A Study on Mechanical Interfacial Behaviors of Carbon Black-filled Elastomeric Materials via Adhesion Improvement

카본블랙-고무간 접착향상에 따른 기계적 계면특성

  • Published : 2017.06.30

Abstract

Keywords

References

  1. D. Hosler, S. L. Burkett, and M. J. Tarkanian, "Prehistoric polymers: rubber processing in ancient Mesoamerica", Science, 284, 1988 (1999). https://doi.org/10.1126/science.284.5422.1988
  2. A. N. Gent, "Fracture mechanics applied to elastomeric composites", Rubber. Chem. Technol., 56, 1011 (1983). https://doi.org/10.5254/1.3538162
  3. S. Ata, T. Mizuno, A. Nishizawa, C. Subramaniam, D. N. Futaba, and K. Hata, "Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite", Sci. Rep-UK, 4, 7232 (2014).
  4. Y. Mao, S. Wen, Y. Chen, F. Zhang, P. Panine, T. W. Chan, L. Zhang, Y. Liang, and L. Liu, "High performance graphene oxide based rubber composites", Sci. Rep-UK, 3, 2508 (2013). https://doi.org/10.1038/srep02508
  5. I. M. Ulfah, R. Fidyaningsih, S. Rahayu, D. A. Fitriani, D. A. Saputra, D. A. Winarto, and L. A. Wisojodharmo, "Influence of carbon black and silica filler on the rheological and mechanical properties of natural rubber compound", Procedia. Chem., 16, 258 (2015). https://doi.org/10.1016/j.proche.2015.12.053
  6. B. Guo, F. Chen, Y. Lei, and W. Chen, "Significantly improved performance of rubber/silica composites by addition of sorbic acid", Polym. J., 42, 319 (2010). https://doi.org/10.1038/pj.2010.4
  7. M. J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber. Chem. Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  8. Y. Hoei, "Molecular treatment of rubber-like elasticity for active filler-loaded networks", Rubber Chem. Technol., 88, 640 (2015). https://doi.org/10.5254/rct.15.84884
  9. G. Sui, W. H. Zhong, X. P. Yang, Y. H. Yu, and S. H. Zhao, "Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes", Polym. Advan. Technol., 19, 1543 (2008).
  10. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, and K. Ishikawa, "Electrical conductivity of carbon-polymer composites as a function of carbon content", J. Mater. Sci., 17, 1610 (1982). https://doi.org/10.1007/BF00540785
  11. H. Lorenz, J. Fritzsche, A. Das, K. W. Stockelhuber, R. Jurk, G. Heinrich, and M. Kluppel, "Advanced elastomer nano-composites based on CNT-hybrid filler systems", Compos. Sci. Technol., 69, 2135 (2009). https://doi.org/10.1016/j.compscitech.2009.05.014
  12. S. J. Park and M. K. Seo, "Interfacial characteristics of polymeric composite materials", Polym-Korea, 29, 221 (2005).
  13. H. Ismail, S. Shuhelmy, and M. R. Edyham, "The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites", Eur. Polym. J., 38, 39 (2002). https://doi.org/10.1016/S0014-3057(01)00113-6
  14. K. W. Stockelhuber, A. S. Svistkov, A. G. Pelevin, and G. Heinrich, "Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites", Macromolecules, 44, 4366 (2011). https://doi.org/10.1021/ma1026077
  15. A. Y. Coran and J. B. Donnet, "The dispersion of carbon black in rubber Part III. The effect of dispersion quality on the dynamic mechanical properties of filled natural rubber", Rubber. Chem. Technol., 65, 1016 (1992). https://doi.org/10.5254/1.3538646
  16. A. Y. Coran, F. Ignatz-Hoover, and P. C. Smakula, "The dispersion of carbon black in rubber part IV. The kinetics of carbon black dispersion in various polymers", Rubber. Chem. Technol., 67, 237 (1994). https://doi.org/10.5254/1.3538671
  17. T. Mathew, R. N. Datta, W. K. Dierkes, J. W. M. Noordermeer, and W. J. Van Ooij, "A comparative investigation of surface modification of carbon black and silica by plasma polymerization", Rubber. Chem. Technol., 81, 209 (2008). https://doi.org/10.5254/1.3548206
  18. S. Bandyopadhyay, P. P. De, D. K. Tripathy, and S. K. De, "Influence of surface oxidation of carbon black on its interaction with nitrile rubbers", Polymer, 37, 353 (1996). https://doi.org/10.1016/0032-3861(96)81110-4
