DOI QR코드

DOI QR Code

Ability to Resist Chloride Ion Penetration and Dry Shrinkage Evaluation of Magnesium Phosphate Ceramics

인산마그네슘 세라믹의 염소 이온 투과 저항성 및 길이변화 특성에 관한 성능 평가

  • Received : 2017.04.26
  • Accepted : 2017.07.25
  • Published : 2017.08.20

Abstract

The performance degradation of concrete pavement by winter deicer is very serious in Korea, and its maintenance and rehabilitation brings a high expense. Therefore, a suitable method for rehabilitation of such concrete pavement and repair material of proper performance are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and properties of dry shrinkage of magnesium phosphate ceramics were assessed to evaluate its applicability as a repair material for concrete pavement in Korea. As a result, the mortar flow showed a normal level of 190 mm, but the viscosity was high and the self-flow ability was poor. The setting time was 12 minutes, leading very rapid-hardening, and thus a prompt work was required. The compressive strength of mortar was 38.4MPa in 2 hours, 73.8MPa in 24 hours, and 111.0MPa in 28 days, showing a significant level. As a result of the test to chloride ion penetration resistance, mortar showed 143 Coulombs, and concrete showed 172.6 Coulombs, which fell under very low level. The drying shrinkage of MPC concrete in 40 days was below $60{\times}10-6$, and comparing with normal cement concrete, it showed the level below 1/10 of other concrete to secure an excellent volume stability. As above, magnesium phosphate ceramics has excellent strength performance, chloride ion penetration resistance, and volume stability, and this in the future shall be used in construction under the consideration of working time or workability, requiring further improvement for such performance.

