DOI QR코드

DOI QR Code

Use of Flue Gas Desulfurization Gypsum as an Activator for a Ground Granulated Blast Furnace Slag

고로슬래그 자극재로써 건식 및 습식 배연탈황석고의 활용가능성 평가

  • Lee, Hyun-Suk (Department of Architectural Engineering, Pukyong National University) ;
  • Kim, Ji-Hyun (Department of Architectural Engineering, Pukyong National University) ;
  • Lee, Jae-Yong (Department of Architectural Engineering, Pukyong National University) ;
  • Chung, Chul-Woo (Department of Architectural Engineering, Pukyong National University)
  • Received : 2017.02.24
  • Accepted : 2017.07.14
  • Published : 2017.08.20

Abstract

Flue gas desulfurization gypsum(FDG) is produced when removing sulfur oxides from combustion gas generated by coal power plant. However, the recycling of FDG is still limited to the certain purposes. In order to expand the possible application of FDG, this study aims to utilize FDG as an activator for ground granulated blast furnace slag. FDG produced by dry- and wet-process were used for the experiments. Slag paste specimens were produced by mixing with deionized water and simulated pore solution, and the role of FDG as an activator for blast furnace slag was evaluated using hydration study by XRD analysis and compressive strength development. According to the results, dry-type FDG was found to work as an activator for blast furnace slag without the presence of soluble alkalis. However, wet-type FDG needs assistance by soluble alkalis in order to work as an activator for blast furnace slag. It was also found that the substitution of dry- and wet-type FDG into blast furnace slag can increase the 28 day compressive strength of slag paste. It is expected that efficient and economical recycling of FDG will be possible if quantitative analysis of strength enhancement according to substitution rate of both dry- and wet-type FDG.

화력발전소의 전력 생산을 위한 연료의 연소 시 발생한 황산화물의 제거과정에서 생산되는 배연탈황석고의 경우 현재까지는 적극적인 재활용이 되지 않고 있다. 본 연구는 화력발전소의 배연탈황공정인 건식, 습식공법을 통해 발생된 배연탈황석고의 슬래그 자극재로써의 활용가능성을 연구하기 위하여 일정량의 건식 및 습식 배연탈황석고를 고로슬래그 미분말에 치환하고, 슬래그 페이스트를 제작한 후, 그에 따른 수화반응 특성과 압축강도 특성을 분석해서 슬래그 자극재나 천연석고의 대체재로서 역할을 할 수 있는지 검토하고자 하였다. 본 연구의 결과에 따르면, 건식 배연탈황석고의 경우 별도의 알칼리 자극이 없어도 슬래그를 충분히 자극하는 것으로 보이며, 습식배연탈황석고의 경우 일정수준 이상의 알칼리 자극이 주어져야만 충분한 슬래그 자극효과를 볼 수 있는 것으로 나타났다. 또한 건식과 습식 배연탈황석고를 슬래그 페이스트에 적정량 치환하면 슬래그 페이스트의 압축강도 개선효과를 얻을 수 있는 것으로 나타났다. 추후 추가적인 연구를 통해 치환율에 따른 강도증진 성상을 정량적으로 규명하면 배연탈황석고의 효율적 경제적 재활용이 가능하게 될 것으로 사료된다.

Keywords

References

  1. Hyun JY, Jeong SB, Chae YB, Kim BS. Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum. Journal of The Korean Institute of Resources Recycling. 2015 Apr;14(2):11-3.
  2. Tesarek P, Drchalova J, Kolisko J, Rovnaníkova P, Cerny R. Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Construction and Building Materials. 2007 Jul;21(7):1500-09. https://doi.org/10.1016/j.conbuildmat.2006.05.009
  3. Srivastava RK, Jozewicz W. Flue gas desulfurization: the state of the art. Journal of the Air & Waste Management Association. 2001 Dec;51(12):1676-88. https://doi.org/10.1080/10473289.2001.10464387
  4. Guo XL, Shi HS. Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in cement and concrete. Construction and Building Materials. 2008 Jul;22(7):1471-76. https://doi.org/10.1016/j.conbuildmat.2007.04.001
  5. Galos KA, Smakowski TS, Jzlugaj J. Flue gas desulphurisation products from Polish coal-fired power-plants. Applied Energy. 2003 Feb;75(3-4):257-65. https://doi.org/10.1016/S0306-2619(03)00039-4
  6. Ishizuka T, Tsuchiai H, Murayama T, Tanaka T, Hattori H. Preparation of active absorbent for dry-type flue gas desulfurization from calcium oxide, coal fly ash, and gypsum. Industrial & engineering chemistry research. 2000 Mar;39 (5):1390-96. https://doi.org/10.1021/ie990699l
  7. Lee HG. Flue gas desulfurization plant. Korea: The Society of Air-conditioning and Refrigerating Engineers of Korea; 2007 Dec;36(12):34-6.
  8. Lee HY. Effect of blast furnace slag matrix by alkali activator and sulfate activator[Dissertation]. [Jeonju (Korea)]: Chonbuk National University;2007. 54 p.
  9. Scrivener K.L, Young J.F. Mechanisms of chemical degradation of cement-based systems. Boston. E&FN SPON; 1995. Part 1, Microstructure and Mechanisms of Chemical Degradation; p. 3-22.
  10. Taylor HFW. Cement Chemistry. 2nd ed. London: Thomas Telford; 1997. 459 p.
  11. Chung CW, Lee JY, Kim JH, Kim YS. Investigation on properties of cement mortar using heat treated flue gas desulfurization gypsum. Journal of The Korea Institute of Building Construction. 2016 Dec;16(6):497-503. https://doi.org/10.5345/JKIBC.2016.16.6.497

Cited by

  1. Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101847