DOI QR코드

DOI QR Code

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source

UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해

  • Yang, Boram (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Park, Jeong-Ann (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Nam, Hye-Lim (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Jung, Sung-Mok (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Choi, Jae-Woo (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Park, Hee-Deung (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Sang-Hyup (Center for Water Resource Cycle Research, Korea Institute of Science and Technology)
  • 양보람 (한국과학기술연구원 물자원순환연구단) ;
  • 박정안 (한국과학기술연구원 물자원순환연구단) ;
  • 남혜림 (한국과학기술연구원 물자원순환연구단) ;
  • 정성목 (한국과학기술연구원 물자원순환연구단) ;
  • 최재우 (한국과학기술연구원 물자원순환연구단) ;
  • 박희등 (고려대학교 건축사회환경공학과) ;
  • 이상협 (한국과학기술연구원 물자원순환연구단)
  • Received : 2017.01.24
  • Accepted : 2017.03.31
  • Published : 2017.05.31

Abstract

Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

호소, 하천 등에 다량의 영양염류의 유입과 수문학적, 지리학적, 생물학적 요소 등으로 인해 남조류가 대량 발생하게 되며 대표적 독성물질인 마이크로시스틴-LR(MC-LR)이 증가한다. MC-LR이 포함된 지표수를 적절하게 처리하기 위하여 정수처리공정에서는 고도산화공정을 적용하고 있다. 다양한 고도산화공정 중 특히 UV, $UV/H_2O_2$, $UV/O_3$, $UV/TiO_2$ 등에 대한 연구는 꾸준히 되어왔다. 기존의 UV램프의 짧은 교체주기, 수은 폐기물 발생, 큰 열 손실 등의 단점을 보완한 UV-LED를 MC-LR제거에 적용하였다. MC-LR 초기농도 $100{\mu}g/L$을 280 nm의 파장인 LED-L ($0.024mW/cm^2$)와 LED-H ($2.18mW/cm^2$)를 이용하여 산화시켰을 때 각각 최대 약 30%, 95.9%의 MC-LR 제거율을 나타냈다. LED-H를 조사 시 자연유기물 변화는 휴믹물질, UVD, SUVA가 감소하는 경향을 보였고 방향족 유기물이 지방족 유기물로 분해되어 저분자 물질이 되었다. $LED-H/H_2O_2$($H_2O_2$: 1, 2, 5, 10 mg/L)산화반응에 의한 MC-LR제거율은 LED-H 단독에 의한 MC-LR 제거율과 유사하였다. 남조류가 발생한 낙동강 원수를 대상으로 LED-L산화를 적용하여 수질분석을 통하여 특성변화를 확인하였다. DOC 및 TOC의 변화는 거의 없었으나 SUVA와 $UV_{254}$의 감소로 인하여 유기물의 분해되었으며 조류유래물질인 용존 및 총 MC-LR, geosmin, 2-MIB농도가 시간이 지남에 따라 서서히 감소하였다.

