DOI QR코드

DOI QR Code

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kim, Hyoung Kyu (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Nguyen, Thi Tuyet Anh (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kim, Nari (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Ko, Kyung Soo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Rhee, Byoung Doo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Han, Jin (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
  • Received : 2017.04.10
  • Accepted : 2017.05.10
  • Published : 2017.09.01

Abstract

Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Keywords

References

  1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461-468. https://doi.org/10.1177/1941738109350438
  2. Campo GM, Avenoso A, Campo S, D'Ascola A, Nastasi G, Calatroni A. Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie. 2010;92:204-215. https://doi.org/10.1016/j.biochi.2009.10.006
  3. Sanchez-Adams J, Leddy HA, McNulty AL, O'Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16:451. https://doi.org/10.1007/s11926-014-0451-6
  4. Gaston JS. Cytokines in arthritis--the 'big numbers' move centre stage. Rheumatology (Oxford). 2008;47:8-12. https://doi.org/10.1093/rheumatology/kem203
  5. Finckh A, Gabay C. At the horizon of innovative therapy in rheumatology: new biologic agents. Curr Opin Rheumatol. 2008;20:269-275. https://doi.org/10.1097/BOR.0b013e3282fa13b4
  6. McNulty AL, Moutos FT, Weinberg JB, Guilak F. Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum. 2007;56:3033-3042. https://doi.org/10.1002/art.22839
  7. Homandberg GA, Hui F, Wen C. Fibronectin fragment mediated cartilage chondrolysis. I. Suppression by anti-oxidants. Biochim Biophys Acta. 1996;1317:134-142. https://doi.org/10.1016/S0925-4439(96)00046-4
  8. Hui W, Bell M, Carroll G. Oncostatin M (OSM) stimulates resorption and inhibits synthesis of proteoglycan in porcine articular cartilage explants. Cytokine. 1996;8:495-500. https://doi.org/10.1006/cyto.1996.0067
  9. Sandy JD, Neame PJ, Boynton RE, Flannery CR. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991;266:8683-8685.
  10. Lai Y, Gallo RL. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets. 2008;8:144-155. https://doi.org/10.2174/1871526510808030144
  11. O'Neill LA, Dinarello CA. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today. 2000;21:206-209. https://doi.org/10.1016/S0167-5699(00)01611-X
  12. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-376. https://doi.org/10.1146/annurev.immunol.21.120601.141126
  13. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol. 2006;24:353-389. https://doi.org/10.1146/annurev.immunol.24.021605.090552
  14. Bobacz K, Sunk IG, Hofstaetter JG, Amoyo L, Toma CD, Akira S, Weichhart T, Saemann M, Smolen JS. Toll-like receptors and chondrocytes: the lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum. 2007;56:1880-1893. https://doi.org/10.1002/art.22637
  15. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801. https://doi.org/10.1016/j.cell.2006.02.015
  16. Hughes AL, Piontkivska H. Functional diversification of the tolllike receptor gene family. Immunogenetics. 2008;60:249-256. https://doi.org/10.1007/s00251-008-0283-5
  17. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62: 2004-2012.
  18. Sillat T, Barreto G, Clarijs P, Soininen A, Ainola M, Pajarinen J, Korhonen M, Konttinen YT, Sakalyte R, Hukkanen M, Ylinen P, Nordstrom DC. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop. 2013;84:585-592. https://doi.org/10.3109/17453674.2013.854666
  19. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, Oh HJ, Kim HY. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006;54:2152-2163. https://doi.org/10.1002/art.21951
  20. Liu MH, Sun JS, Tsai SW, Sheu SY, Chen MH. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res. 2010;30:57-65. https://doi.org/10.1016/j.nutres.2009.10.020
  21. Aota Y, An HS, Imai Y, Thonar EJ, Muehleman C, Masuda K. Comparison of cellular response in bovine intervertebral disc cells and articular chondrocytes: effects of lipopolysaccharide on proteoglycan metabolism. Cell Tissue Res. 2006;326:787-793. https://doi.org/10.1007/s00441-006-0225-1
  22. Haglund L, Bernier SM, Onnerfjord P, Recklies AD. Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biol. 2008;27:107-118. https://doi.org/10.1016/j.matbio.2007.09.009
  23. Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. Membranebound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharideinduced bone loss associated with inflammation. J Immunol . 2006; 177:1879-1885. https://doi.org/10.4049/jimmunol.177.3.1879
  24. Matsuguchi T, Takagi K, Musikacharoen T, Yoshikai Y. Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood. 2000;95:1378-1385.
