DOI QR코드

DOI QR Code

안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용

Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines

  • 박재은 (이화여자대학교 환경공학과) ;
  • 이병태 (광주과학기술원 환경공학부) ;
  • 이상우 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 손아정 (이화여자대학교 환경공학과)
  • Park, Jae Eun (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Byung-Tae (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Sang Woo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Son, Ahjeong (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2016.07.28
  • 심사 : 2017.04.07
  • 발행 : 2017.05.31

초록

폐광산은 방치된 광미 등으로 인하여 주변환경에 복합적인 중금속 오염을 야기한다. 이를 방지하기 위하여 국내에서는 1990년대 중반부터 석회석 등의 안정화제와 복토를 이용한 안정화 공법을 기반으로 토양개량사업이 시행 중이다. 복원된 토양의 상부에서는 작물의 재배로 인해 중금속이 고정된 안정화 층이 지화학적 변화를 겪게 되며 이에 따른 중금속의 용출 및 이동이 가능하므로 토양개량사업을 마친 토양에 대한 질 평가 등의 사후 관리는 반드시 필요하다. 토양의 질 평가를 하기 위해서는 이화학적 분석 또는 생물학적인 분석을 개별적으로 하기보다는 이들을 결합한 종합적인 분석이 필요하며 이를 통해 토양의 생태기능상태(ecological functional state)를 평가할 수 있다. 본 연구에서는 대상시료로 경상북도 봉화군 풍정 광산, 전라남도 광양시 점동 광산, 충청남도 서산시 서성 광산 인근 안정화 처리 토양과 안정화 처리가 되지 않은 오염, 비오염 토양을 선정하였다. 토양의 이화학적 성질인 pH, CEC, LOI와 중금속 농도를 측정하였고, 미생물 효소활성도와 비소환원유전자를 정량하였다. 다변량 통계분석을 바탕으로 모든 데이터를 분석하여 토양 생태기능상태를 평가하였다. 안정화 심도 토양과 상부복토, 하부오염토 간의 상관관계를 확인한 결과, 안정화 심도 토양에서 중금속의 농도가 높게 측정되었다. 그리고 풍정광산에서는 안정화 처리 심도 토양이 하부오염토와 유사한 특성을, 점동, 서성 광산에서는 안정화 심도 토양이 상부복토와 유사한 특성을 나타내었는데 이는 점동, 서성 광산 주변 상부복토의 생태기능상태가 좋지 않을 수 있음을 시사한다.

Heavy metals leaching from closed mines have been causing severe environmental problems in nearby soil ecosystems. Mine reclamation in Korea has been recently implemented based on the heavy metal immobilization (a.k.a., stabilization). Since the immobilization temporarily fixes the heavy metals to the soil matrix, the potential risk of heavy metal leaching still exists. Therefore the appropriate monitoring and the related policies are required to safeguard the soils, where all the cultivations occur. The current monitoring methods are based on either heavy metal concentration or simple toxicity test. Those methods, however, are fragmented and hence it is difficult to evaluate the site in an integrated manner. In this study, as the integrated approach, ecological functional state evaluation with a multivariate statistical tool was employed targeting physiochemical soil properties, heavy metal concentrations, microbial enzymatic activity, and arsenic respiratory reductase gene quantity. Total 60 soil samples obtained from three mines (Pungjeong, Jeomdong, Seosung) were analyzed. As a result, the stabilized layer soil and lower layer soil have shown the similar pattern in Pungjeong mine. In contrast, Jeomdong and Seosung mine have shown the similarity between the stabilized layer soil and the cover layer soil, indicating the possible contamination of the cover layer soil.

