DOI QR코드

DOI QR Code

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition

전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화

  • Cho, Jae Yu (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Ha, Jun Seok (Department of Advanced Chemicals and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Ryu, Sang-Wan (Department of Physics, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
  • 조재유 (전남대학교 신소재공학과) ;
  • 하준석 (전남대학교 응용화학공학부) ;
  • 류상완 (전남대학교 물리학과) ;
  • 허재영 (전남대학교 신소재공학과)
  • Received : 2017.06.14
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.

$Cu_2O$는 초저가 태양전지의 흡수층으로 적용될 수 있는 물질 중 하나로 direct band gap($E_g={\sim}2.1eV$)을 갖고 있으며 최대 650 nm 파장의 빛을 흡수 할 수 있는 높은 흡수율을 가지고 있다. 또한 무독성, 풍부한 매장량으로 낮은 비용 등의 여러 장점을 가지며 간단하고 저렴한 방법으로 대량으로 제작이 가능하다. 본 연구에서 Au가 증착된 $SiO_2/Si$ 기판 위에 전착법을 통해 $Cu_2O$ 박막을 제작하였다. 우리는 용액의 pH와 작업전극에 인가되는 전위, 용액의 온도와 같은 공정조건을 바꾸어주었고 최종적으로 XRD와 SEM 사진 분석을 통해 박막의 특성을 확인하였다.

Keywords

References

  1. S. H. Lee, B. M. Park, K. H. Kim, Y. C. Chang, J. Pyee, and H. J. Chang, "Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells", J. Microelectron. Packag. Soc., 23(3), 57 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.057
  2. Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, "Development of $CuInSe_2$ Nanocrystal and Nanoring Inks for Low-cost Solar Cells", Nano Lett., 8, 2982 (2008). https://doi.org/10.1021/nl802042g
  3. C. Wadia, A. P. Alivisatos, and D. M. Kammen, "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment", Environ. Sci. Technol., 43, 2072 (2009). https://doi.org/10.1021/es8019534
  4. B. G. Mendis, M. C. J. Goodman, J. D. Major, A. A. Taylor, K. Durose, and D. P. Halliday, "The Role of Secondary Phase Precipitation on Grain Boundary Electrical Activity in $Cu_2Zn-SnS_4$ (CZTS) Photovoltaic Absorber Layer Material", J. Appl. Phys., 112, 124508 (2012). https://doi.org/10.1063/1.4769738
  5. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, and Q. Qiao, "Strategic Review of Secondary Phases, Defects and Defect-complexes in Kesterite CZTS-Se Solar Cells", Energy Environ. Sci., 8, 3134 (2015). https://doi.org/10.1039/C5EE02153G
  6. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, "Heterojunction Solar Cell with 2% Efficiency Based on a $Cu_2O$ Substrate", Appl. Phys. Lett., 88, 163502 (2006). https://doi.org/10.1063/1.2194315
  7. T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, "High-efficiency Oxide Solar Cells with ZnO/$Cu_2O$ Heterojunction Fabricated on Thermally Oxidized $Cu_2O$ Sheets", Appl. Phys. Express, 4, 062301 (2011). https://doi.org/10.1143/APEX.4.062301
  8. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, "Ultrathin Amorphous Zinc-tin-oxide Buffer Layer for Enhancing Heterojunction Interface Quality in Metal-oxide Solar Cells", Energy Environ. Sci., 6, 2112 (2013). https://doi.org/10.1039/c3ee24461j
  9. S. W. Lee, Y. S. Lee, J. Heo, S. C. Siah, D. Chua, R. E. Brandt, S. B. Kim, J. P. Mailoa, T. Buonassisi, and R. G. Gordon, "Improved $Cu_2O$-based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p-n Junction", Adv. Energy Mater., 4(11), 1301916 (2014). https://doi.org/10.1002/aenm.201301916
  10. J. Kaur, O.Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, "All-Oxide Solar Cells Based on Electrodeposited $Cu_2O$ Absorber and Atomic Layer Deposited ZnMgO on Precious-metal-free Electrode", Sol. Energy Mater. Sol. Cells, 161, 449 (2017). https://doi.org/10.1016/j.solmat.2016.12.017
  11. Y. Ievskaya, R. L. Z. Hoye, A. Sadhanala, K. P. Musselman, and J. L. MacManus-Driscoll, "Fabrication of ZnO/$Cu_2O$ Heterojunctions in Atmospheric Conditions: Improved Interface Quality and Solar Cell Performance", Sol. Energy Mater. Sol. Cells, 135, 43 (2015). https://doi.org/10.1016/j.solmat.2014.09.018
  12. T. Minami, Y. Nishi, and T. Miyata, "Efficiency Enhancement Using a $Zn_{1-x}Ge_xO$ Thin Film as an n-type Window Layer in $Cu_2O$-based Heterojunction Solar Cells", Appl. Phys. Express, 9, 52301 (2016). https://doi.org/10.7567/APEX.9.052301
  13. S. Noda, H. Shima, and H. Akinaga, "$Cu_2O$/ZnO Heterojunction Solar Cells Fabricated by Magnetron-Sputter Deposition Method Films Using Sintered Ceramics Targets", J. Phys. Conf. Ser., 433, 12027 (2013). https://doi.org/10.1088/1742-6596/433/1/012027
  14. S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, "Electrodeposited ZnO/$Cu_2O$ Heterojunction Solar Cells", Electrochim. Acta, 53, 2226 (2008). https://doi.org/10.1016/j.electacta.2007.09.030
  15. P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, "$Cu_2O$: Electrodeposition and Characterization", Chem. Mater., 11, 3512 (1999). https://doi.org/10.1021/cm991054e
  16. S. Y. Park, and J. H. Lee, "Electrodeposition of Nano $TiO_2$ Powder Dispersed Nickel Composite Coating", J. Microelectron. Packag. Soc., 19(4), 65 (2012). https://doi.org/10.6117/kmeps.2012.19.4.065
  17. A. El-Shaer, and A. R. Abdelwahed, "Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films", ISRN Nanotechnology, 2013, 271545 (2013).
  18. Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon and T. Buonassisi, "Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open-Circuit Voltage in Cuprous Oxide Solar Cells", Adv. Mater., 26, 4704 (2014). https://doi.org/10.1002/adma.201401054
  19. L. C. Wang, N. R. de Tacconi, C. R. Chenthamarakshan, K. Rajeshwar and M. Tao, "Electrodeposited Copper Oxide Films: Effect of Bath pH on Grain Orientation and Orientation-dependent Interfacial Behavior", Thin Solid Films, 515, 3090 (2007). https://doi.org/10.1016/j.tsf.2006.08.041
  20. S. Bijani, L. Martinez, M. Gabas, E. A. Dalchiele and J.-R. Ramos-Barrado, "Low-Temperature Electrodeposition of $Cu_2O$ Thin Films: Modulation of Micro-Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH", J. Phys. Chem. C., 113, 19482 (2009). https://doi.org/10.1021/jp905952a
  21. J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, "Performance of $Cu_2O$/ZnO Solar Cell Prepared by Two-step Electrodeposition", J. Appl. Electrochem., 34, 687 (2004). https://doi.org/10.1023/B:JACH.0000031166.73660.c1
  22. M. J. Siegfried and K. S. Choi, "Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution", Adv. Mater., 16(19), 1743 (2004). https://doi.org/10.1002/adma.200400177