DOI QR코드

DOI QR Code

Design of Magnetic Field Generator based on Magnetic Shield Effect for Stiffness Control of Magnetorheological Material

자기유변 물질의 강성제어를 위한 자기 차폐 원리 기반의 자기장 발생기 설계

  • Jang, Dae Ik (School of Mechanical and Control Engineering, Handong Global Univ.) ;
  • Park, Jae Eun (School of Mechanical and Control Engineering, Handong Global Univ.) ;
  • Kim, Young-Keun (School of Mechanical and Control Engineering, Handong Global Univ.)
  • 장대익 (한동대학교 기계제어공학부) ;
  • 박재은 (한동대학교 기계제어공학부) ;
  • 김영근 (한동대학교 기계제어공학부)
  • Received : 2017.03.29
  • Accepted : 2017.05.25
  • Published : 2017.09.01

Abstract

In this study, a novel magnetic field generator, using a shielding effect for controlling the dynamic stiffness and damping of magnetorheological gels, is proposed. A magnetorheological gel is a smart material that can alter its stiffness and damping, and it can be used as a vibration absorber and in vehicle suspension. It is necessary to control the magnetic field to use magnetorheological gels in various applications. There are two types of magnet field generators, namely the electromagnet and permanent magnet, and the electromagnet is generally used in practical applications. However, owing to its limitations, the electromagnet is not suitable for long-term use. Therefore, in this paper, a novel magnetic field generator is proposed to address such problems for use in real applications.

본 연구는 자기유변 겔의 강성 및 댐핑 제어에 필수적으로 요구되는 자기장 제어를 위한 자기장 발생기의 설계를 제안한다. 자기유변 물질은 자기장의 세기에 따라서 동적 점 탄성 특성이 바뀌는 스마트 물질로 진동 흡수기, 자동차의 서스펜션과 같은 분야에 사용되기 위해 여러 방면으로 연구되고 있다. 자기유변 물질의 어플리케이션 적용을 위해 현재 사용되고 있는 자기장 발생기의 종류로는 전자석과 영구자석이 있으며, 대부분의 실제 산업에서는 주로 전자석을 이용하여 자기장을 발생 및 제어한다. 하지만 전자석은 발열문제 등 여러 단점으로 인해 장시간 사용에 적합하지 않으며, 영구자석의 경우 자기장 세기의 변화에 필요한 자기유변 물질과 영구자석 간의 거리 조절을 위해 여분의 공간이 요구되어 시스템 부피가 커지는 단점이 있다. 따라서 본 연구에서는 자기 차폐 원리를 기반으로 한 자기장 발생기를 제안하여 기존의 전자석과 영구자석이 가지는 단점을 해결하고 장시간 사용 및 실제 산업에서 적용이 가능하도록 하고자 한다.

Keywords

References

  1. Bellan, C. and Bossis, G., 2002, "Field Dependence of Viscoelastic Properties of MR Elastomers," International Journal of Modern Physics B, Vol. 16, No. 17n18, pp. 2447-2453. https://doi.org/10.1142/S0217979202012499
  2. Ginder, J.M., Nichols, M.E., Elie, L.D. and Clark, S. M., 2000, "Controllable-stiffness Components Based on Magnetorheological Elastomers," In SPIE's 7th Annual International Symposium on Smart Structures and Materials, pp. 418-425.
  3. Jolly, M.R., Carlson, J.D. and Munoz, B.C., 1996, "A Model of the Behaviour of Magnetorheological Materials," Smart Materials and Structures, Vol. 5, No. 5, p. 607. https://doi.org/10.1088/0964-1726/5/5/009
  4. Kim, Y.K., Koo, J.H., Kim, K.S. and Kim, S.H., 2011, "Suppressing Harmonic Vibrations of a Miniature Cryogenic Cooler using an Adaptive Tunable Vibration Absorber Based on Magneto-rheological Elastomers," Review of Scientific Instruments, Vol. 82, No. 3, p. 035103. https://doi.org/10.1063/1.3553198
  5. Nagaya, K., Kurusu, A., Ikai, S. and Shitani, Y., 1999, "Vibration Control of a Structure by Using a Tunable Absorber and an Optimal Vibration Absorber Under Auto-tuning Control," Journal of sound and vibration, Vol. 228, No. 4, pp. 773-792. https://doi.org/10.1006/jsvi.1999.2443
  6. Ginder, J.M., Schlotter, W.F. and Nichols, M.E., 2001, "Magnetorheological Elastomers in Tunable Vibration Absorbers," In SPIE's 8th Annual International Symposium on Smart Structures and Materials, pp. 103-110.
  7. Li, Y., Li, J., Tian, T. and Li, W., 2013, "A Highly Adjustable Magnetorheological Elastomer Base Isolator for Applications of Real-time Adaptive Control," Smart Materials and Structures, Vol. 22, No. 9, p. 095020. https://doi.org/10.1088/0964-1726/22/9/095020
  8. Fuchs, A., Xin, M., Gordaninejad, F., Wang, X., Hitchcock, G.H., Gecol, H., Evrensel, C. and Korol, G., 2004, "Development and Characterization of Hydrocarbon Polyol Polyurethane and Silicone Magnetorheological Polymeric Gels," Journal of applied polymer science, Vol. 92, No. 2, pp. 1176-1182. https://doi.org/10.1002/app.13434
  9. Shin, B.C., Yoon, J.H., Kim, Y.K. and Kim, K.S., 2015, "Note: Vibration Suppression Using Tunable Vibration Absorber Based on Stiffness Variable Magneto-rheological Gel," Review of Scientific Instruments, Vol. 86, No. 10, p. 106106. https://doi.org/10.1063/1.4933225
  10. Xu, Y., Gong, X. and Xuan, S., 2013, "Soft Magnetorheological Polymer Gels with Controllable Rheological Properties," Smart Materials and Structures, Vol. 22, No. 7, p. 075029. https://doi.org/10.1088/0964-1726/22/7/075029
  11. Kim, H.K., Kim, H.S. and Kim, Y.K., 2016, "Stiffness Control of Magnetorheological Gels for Adaptive Tunable Vibration Absorber," Smart Materials and Structures, Vol. 26, No. 1, p. 015016. https://doi.org/10.1088/0964-1726/26/1/015016