DOI QR코드

DOI QR Code

Red-emitting α-SrO·3B2O3:Sm2+ Phosphor for WLED Lamps: Novel Lighting Properties with Two-layer Remote Phosphor Package

  • Tin, Phu Tran (Faculty of Electronics Technology, Industrial University of Ho Chi Minh City) ;
  • Nguyen, Nhan K.H. (Faculty of Electrical and Electronics Engineering, Ton Duc Thang University) ;
  • Tran, Minh Q.H. (Faculty of Electrical and Electronics Engineering, Ton Duc Thang University) ;
  • Lee, Hsiao-Yi (Department of Electrical Engineering, National Kaohsiung University of Applied Sciences)
  • Received : 2017.01.22
  • Accepted : 2017.06.28
  • Published : 2017.08.25

Abstract

This paper investigates a method to improve the lighting performance of white light-emitting diodes (WLEDs), which are packaged using two separate remote phosphor layers, a yellow-emitting YAG:Ce phosphor layer and a red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor layer. The thicknesses of these two layers are $800{\mu}m$ and $200{\mu}m$, respectively. Both of them are examined in conditions where the average correlated color temperatures (CCT) are 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor is varied from 2% to 30% in the upper layer, while in the lower layer the yellow phosphor concentration is kept at 15%. It was found interestingly that the lighting properties such as color rendering index (CRI) and luminous flux are enhanced significantly, while the color uniformity is maintained in a relatively close range to the one of one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer are revised by combining Kubelka-Munk and Mie-Lorenz theories. Through analysis, it is demonstrated that the packaging configuration of two-layer remote phosphor that employs red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor particles provides a practical solution for general WLEDs lighting.

Keywords

References

  1. P.-C. Wang, Y.-K. Su, C.-L. Lin, and G.-S. Huang, "Improving Performance and Reducing Amount of Phosphor Required in Packaging of White LEDs With $TiO_2$-Doped Silicone," IEEE Electron Device Lett. 35(6), 657-659 (2014), doi: 10.1109/LED.2014.2318037.
  2. M. Arik, C. Becker, S. Weaver, and J. Petroski, "Thermal management of LEDs: package to the system," Proc. SPIE 5187, 64 (2004).
  3. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, "High-power phosphor converted light-emitting diodes based on III-nitrides," IEEE J. Sel. Top. Quantum Electron. 8(2), 339-345 (2002). https://doi.org/10.1109/2944.999189
  4. J. P. You, N. T. Tran, Y. C. Lin, Y. He, and F. G. Shi, "Phosphor-concentration-dependent characteristics of white LEDs under different current regulation modes," J. Electron. Mater. 38(6), 761-766 (2009). https://doi.org/10.1007/s11664-009-0754-y
  5. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, "Extracting phosphor-scattered photons to improve white LED efficiency," Phys. Status Solidi., A Appl. Mater. Sci. 202(6), R60-R62 (2005). https://doi.org/10.1002/pssa.200510015
  6. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, "Analysis of high-power packages for phosphor based white-light-emitting diodes," Appl. Phys. Lett. 86(24), 243505-243507 (2005). https://doi.org/10.1063/1.1949282
  7. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, "Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup," Jpn. J. Appl. Phys. 44(21), L649-L651 (2005). https://doi.org/10.1143/JJAP.44.L649
  8. K. K. Seong, T. W. Yoo, B.-S. Kim, S. M. Lee, Y. S. Lee, and L. S. Park. "White LED packaging with layered encapsulation of quantum dots and optical properties." J. Mol. Cryst. Liq. Cryst. 564(1), 33-41 (2012), doi: 10.1080/15421406.2012.690655.
  9. S. C. Allen and A. J. Steckl, "ELiXIR - Solid-state luminaire with enhanced light extraction by internal reflection," J. Disp. Technol. 3(2), 155-159 (2007). https://doi.org/10.1109/JDT.2007.895358
  10. S. C. Allen and A. J. Steckl, "A nearly ideal phosphorconverted white light-emitted diode," J. Appl. Phys. 92, 143309-143311 (2008).
  11. H. Masui, S. Nakamura, and S. P. Denbaars, "Effects of phosphor application geometry on white light-emitting diodes," Jpn. J. Appl. Phys. 45(34), L910-L912 (2006). https://doi.org/10.1143/JJAP.45.L910
  12. N. D. Q. Anh, M. F. Lai, H. Y. Ma, and H. Y. Lee, "Enhancing of correlated color temperature uniformity for multichip white light LEDs by adding $SiO_2$ to phosphor layer." J. Chin. Inst. Eng. 38(3), (2015), doi: 10.1080/02533839.2014.981214.
  13. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, "Highly efficient all-nitride phosphor-converted white light emitting diode," Phys. Status Solidi A 202(9), 1727-1732 (2005). https://doi.org/10.1002/pssa.200520045
  14. R. Hu, B. Cao, Y. Zou, Y. Zhu, and X. Luo, "Modeling the light extraction efficiency of Bi-layer phosphors in white LEDs," IEEE Photon. Technol. Lett. 25(12), (2013).
  15. C. H. Chiang, S. J. Gong, T. S. Zhan, and S. Y. Chu, "White light-emitting diodes with high color rendering index and tunable color temperature fabricated using separated phosphor layer structure." IEEE Electron Device Lett. (2016), doi: 10.1109/LED.2016.2576498.
  16. Y. Zhu and N. Narendran, "Investigation of remote-phosphor white light-emitting diodes with multi-phosphor layers," Jpn. J. Appl. Phys. 49(10R), 100203, 3pp (2010), doi: 10.1143/JJAP.49.100203.
  17. W. M. Yen and M. J. Weber, Inorganic phosphors: compositions, preparation and optical properties, Washington, D. C. CRC Press, (2004).
  18. T. H. Q. Minh, N. H. K. Nhan, and N. D. Q. Anh, "Redemitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor: An innovative application for increasing color quality and luminous flux of remote phosphor white LEDs," J. Chin. Inst. Eng. (2016).
  19. P. Kubelka and F. Munk, "Ein beitrag zur optik der farbanstriche," Z. Tech. Phys. 12, 593-601 (1931).
  20. P. S. Mudgett and L. W. Richards, "Multiple scattering calculations for technology," Appl. Opt. 10, 1485-1501 (1971). https://doi.org/10.1364/AO.10.001485
  21. B. J. Brinkworth, "Interpretation of the Kubelka - Munk coefficients in reflection theory," Appl. Opt. 1, 1434-1435, (1972).
  22. H. Reiss, Radiative Transfer in Nontransparent Dispersed Media, Springer, Berlin, (1988).
  23. J. Zhong, M. Xie, Z. Ou, R. Zhang, M. Huang, and F. Zhao., "Mie theory simulation of the effect on light extraction by 2-D nanostructure fabrication," in Proceedings Symposium on Photonics and Optoelectronics (SOPO), IEEE (2011).
  24. G. Wyszecki and W. S. Stiles, Color science - concepts and methods, quantitative data and formulae, Wiley, 2nd edition, p. 156, New York, (1982).
  25. H. Chen and S. Y. (Ron) Hui, "Dynamic prediction of correlated color temperature and color rendering index of phosphor-coated white light-emitting diodes," IEEE Trans. Ind. Electron. 61(2), (2014).