콘크리트 포장도로는 동절기 제설제에 의한 내구성 저하가 심각한 위협으로 거론되고 있고 그 보수에도 많은 비용이 소요되고 있다. 따라서 이러한 콘크리트 포장재에 대한 적절한 보수 대책의 마련과 이에 활용될 우수한 성능의 보수 재료가 요구되고 있는 상황인데, 본 연구에서는 국내에서 개발된 인산마그네슘 세라믹(Magnesium phosphate ceramics)을 대상으로 압축강도 특성 및 염소이온 침투 저항성, 길이변화 특성을 평가하여 국내 콘크리트 포장 도로의 보수 재료로 적용 가능성을 검토하였다. 평가 결과 모르타르의 유동성은 190mm의 평범한 수준을 나타내었으나 다소 점성이 높고 재료 자체의 흐름성은 크지 않았다. 응결 시간은 12분으로 매우 빠른 경화가 이루어졌으며 이에 따라 신속한 작업이 요구되었다. 모르타르의 압축강도 성능은 2시간에 38.4MPa, 24시간에 73.8MPa, 28일에 111.0MPa로 재령 초기부터 높은 수준을 나타내었다. 염소이온 침투 저항성 시험 결과 모르타르의 경우 143 Coulombs, 콘크리트의 경우 173 Coulombs으로 매우 우수한 수준을 나타내었다. 콘크리트의 길이변화 시험 결과는 재령 40일까지 $60{\times}10^{-6}$ 이하로 완만하게 감소하였으며, 보통의 시멘트 콘크리트의 길이변화 수준과 비교할 때 1/10 이하의 수준으로 우수한 체적안정성을 확보하고 있었다. 이상과 같이 인산마그네슘 세라믹은 우수한 강도 성능과 염소이온 침투 저항성, 체적 안정성을 보유하고 있음을 확인하였고, 향후 작업 시간이나 작업성에 대한 개선이 요구되며, 현장 적용시에는 이러한 부분에 대한 주의가 필요하다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport(South Korea). 2014 Road work manual(11-1500000-001480-10). Seoul: Ministry of Land, Infrastructure and Transport(South Korea); 2014. 463 p.
  2. Jo NG, Kim JH, Yeo IS, Cho NH, Suh YC. A study for procedure for determination of restoration & rehabilitation method for concrete pavement. 2006 Spring Conference of Korea Society of Road Engineers; 2006 Mar 3; Seoul, Korea. Seoul(Korea): Korea Society of Road Engineers; 2006. p. 55-62.
  3. Fei Qiao, C.K. Chau, Zongjin Li. Property evaluation of magnesium phosphate cement mortar. Construction and Building Materials. 2010;24:695-700. https://doi.org/10.1016/j.conbuildmat.2009.10.039
  4. Morgan DR. Compatibility of concrete repair materials and systems. Construction and Building Materials. 1996;10(1): 57-67. https://doi.org/10.1016/0950-0618(95)00060-7
  5. Pera J, Ambroise J. Fiber-reinforced magnesia phosphate cement composites for rapid repair. Cement and Concrete Composites. 1998;20(1):31-9. https://doi.org/10.1016/S0958-9465(97)00067-X
  6. Ding Z, Li Z. High-early-strength magnesium phosphate cement with fly ash. ACI Materials Journal. 2005;102(6): 375-81.
  7. Soudee E, Pera J. Mechanism of setting reaction in magnesia phosphate cements. Cement and Concrete Research. 2000;30 (2):315-21. https://doi.org/10.1016/S0008-8846(99)00254-9
  8. Iyengar SR, Al-Tabbaa A. Developmental study of a low-pH magnesium phosphate cement for environmental applications. Environmental Technology. 2007;28(12):1387-401. https://doi.org/10.1080/09593332808618899
  9. Yang Q, Zhang S, Wu X. Deicer-scaling resistance of phosphate cement-based binder for rapid repair of concrete. Cement and Concrete Research. 2002;32(1):165-68. https://doi.org/10.1016/S0008-8846(01)00651-2
  10. Seehra SS, Gupta S, Kumar S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements characterisation and durability aspects. Cement and Concrete Research. 1993;23(2):254-66. https://doi.org/10.1016/0008-8846(93)90090-V
  11. Yang Q, Zhu B, Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Materials and Structures. 2000;33(228):229-34. https://doi.org/10.1007/BF02479332
  12. Ahn MY, Jung SJ. An Experimental study on the properties of ultra rapid hardening mortar using magnesia-phosphate cement. Journal of the Korea Institute of building Construction. 2007 Dec;7(4):109-16. https://doi.org/10.5345/JKIC.2007.7.4.109
  13. Hong SG, Kim DY, Lee DS. Fundamental properties and hydration characteristics of mortar based on MgO added industrial by-products. Journal of the Korea Concrete Institute. 2013 Oct;25(5):565-72. https://doi.org/10.4334/JKCI.2013.25.5.565
  14. R. Earnshaw. Investments for casting cobalt-chromium alloys, part I. British Dental Journal. 1960;108:389-96.
  15. R. Earnshaw. Investments for casting cobalt-chromium alloys, part II. British Dental Journal. 1960;108:429-40.
  16. Arun S. Wagh. Chemically bonded phosphate ceramics. 1st ed. New York: Elsevier; 2004. 283 p.
  17. B. El-Jazairi. Rapid repair of concrete pavings. Concrete (The concrete society). 1982;16(9):12-5.
  18. AS Wagh, D Singh, SY Jeong. Ed. CH Oh. Hazardous and Radioactive Waste Treatment Technologies Handbook. Boca Raton: CRC Press; 2001. Chapter 6.3, Chemically bonded phosphate ceramics for stabilization and solidification of mixed waste;p. 521-38.
  19. T. Sugama, LE Kukacka. Characteristics of magnesium polyphosphate cements derived from ammonium polyphosphate solutions. Cement and Concrete Research. 1983;13:499-506. https://doi.org/10.1016/0008-8846(83)90008-X
  20. ED Demotakis, WG Klemperer, JF Young. Polyphosphate chain stability in magnesia-polyphosphate cements. Materials Research society proceedings. 1991 Jan;245:205-10. https://doi.org/10.1557/PROC-245-205
  21. Korea Concrete Institute. Concrete pyojoon sibangseo [Concrete standard specification]. Seoul (Korea): Kimundang; 2009. 360 p. Korean.
  22. Kim JH. Kim HJ, Kim SB. Evaluation of repair material for concrete pavement. 2012 Spring Conference of Korea Concrete Institute; 2012 Mar 29-30; Busan, Korea. Seoul(Korea): Korea Concrete Institute; 2012. p. 527-28.
  23. ASTM C1202-10. Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. West Conshohocken, Pennsylvania: ASTM International; 2010. 8p
  24. Ministry of Land, Transport and Maritime Affairs(South Korea). Guideline for the design and construction of pavement on Bridge(11-1611000-001711-01). Seoul: Ministry of Land, Transport and Maritime Affairs(Korea); 2011. 326 p.
  25. Ryu DW, Kim WJ, Yang WH, Park DC. An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blast-furnace slag. Journal of the Korea Institute of building Construction. 2012 Aug;12(4): 393-400. https://doi.org/10.5345/JKIBC.2012.12.4.393