  19. S. J. Park, K. S. Kim, and B. J. Kim, "Influence of fluorination of silica surfaces on interfacial mechanical properties of acrylonitrile-butadiene rubber-based composites", J. Adhes. Sci. Technol., 26, 861 (2012).
  20. J. S. Kim, C. W. Nah, and S. J. Park, "Filler-elastomer interactions. 1. Roles of modified carbon black surfaces to enhance mechanical properties of carbon black/rubber vulcanizates", Elastomers. Compos., 35, 98 (2000).
  21. W. M. Hess and V. E. Chirico, "Elastomer blend properties-Influence of carbon black type and location", Rubber. Chem. Technol., 50, 301 (1977). https://doi.org/10.5254/1.3535145
  22. M. J. Wang, S. Wolff, and J. B. Donnet, "Filler-elastomer interactions. Part III. Carbon-black-surface energies and interactions with elastomer analogs", Rubber Chem. Technol., 64, 714 (1991). https://doi.org/10.5254/1.3538585
  23. L. Tzounis, S. Debnath, S. Rooj, D. Fischer, E. Mäder, A. Das, M. Stamm, and G. Heinrich, "High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers", Mater. Design., 58, 1 (2014). https://doi.org/10.1016/j.matdes.2014.01.071
  24. V. Jovanovic, S. Samarzija-Jovanovic, J. Budinski-Simendic, G. Markovic, and M. Marinovic-Cincovic, "Composites based on carbon black reinforced NBR/EPDM rubber blends", Compos. Part B-Eng., 45, 333 (2013). https://doi.org/10.1016/j.compositesb.2012.05.020
  25. S. Araby, Q. Meng, L. Zhang, I. Zaman, P. Majewski, and J. Ma, "Elastomeric composites based on carbon nanomaterials", Nanotechnology, 26, 112001 (2015). https://doi.org/10.1088/0957-4484/26/11/112001
  26. J. K. Kim, "Conductive carbon block filled composite (I): The effect of carbon block on the conductivity", Elastomers Compos., 33, 355 (1998).
  27. F. M. Fowkes, "Attractive forces at interfaces", Ind. Eng. Chem. Res., 56, 40 (1964).
  28. D. Graham, "Physical adsorption on low energy solids. II. Adsorption of nitrogen, argon, carbon tetrafluoride, and ethane on polypropylene1", J. Phys. Chem-US, 68, 2788 (1964). https://doi.org/10.1021/j100792a008
  29. A. V. Tvardovski and A. A. Fomkin, "Theory of adsorption in microporous adsorbents", J. Colloid Interf. Sci., 198, 296 (1998). https://doi.org/10.1006/jcis.1997.5291
  30. S. J. Park, K. S. Cho, and S. K. Ryu, "Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites", Carbon, 41, 1437 (2003). https://doi.org/10.1016/S0008-6223(03)00088-5
  31. S. J. Park and J. S. Kim, "Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system", J. Colloid Interf. Sci., 232, 311 (2000). https://doi.org/10.1006/jcis.2000.7160
  32. S. J. Park, K. S. Cho, M. Zaborski, and L. Slusarski, "Filler-elastomer interactions 5. Effect of silane surface treatment on interfacial adhesion of silica/rubber composites", Polym-Korea, 26, 445 (2002).
  33. J. S. Kim, J. R. Lee, C. H. Shin, C. W. Nah, and S. J. Park, "Chemical surface treatment of carbon black to enhance interfacial adhesion between elastomer and carbon black", Elastomers Compos, 34, 222 (1999).
  34. S. Kim and S. J. Park, "Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells", J. Power Sources, 159, 42 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.041
  35. N. K. Sini, A. Choudhury, and G. Sarkhel, "Chemically modified carbon black filled ethylene-propylene-diene rubber composites: mechanical and dynamic mechanical study", Prog Rubber Plast Re, 25, 29 (2009).
  36. S. Schlogl, R. Kramer, D. Lenko, H. Schrottner, R. Schaller, A. Holzner, and W. Kern, "Fluorination of elastomer materials", Eur. Polym. J., 47, 2321 (2011). https://doi.org/10.1016/j.eurpolymj.2011.09.010
  37. S. J. Park, M. K. Seo, and K. Y. Rhee, "Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites", Mat. Sci. Een. AStruct., 356, 219 (2003). https://doi.org/10.1016/S0921-5093(03)00134-5
  38. M. K. Seo and S. J. Park, "Effect of fluorination on electrical behaviors of carbon blacks-filled HDPE polymeric switch", B Korean Chem. Soc., 30, 1337 (2009). https://doi.org/10.5012/bkcs.2009.30.6.1337