  25. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113:153-162. https://doi.org/10.1111/j.1365-2567.2004.01976.x
  26. Otero M, Goldring MB. Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res Ther. 2007;9:220. https://doi.org/10.1186/ar2292
  27. Warda M, Kim HK, Kim N, Youm JB, Kang SH, Park WS, Khoa TM, Kim YH, Han J. Simulated hyperglycemia in rat cardiomyocytes: a proteomics approach for improved analysis of cellular alterations. Proteomics. 2007;7:2570-2590. https://doi.org/10.1002/pmic.200700168
  28. Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993;3:327-332. https://doi.org/10.1016/0960-9822(93)90195-T
  29. Heo HJ, Kim HK, Youm JB, Cho SW, Song IS, Lee SY, Ko TH, Kim N, Ko KS, Rhee BD, Han J. Mitochondrial pyruvate dehydrogenase phosphatase 1 regulates the early differentiation of cardiomyocytes from mouse embryonic stem cells. Exp Mol Med. 2016;48:e254. https://doi.org/10.1038/emm.2016.70
  30. Won KJ, Lin HY, Jung S, Cho SM, Shin HC, Bae YM, Lee SH, Kim HJ, Jeon BH, Kim B. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes. Toxicol Sci. 2012;126:298-305. https://doi.org/10.1093/toxsci/kfr347
  31. Thu VT, Kim HK, Long le T, Thuy TT, Huy NQ, Kim SH, Kim N, Ko KS, Rhee BD, Han J. NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the $TNF{\alpha}$/Dcn/$TGF{\beta}1$/ Smad2 pathway in hypoxia/reoxygenation-treated rat hearts. Korean J Physiol Pharmacol . 2016;20:305-314. https://doi.org/10.4196/kjpp.2016.20.3.305
  32. Huang SK, Darfler MM, Nicholl MB, You J, Bemis KG, Tegeler TJ, Wang M, Wery JP, Chong KK, Nguyen L, Scolyer RA, Hoon DS. LC/MS-based quantitative proteomic analysis of paraffin-embedded archival melanomas reveals potential proteomic biomarkers associated with metastasis. PLoS One. 2009;4:e4430. https://doi.org/10.1371/journal.pone.0004430
  33. Kim KH. Innate immunity and toll like receptors. Korean J Pediatr. 2004;47:6-11.
  34. Schletter J, Heine H, Ulmer AJ, Rietschel ET. Molecular mechanisms of endotoxin activity. Arch Microbiol. 1995;164:383-389. https://doi.org/10.1007/BF02529735
  35. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985;229:869-871. https://doi.org/10.1126/science.3895437
  36. Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV. Kappa B-type enhancers are involved in lipopolysaccharidemediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med. 1990;171:35-47. https://doi.org/10.1084/jem.171.1.35
  37. Huh YH, Lee G, Song WH, Koh JT, Ryu JH. Crosstalk between FLS and chondrocytes is regulated by HIF-$2{\alpha}$-mediated cytokines in arthritis. Exp Mol Med. 2015;47:e197. https://doi.org/10.1038/emm.2015.88
  38. van den Berg WB. Animal models of arthritis. What have we learned? J Rheumatol Suppl . 2005;72:7-9.