Keywords

References

  1. United States Environmental Protection Agency, Cyanobacteria and Cyanotoxins: Information for drinking water systems, Office of Water 4304T EPA-810F11001(2014).
  2. Codd, G. A., "Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control," Ecol. Eng., 16, 51-60(2000).
  3. Antoniou, M. G., de la Cruz, A. A. and Dionysiou, D. D., "Cyanotoxins: New Generation of water contaminations," J. Environ. Eng., 131(9), 1239-1243(2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1239)
  4. Carmichael, W. W., "Health Effects of Toxin-Producing Cyanobacteria: "The CyanoHABs," Hum. Ecol. Risk Assess., 7(5), 1393-1407(2001). https://doi.org/10.1080/20018091095087
  5. Gupta, N., Pant, S. C., Vijayaraghavan, R. and Rao, P. V. L., "Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice," Toxicol., 188, 285-296(2003). https://doi.org/10.1016/S0300-483X(03)00112-4
  6. Lawton, L. A. and Robertson, P. K. J., "Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters," Chem. Soc. Rev., 28, 217-224(1999). https://doi.org/10.1039/a805416i
  7. De Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Goncalves F. J. M. and Pereira, M. J., "Microcystin-producing blooms-a serious global public health issue," Ecotoxicol. Environ. Saf., 59, 151-163(2004). https://doi.org/10.1016/j.ecoenv.2004.04.006
  8. Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M. F., Park, H. D., Chen, G. and Yu, S. Z., "Detection of microcystin, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay," Carcinogenesis, 17(6), 1317-1321(1996). https://doi.org/10.1093/carcin/17.6.1317
  9. Zhou, L., Yu, H. and Chen, K., "Relationship Between Microcystin in Drinking Water and Colorectal Cancer," Biomed. Environ. Sci., 15, 166-171(2002).
  10. World Health Organization, Cyanobacterial toxins: Microcystin-LR in drinking water, Background document for preparation of WHO Guidelines for drinking-water quality, WHO/SDE/WSH/03.04/57(2003).
  11. Song, W., Xu, T., Cooper, W. J., Dionysiou, D. D., De la Cruz, A. A. and O'Shea, K. E., "Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals," Environ. Sci. Technol., 43(5), 1487-1492(2009) https://doi.org/10.1021/es802282n
  12. Miao, H. F., Qin, F., Tao, G. J., Tao, W. Y. and Ruan, W. Q., "Detoxification and degradation of microcystin-LR and -RR by ozonation," Chemosphere, 79(4), 355-361(2010). https://doi.org/10.1016/j.chemosphere.2010.02.024
  13. Zong, W., Sun, F. and Sun, X., "Oxidation by-products formation of microcystin-LR exposed to UV/$H_2O_2$: Toward the generative mechanism and biological toxicity," Water Res., 47, 3211-3219(2013). https://doi.org/10.1016/j.watres.2013.03.037
  14. Rodrigueza, E., Onstadb, G. D., Kull, T. P. J., Metcalf, J. S., Aceroa, J. L. and Gunten, U., "Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate," Water Res., 41, 3381-3393(2007). https://doi.org/10.1016/j.watres.2007.03.033
  15. De la Cruz, A. A., Antoniou, M. G., Hiskia, A., Pelaez, M., Song, W., O'Shea, K. E., He, X. and Dionysiou, D. D., "Can we effectively degrade microcystins? - Implications on human health," Anti-Cancer Agents in Medicinal Chem., 11(1), 19-37(2011). https://doi.org/10.2174/187152011794941217
  16. Sharma V. K., Triantis T. M., Antoniou, M. G., He, X., Pelaez, M., Han, C., Song, W., O'Shea, K. E., De la Cruzg, A. A., Kaloudis, T., Hiskia, A. and Dionysiou, D. D., "Destruction of microcystins by conventional and advanced oxidation processes: A review," Sep. Purif. Technol., 91, 3-17 (2012). https://doi.org/10.1016/j.seppur.2012.02.018
  17. Vilhunen, S., Sarkka, H. and Sillanpaa, M., "Ultraviolet lightemitting diodes in water disinfection," Environ. Sci. Pollut. Res., 16, 439-442(2009). https://doi.org/10.1007/s11356-009-0103-y
  18. Autin, O., Romelot, C., Rust, L., Hart, J., Jarvis, P., MacAdam, J., Parsons, S. A. and Jefferson, B., "Evaluation of a UVlight emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes," Chemosphere, 92, 745-751(2013). https://doi.org/10.1016/j.chemosphere.2013.04.028
  19. Ibrahim, M. A. S., Macadam, J., Autin, O. and Jefferson, B., "Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection," Environ. Technol., 35, 400-406(2014). https://doi.org/10.1080/09593330.2013.829858
  20. Vilhunen, S. and Sillanpaa, M., "Recent developments in photochemical and chemical AOPs in water treatment: a minireview," Rev. Environ. Sci. Biotechnol., 9, 23-330(2010). https://doi.org/10.1007/s11157-009-9182-y
  21. Verma, S. and Sillanpaa, M., "Degradation of anatoxin-a by UV-C LED and UV-C LED/$H_2O_2$ dvanced oxidation processes," Chem. Eng. J., 274, 274-281(2015). https://doi.org/10.1016/j.cej.2015.03.128
  22. Eskandarian, M. R., Choi, H., Fazli, M. and Rasoulifard, M. H., "Effect of UV-LED wavelengths on direct photolytic and $TiO_2$ photocatalytic degradation of emerging contaminants in water," Chem. Eng. J., 300, 414-422(2016). https://doi.org/10.1016/j.cej.2016.05.049
  23. Ministry of Environment, Water Information System, http://water.nier.go.kr/.
  24. Tsuji, K., Nalto, S., Kondo, F., Ishikawa, N., Watanabe, M. F., Suzukl, M. and Harada, K., "Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization," Environ. Sci. Technol., 28(1), 173-177(1994). https://doi.org/10.1021/es00050a024
  25. Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M. F., Suzuki, S., Nakazawa, H., Suzuki, M., Uchida, H. and Harada, K., "Stability of microcystins from cyanobacteria. II. Effect of UV light on decomposition and isomerization," Toxicon, 33(12), 1619-1631(1995). https://doi.org/10.1016/0041-0101(95)00101-8
  26. He, X., De la Cruz, A. A., Hiskia, A., Kaloudis, T., O'Shea, K. and Dionysiou, D. D., "Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms," Water Res., 74, 227-238(2015). https://doi.org/10.1016/j.watres.2015.02.011
  27. Ji, Q., Lui, H., Hu, C., Qu, J., Wang, D. and Li, J., "Removal of disinfection by-products precursors by polyaluminium chloride coagulation coupled with chlorivation," Sep. Purif. Technol., 62(2), 464-469(2008). https://doi.org/10.1016/j.seppur.2008.02.024
  28. Matilainen, A., Vespalainen, M. and Sillanpaa, M., "Naturak organic matter removal by coagulation during drinking water treatment : A review," adv. Colloid, Interface Sci., 159(2), 189-197(2010). https://doi.org/10.1016/j.cis.2010.06.007
  29. Wang, G. G., Hsieh, S. T. and Hong, C. S., "Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide," Water Res., 34(15), 3882-3887(2000). https://doi.org/10.1016/S0043-1354(00)00120-2
  30. Goldstein, S., Aschengrau, D., Ditman, Y. and Raeani, J., "Photolysis of Aqueous $H_2O_2$: Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors" Environ. Sci. Technol., 41, 7486-7490(2007). https://doi.org/10.1021/es071379t
  31. Cole, J. J., "Interactions between bacteria and algae in aquatic ecosystem," Ann Rec. Ecol. Syst., 13, 291-314(1982). https://doi.org/10.1146/annurev.es.13.110182.001451
  32. Henderson, R. K., Baker, A., Parsons, S. A. and Jefferson, B., "Characterisation algogenic organic matter extracted from cyanobacteria, green algae and diatoms," Water Res., 42, 3435-3445(2008). https://doi.org/10.1016/j.watres.2007.10.032