  39. S. I. Yang, K. Y. Kim, H. Y. Rhyoo, S. J. Cho, and K. E. Yoon, "Oxidation and surface functional group analyses under ozone treatment of carbon black", Elastomers Compos, 40, 188 (2005).
  40. I. Sutherland, E. Sheng, R. H. Bradley, and P. K. Freakley, "Effects of ozone oxidation on carbon black surfaces", J. Mater. Sci., 31, 5651 (1996). https://doi.org/10.1007/BF01160810
  41. K. S. Cho, M. Zaborski, L. Slusarski, and S. J. Park, "Filler-elastomer interactions. 10. Ozone treatment on interfacial adhesion of carbon blacks/NBR compounds", Elastomers Compos, 38, 139 (2003).
  42. S. J. Park, M. K. Seo, and C. Nah, "Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings", J. Colloid. Interf. Sci., 291, 229 (2005). https://doi.org/10.1016/j.jcis.2005.04.103
  43. A. B. Ortiz-Magan, M. M. Pastor-Blas, T. P. Ferrandiz-Gomez, C. Morant-Zacares, and J. M. Martin-Martinez, "Surface modifications produced by $N_2$ and $O_2$ RF plasma treatment on a synthetic vulcanized styrenebutadiene rubber", Plasmas. Polym., 6, 81 (2001). https://doi.org/10.1023/A:1011352903775
  44. K. F. Grythe and F. K. Hansen, "Surface modification of EPDM rubber by plasma treatment", Langmuir., 22, 6109 (2006). https://doi.org/10.1021/la053471d
  45. N. Probst and E. Grivei, "Structure and electrical properties of carbon black", Carbon, 40, 201 (2002). https://doi.org/10.1016/S0008-6223(01)00174-9
  46. T. Zielinski and J. Kijenski, "Plasma carbon black-the new active additive for plastics", Compos Part A-Appl. S, 36, 467 (2005). https://doi.org/10.1016/j.compositesa.2004.10.007
  47. J. B. Donnet, W. D. Wang, A. Vidal, and M. J. Wang, "Observation of plasma-treated carbon black surfaces by scanning tunnelling microscopy", Carbon, 32, 199 (1994). https://doi.org/10.1016/0008-6223(94)90183-X
  48. K. S. Cho, M. Zoborski, L. Slusarski, and S. J. Park, "Filler-elastomer interactions. 6. Influence of oxygen plasma treatment on surface properties of carbon blacks", Elastomers Compos, 37, 99 (2002).
  49. J. S. Kim, K. E. Choi, and S. J. Park, "Filler-elastomer interactions: 4. Effect of plasma treatment on surface properties of carbon blacks", Elastomers Compos, 36, 94 (2001).
  50. J. S. Kim and S. J. Park, "Filler-elastomer interactions. 2. Cure behaviors and mechanical interfacial properties of carbon black/rubber composites", Elastomers Compos, 35, 122 (2000).
  51. S. Y. Dai, G. Y. Ao, and M. S. Kim, "Properties of carbon black/SBR rubber composites filled by surface modified carbon blacks", Carbon Lett, 8, 115 (2007). https://doi.org/10.5714/CL.2007.8.2.115
  52. J. Rodriguez and G. R. Hamed, "Styrene-butadiene rubber filled with fluorinated carbon black", Rubber Chem. Technol., 66, 286 (1993). https://doi.org/10.5254/1.3538312
  53. K. Ames, D. Gibala, and G. R. Hamed, "Styrene-butadiene rubber filled with fluorinated carbon black: Part II. Effect of curative level", Rubber Chem. Technol., 69, 273 (1996). https://doi.org/10.5254/1.3538372
  54. S. J. Park and J. S. Kim, "Modifications produced by electrochemical treatments on carbon blacks: Microstructures and mechanical interfacial properties", Carbon, 39, 2011 (2001). https://doi.org/10.1016/S0008-6223(01)00015-X
  55. A. G. Thomas, "Rupture of rubber. VI. Further experiments on the tear criterion", J. Appl. Polym. Sci., 3, 168 (1960). https://doi.org/10.1002/app.1960.070030805
  56. G. Akovali and I. Ulkem, "Some performance characteristics of plasma surface modified carbon black in the (SBR) matrix", Polymer, 40, 7417 (1999). https://doi.org/10.1016/S0032-3861(99)00094-4
  57. N. Probst, E. Grivei, F. Fabry, L. Fulcheri, G. Flamant, X. Bourrat, and A. Schroder, "Quality and performance of carbon blacks from plasma process", Rubber Chem. Technol., 75, 891 (2002). https://doi.org/10.5254/1.3547690