키워드

참고문헌

  1. Mine Reclamation Corporation, "The second stage of mine reclamation plan (year of 2012-2016)," Ministry of Knowledge Economy(2011).
  2. Jung, M. C., Ahn, J. S. and Chon, H. T., "Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in Korea," Geosyst. Eng., 4, 50-60(2001). https://doi.org/10.1080/12269328.2001.10541168
  3. Jung, M. C., Jung, M. Y. and Choi, Y. W., "Environmental Assessment of Heavy Metals Around Abandoned Metalliferous Mine in Korea," Economic and Environ. Geol., 37(1), 21-33(2004).
  4. Park, Y. H. and Seo, K. W., "Policy Suggestions for Soil Contamination Prevention and Management of Inactive or Abandoned Metal Mines," J. Korean Soc. Soil and Groundwater Environ., 11(3), 1-11(2006).
  5. Kim, S. O., Moon, S. H. and Kim, K. W., "A study on the removal of heavy metals from soils using electrokinetic soil processing and ion exchange membrane," Economic and Environ. Geol., 32(1), 43-51(1991).
  6. Kim, J.-Y., Davis, A. P. and Kim, K.-W. "Stabilization of available arsenic in highly contaminated mine tailings using iron," Environ. Sci. Technol., 37(1), 189-195(2003). https://doi.org/10.1021/es020799+
  7. Oh, S. J., Kim, S. C., Kim, R. Y., Ok, Y. S., Oh, S. M., Lee, J. S. and Yang, J. E., "Change of bioavailability in heavy metal contaminated soil by chemical amendment," Korean J. Soil Sci. Fertilizer, 45(6), 973-982(2012). https://doi.org/10.7745/KJSSF.2012.45.6.973
  8. Son, J.-H., Roh, H., Lee, S.-Y., Kim, S.-K., Kim, G.-H., Park, J.-K., Yang, J.-K. and Chang, Y.-Y., "Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO," J. Soil and Groundwater Environ., 14(6), 78-86(2009).
  9. Koh, I.-H., Lee, S.-H., Lee, W.-S. and Chang, Y.-Y., "Assessment on the transition of arsenic and heavy metal from soil to plant according to stabilization process using limestone and steelmaking slag," J. Soil and Groundwater Environ., 18(7), 63-72(2013). https://doi.org/10.7857/JSGE.2013.18.7.063
  10. Oh, S.-J., Kim, S.-C., Yoon, H.-S., Kim, H.-N., Kim, T.-H., Yeon, K.-H., Lee, J.-S., Hong, S.-J. and Yang, J.-E., "Evaluating heavy metal stabilization efficiency of chemical amendment in agricultural field: field experiment," Korean J. Soil Sci. and Fertilizer, 44(6), 1052-1062(2011). https://doi.org/10.7745/KJSSF.2011.44.6.1052
  11. Kim, J. H., Chung, D. Y., Oh, S. J., Kim, R. Y., Yang, J. E., Park, G. I., Lee, J. S. and Kim, S. C., "Determining soil quality of heavy metal contaminated agricultural field in Korea," Korean J. Soil Sci. and Fertilizer, 45(6), 1237-1241(2012). https://doi.org/10.7745/KJSSF.2012.45.6.1237
  12. Smith, J. L. and Doran, J. W., "Chap 10. Measurement and use of pH and electrical conductivity for soil quality analysis," Methods for assessing soil quality, 169-185(1996). SSSA Special Publication, Soil Science Society of America, Madison, WI, USA
  13. Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A. and Timothy, B. P., (ed) Defining soil quality for a sustainable environment, "Chap 1. Defining and assessing soil quality," pp. 1-21(1994).
  14. Schoenholtz, S. H., Van Miegroet, H. and Burger, J. A., "A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities," Forest Ecol. and Manage., 138(1), 335-356(2000). https://doi.org/10.1016/S0378-1127(00)00423-0
  15. Filip, Z. "International approach to assessing soil quality by ecologically-related biological parameters," Agric., Ecosystems & Environ., 88(2), 169-174(2002). https://doi.org/10.1016/S0167-8809(01)00254-7
  16. Doran, J. W. and Zeiss, M. R, "Soil health and sustainability: managing the biotic component of soil quality," Appl. Soil Ecol., 15(1), 3-11(2000). https://doi.org/10.1016/S0929-1393(00)00067-6
  17. Knoepp, J. D., Coleman, D. C., Crossley Jr., D. A. and Clark, J. S., "Biological indices of soil quality: an ecosystem case study of their use," Forest Ecol. and Manage., 138(1), 357-368(2000). https://doi.org/10.1016/S0378-1127(00)00424-2