  39. van den Berg WB, van Riel PL. Uncoupling of inflammation and destruction in rheumatoid arthritis: myth or reality? Arthritis Rheum. 2005;52:995-999. https://doi.org/10.1002/art.20981
  40. Dasuri K, Antonovici M, Chen K, Wong K, Standing K, Ens W, El-Gabalawy H, Wilkins JA. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res Ther. 2004;6:R161-168. https://doi.org/10.1186/ar1153
  41. Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods. 2013; 10:28-34. https://doi.org/10.1038/nmeth.2309
  42. Gu S, Wang T, Chen X. Quantitative proteomic analysis of LPSinduced differential immune response associated with TLR4 Polymorphisms by multiplex amino acid coded mass tagging. Proteomics . 2008;8:3061-3070. https://doi.org/10.1002/pmic.200700715
  43. Wang H, Ye J. Regulation of energy balance by inflammation: common theme in physiology and pathology. Rev Endocr Metab Disord. 2015;16:47-54. https://doi.org/10.1007/s11154-014-9306-8
  44. Ye J, Keller JN. Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY). 2010;2:361-368.
  45. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013-1022. https://doi.org/10.1016/j.cell.2014.04.007
  46. Rogers KR, Morris CJ, Blake DR. The cytoskeleton and its importance as a mediator of inflammation. Ann Rheum Dis. 1992;51:565-571. https://doi.org/10.1136/ard.51.4.565
  47. Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal regulation of inflammation and its impact on skin blistering disease epidermolysis bullosa acquisita. Int J Mol Sci. 2016;17:E1116. https://doi.org/10.3390/ijms17071116
  48. Wickramarachchi DC, Theofilopoulos AN, Kono DH. Immune pathology associated with altered actin cytoskeleton regulation. Autoimmunity. 2010;43:64-75. https://doi.org/10.3109/08916930903374634
  49. Mayr M, Chung YL, Mayr U, Yin X, Ly L, Troy H, Fredericks S, Hu Y, Griffiths JR, Xu Q. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler Thromb Vasc Biol. 2005;25:2135-2142. https://doi.org/10.1161/01.ATV.0000183928.25844.f6
  50. Aigner T, Zien A, Hanisch D, Zimmer R. Gene expression in chondrocytes assessed with use of microarrays. J Bone Joint Surg Am. 2003;85-A Suppl 2:117-123.
  51. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95:14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  52. Devauchelle V, Marion S, Cagnard N, Mistou S, Falgarone G, Breban M, Letourneur F, Pitaval A, Alibert O, Lucchesi C, Anract P, Hamadouche M, Ayral X, Dougados M, Gidrol X, Fournier C, Chiocchia G. DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets. Genes Immun. 2004;5:597-608. https://doi.org/10.1038/sj.gene.6364132
  53. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990;63:1149-1157. https://doi.org/10.1016/0092-8674(90)90411-7
  54. Sheikh F, Dickensheets H, Pedras-Vasconcelos J, Ramalingam T, Helming L, Gordon S, Donnelly RP. The interleukin-13 receptor-${\alpha}1$ chain is essential for induction of the alternative macrophage activation pathway by IL-13 but not IL-4. J Innate Immun. 2015;7:494-505. https://doi.org/10.1159/000376579
  55. Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res. 2008;102:1307-1318. https://doi.org/10.1161/CIRCRESAHA.108.173989
  56. Duque G, Rivas D. Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech Ageing Dev. 2006;127:378-383. https://doi.org/10.1016/j.mad.2005.12.007
  57. Smith ED, Kudlow BA, Frock RL, Kennedy BK. A-type nuclear lamins, progerias and other degenerative disorders. Mech Ageing Dev. 2005;126:447-460. https://doi.org/10.1016/j.mad.2004.10.006
  58. Attur M, Ben-Artzi A, Yang Q, Al-Mussawir HE, Worman HJ, Palmer G, Abramson SB. Perturbation of nuclear lamin A causes cell death in chondrocytes. Arthritis Rheum. 2012;64:1940-1949. https://doi.org/10.1002/art.34360
  59. Hishiya A, Watanabe K. Progeroid syndrome as a model for impaired bone formation in senile osteoporosis. J Bone Miner Metab. 2004;22:399-403.
