3-space. Then \(M \) is a Weingarten surface if and only if \(M \) is either a tubular surface or a surface of revolution with
\[
r(s) = \pm c_3 e^{-\left(\frac{2 \pi^2}{c_1}\right)} \left(e^{2\left(\frac{2 \pi^2}{c_1}\right)} + 1\right)
\]
and \(r(s) = c_1 s + c_2 \), where \(c_1 \neq 0 \), \(c_2 \in \mathbb{R} \) and \(c_3 \in \mathbb{R}^+ \).

Proof. Let us assume that \(M \) be a Weingarten surface. Differentiating \(K(s,t) \) and \(H(s,t) \) with respect to \(s \) and \(t \) gives

\[
K_s(s,t) = \frac{r'''(s)r(s) - r''(s)r'(s) + (\kappa(s)r'(s) - \kappa'(s)r(s))\cos(t)}{r(s)^3}
\]

\[
K_t(s,t) = \frac{r''(s) + \kappa(s)\sin(t)}{r(s)}
\]

and

\[
H_s(s,t) = -\frac{r'(s)}{2r(s)}, \quad H_t(s,t) = 0.
\]

From the Jacobi equation \(\Phi(H,K) = K_tH_s - H_tK_s = 0 \), we get

\[
\frac{1}{r(s)^3} \left\{ \begin{array}{c}
\tau''(s)r'''(s) - \tau''(s)r'(s) - \tau''(s)r'(s)
+ \kappa(s)(\kappa(s)r'(s) - \kappa'(s)r(s))\cos(t)
\end{array} \right\} \sin(t) = 0.
\]

Since \(\{1, \sin(t), \cos(t)\} \) is linearly independent then

\[
\begin{align*}
\tau''(s)r'''(s) - \tau''(s)r'(s) - \tau''(s)r'(s) &= 0, \\
\kappa(s)(\kappa(s)r'(s) - \kappa'(s)r(s)) &= 0, \\
\kappa(s)(\kappa(s)r'(s) - \kappa'(s)r(s)) &= 0, \\
\tau''(s)(\kappa(s)r'(s) - \kappa'(s)r(s)) &= 0.
\end{align*}
\]

(14)

If \(\kappa(s) \) is non-zero constant then from (14)_3, \(r(s) \) is non-zero constant. If \(\kappa(s) = 0 \) then from (14)_1, either \(r(s) = c_1 s + c_2 \) or

\[
r(s) = \pm c_3 e^{-\left(\frac{2 \pi^2}{c_1}\right)} \left(e^{2\left(\frac{2 \pi^2}{c_1}\right)} + 1\right).
\]

It is easy to see that the Jacobi equation \(\Phi(H,K) = 0 \) satisfies in each case of \(\kappa(s) \) and \(r(s) \) are non-zero constants, \(\kappa(s) = 0 \), and \(r(s) = c_1 s + c_2 \) and \(\kappa(s) = 0 \), and \(r(s) = \pm c_3 e^{-\left(\frac{2 \pi^2}{c_1}\right)} \left(e^{2\left(\frac{2 \pi^2}{c_1}\right)} + 1\right) \), for the necessary part. Thus proof is completed.

Acknowledgements. The author is indebted to the referees for helpful suggestions and insights concerning the presentation of this paper.
Figure 1: Some Galilean Canal Surfaces. For (a); $c_1 = c_2 = 1$, $c_3 = 1/2$, for (b); $c_1 = 1$, $c_2 = 1/2$.

References