  18. Dorn, P. B., Vipond, T. E., Salanitro, J. P. and Wisniewski, H. L., "Assessment of the acute toxicity of crude oils in soils using earthworms, $microtox^{(R)}$, and plants," Chemosphere, 37(5), 845-860(1998). https://doi.org/10.1016/S0045-6535(98)00089-7
  19. Jones, D. L., Rousk., J., Edwards-Jones, G., DeLuca, T. H. and Murphy, D. V., "Biochar-mediated changes in soil quality and plant growth in a three year field trial," Soil Biol. and Biochem., 45(2), 113-124(2012). https://doi.org/10.1016/j.soilbio.2011.10.012
  20. Stohlgren, T. J., Schell, L. D. and Heuvel, B. V., "How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands," Ecol. Appl., 9(1), 45-64(1999). https://doi.org/10.1890/1051-0761(1999)009[0045:HGASQA]2.0.CO;2
  21. Jordan, D., Kremer, J., Bergfield, W. A., Kim, K. Y. and Cacnio, V. N., "Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields," Biol. and Fertility of Soils, 19(4), 297-302(1995). https://doi.org/10.1007/BF00336098
  22. Kim, M., Jung, J.-W. and Nam, K., "The Toxicity Assessment of Explosives Contaminated Soil using Soil Microbial Activity Tests," J. Soil and Groundwater Environ., 20(6), 37-45(2015). https://doi.org/10.7857/JSGE.2015.20.6.037
  23. Ki, D., Park, J, Lee, J. and Rho, P., "A weak correlation of field-detemined soil microbial diversity with quantitative ecological map information and its methodological implication in estimation soil ecological quality," J. Korean Civil Eng., 27(6), 703-710(2007).
  24. Ministry of Environment, "Soil pollution process test standard," webbook.me.go.kr/DLi-File/NIER/09/018/5509908.pdf (2009).
  25. ASTM International, "Standard test methods for loss of ignition(LOI) of solid combustion residues," ASTM D7348.
  26. Tyler, G., "Heavy metal pollution and soil enzymatic activity," Plant and Soil, 41(2), 303-311(1974). https://doi.org/10.1007/BF00017258
  27. Burns, R. G., "Enzyme activity in soil: location and a possible role in microbial ecology," Soil Biol. and Biochem., 14(5), 423-427(1982). https://doi.org/10.1016/0038-0717(82)90099-2
  28. Knight, T. R. and Dick, R. P., "Differentiating microbial and stabilized ${\beta}$-glucosidase activity relative to soil quality," Soil Biol. and Biochem., 36(12), 2089-2096(2004). https://doi.org/10.1016/j.soilbio.2004.06.007
  29. Tica, D., Udovic, M. and Lestan, D., "Long-term efficiency of soil stabilization with apatite and Slovakite: The impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning," Chemosphere, 91(1), 1-6(2013). https://doi.org/10.1016/j.chemosphere.2012.11.011
  30. Afkar, E., Lisak, J., Saltikov, C., Basu, P., Oremland, R. S. and Stolz, J. F., "The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10," FEMS Microbiol. Lett., 226(1). 107-112(2003). https://doi.org/10.1016/S0378-1097(03)00609-8
  31. Malasarn, D., Saltikov, C. W., Campbell, K. M., Santini, J. M., Hering, J. G. and Newman, D. K., "arrA is a reliable marker for As(V) respiration," Science, 306(5695), 455-455(2004). https://doi.org/10.1126/science.1102374
  32. Kulp, T. R., Hoeft, S. E., Miller, L. G., Saltikov, C., Murphy, J. N., Han, S., Lanoil, B. and Oremland, R. S., "Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California," Appl. and Environ. Microbiol., 72(10), 6514-6526(2006). https://doi.org/10.1128/AEM.01066-06
  33. Paez-Espino, D., Tamames, J., de Lorenzo, V. and Canovas, D. "Microbial responses to environmental arsenic," Biometals, 22(1), 117-130(2009). https://doi.org/10.1007/s10534-008-9195-y
  34. Lee, Y.-H. and Ha, S.-K., "Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province," Korean J. Soil Sci. and Fertilizer, 44(2), 242-247(2011). https://doi.org/10.7745/KJSSF.2011.44.2.242