  60. Helfand BT, Chang L, Goldman RD. Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci. 2004;117:133-141. https://doi.org/10.1242/jcs.00936
  61. Ruiz-Romero C, Carreira V, Rego I, Remeseiro S, Lopez-Armada MJ, Blanco FJ. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics . 2008;8:495-507. https://doi.org/10.1002/pmic.200700249
  62. Miranda M, Chacon MR, Vidal F, Megia A, Richart C, Veloso S, Saumoy M, Olona C, Vendrell J. LMNA messenger RNA expression in highly active antiretroviral therapy-treated HIV-positive patients. J Acquir Immune Defic Syndr. 2007;46:384-389. https://doi.org/10.1097/QAI.0b013e31815aba1b
  63. Tran JR, Chen H, Zheng X, Zheng Y. Lamin in inflammation and aging. Curr Opin Cell Biol. 2016;40:124-130. https://doi.org/10.1016/j.ceb.2016.03.004
  64. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem. 1996;271:16443-16446. https://doi.org/10.1074/jbc.271.28.16443
  65. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996;87:171. https://doi.org/10.1016/S0092-8674(00)81334-3
  66. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976-3985.
  67. Zhuang J, Dinsdale D, Cohen GM. Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ. 1998;5:953-962. https://doi.org/10.1038/sj.cdd.4400440
  68. Okinaga T, Kasai H, Tsujisawa T, Nishihara T. Role of caspases in cleavage of lamin A/C and PARP during apoptosis in macrophages infected with a periodontopathic bacterium. J Med Microbiol. 2007;56:1399-1404. https://doi.org/10.1099/jmm.0.47193-0
  69. Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JM, Lopez-Otin C. Nuclear lamina defects cause ATM-dependent NF-${\kappa}B$ activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 2012;26:2311-2324. https://doi.org/10.1101/gad.197954.112
  70. McKenna T, Rosengardten Y, Viceconte N, Baek JH, Grochova D, Eriksson M. Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell. 2014;13:292-302. https://doi.org/10.1111/acel.12173
  71. Gerke V, Creutz CE, Moss SE. Annexins: linking $Ca^{2+}$ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449-461.
  72. Hayes MJ, Moss SE. Annexins and disease. Biochem Biophys Res Commun. 2004;322:1166-1170. https://doi.org/10.1016/j.bbrc.2004.07.124
  73. Fatimathas L, Moss SE. Annexins as disease modifiers. Histol Histopathol. 2010;25:527-532.
  74. Belluoccio D, Grskovic I, Niehoff A, Schlotzer-Schrehardt U, Rosenbaum S, Etich J, Frie C, Pausch F, Moss SE, Poschl E, Bateman JF, Brachvogel B. Deficiency of annexins A5 and A6 induces complex changes in the transcriptome of growth plate cartilage but does not inhibit the induction of mineralization. J Bone Miner Res. 2010; 25:141-153. https://doi.org/10.1359/jbmr.090710
  75. Kim SW, Rhee HJ, Ko J, Kim YJ, Kim HG, Yang JM, Choi EC, Na DS. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site. J Biol Chem. 2001;276:15712-15719. https://doi.org/10.1074/jbc.M009905200
  76. Jia Y, Morand EF, Song W, Cheng Q, Stewart A, Yang YH. Regulation of lung fibroblast activation by annexin A1. J Cell Physiol. 2013; 228:476-484. https://doi.org/10.1002/jcp.24156
  77. Zanotti G, Malpeli G, Gliubich F, Folli C, Stoppini M, Olivi L, Savoia A, Berni R. Structure of the trigonal crystal form of bovine annexin IV. Biochem J. 1998;329:101-106. https://doi.org/10.1042/bj3290101
  78. Hauptmann R, Maurer-Fogy I, Krystek E, Bodo G, Andree H, Reutelingsperger CP. Vascular anticoagulant beta: a novel human $Ca^{2+}$/phospholipid binding protein that inhibits coagulation and phospholipase A2 activity. Its molecular cloning, expression and comparison with VAC-alpha. Eur J Biochem. 1989;185:63-71. https://doi.org/10.1111/j.1432-1033.1989.tb15082.x
  79. Mira JP, Dubois T, Oudinet JP, Lukowski S, Russo-Marie F, Geny B. Inhibition of cytosolic phospholipase A2 by annexin V in differentiated permeabilized HL-60 cells. Evidence of crucial importance of domain I type II $Ca^{2+}$-binding site in the mechanism of inhibition. J Biol Chem. 1997;272:10474-10482. https://doi.org/10.1074/jbc.272.16.10474
  80. Reutelingsperger CP, van Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci. 1997;53:527-532. https://doi.org/10.1007/s000180050067
  81. Tokita N, Hasegawa S, Maruyama K, Izumi T, Blankenberg FG, Tait JF, Strauss HW, Nishimura T. 99mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis. Eur J Nucl Med Mol Imaging. 2003;30:232-238. https://doi.org/10.1007/s00259-002-1006-z
  82. Ewing MM, de Vries MR, Nordzell M, Pettersson K, de Boer HC, van Zonneveld AJ, Frostegard J, Jukema JW, Quax PH. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice. Arterioscler Thromb Vasc Biol. 2011;31:95-101. https://doi.org/10.1161/ATVBAHA.110.216747
  83. Park JH, Jang JH, Choi EJ, Kim YS, Lee EJ, Jung ID, Han HD, Wu TC, Hung CF, Kang TH, Park YM. Annexin A5 increases survival in murine sepsis model by inhibiting HMGB1-mediated proinflammation and coagulation. Mol Med. 2016;22.
  84. Buckley S, Shi W, Xu W, Frey MR, Moats R, Pardo A, Selman M, Warburton D. Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. Eur Respir J. 2015;46:1417-1429. https://doi.org/10.1183/09031936.00002115
  85. Ravassa S, Gonzalez A, Lopez B, Beaumont J, Querejeta R, Larman M, Diez J. Upregulation of myocardial Annexin A5 in hypertensive heart disease: association with systolic dysfunction. Eur Heart J. 2007;28:2785-2791. https://doi.org/10.1093/eurheartj/ehm370
  86. Mollenhauer J, Mok MT, King KB, Gupta M, Chubinskaya S, Koepp H, Cole AA. Expression of anchorin CII (cartilage annexin V) in human young, normal adult, and osteoarthritic cartilage. J Histochem Cytochem. 1999;47:209-220. https://doi.org/10.1177/002215549904700209
  87. Rodriguez-Garcia MI, Fernandez JA, Rodriguez A, Fernandez MP, Gutierrez C, Torre-Alonso JC. Annexin V autoantibodies in rheumatoid arthritis. Ann Rheum Dis. 1996;55:895-900. https://doi.org/10.1136/ard.55.12.895
  88. Kim HJ, Kirsch T. Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem. 2008;283:10310-10317. https://doi.org/10.1074/jbc.M708456200
  89. Ea HK, Monceau V, Camors E, Cohen-Solal M, Charlemagne D, Liote F. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis. 2008;67:1617-1625. https://doi.org/10.1136/ard.2008.087718
  90. Kurtis MS, Tu BP, Gaya OA, Mollenhauer J, Knudson W, Loeser RF, Knudson CB, Sah RL. Mechanisms of chondrocyte adhesion to cartilage: role of beta1-integrins, CD44, and annexin V. J Orthop Res. 2001;19:1122-1130. https://doi.org/10.1016/S0736-0266(01)00051-1
  91. Turnay J, Olmo N, Lizarbe MA, von der Mark K. Changes in the expression of annexin A5 gene during in vitro chondrocyte differentiation: influence of cell attachment. J Cell Biochem. 2001; 84:132-142.
  92. Pfander D, Swoboda B, Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol. 2001;159:1777-1783. https://doi.org/10.1016/S0002-9440(10)63024-6
  93. Gomez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat Rev Rheumatol. 2015;11:159-170. https://doi.org/10.1038/nrrheum.2014.209
  94. Kirsch T, Swoboda B, Nah H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage. 2000;8: 294-302. https://doi.org/10.1053/joca.1999.0304

Cited by

  1. Influence of Damage-Associated Molecular Patterns from Chondrocytes in Tissue-Engineered Cartilage vol.27, pp.1, 2017, https://doi.org/10.1089/ten.tea.2019.0185
  2. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis vol.11, pp.4, 2017, https://doi.org/10.3390/life11040272