DOI QR코드

DOI QR Code

광섬유와 격자구조 도파로 결합기 설계를 위한 결합 모드 이론 분석

Analysis of Coupled Mode Theory for Design of Coupler Between Optical Fiber And Grating Assisted Waveguide

  • 투고 : 2017.06.12
  • 심사 : 2017.08.01
  • 발행 : 2017.08.31

초록

저밀도 파장분할다중화 기술을 광 집적 소자에 효율적으로 활용하기 위하여 광섬유와 평면기판 내 광 도파로 사이의 파장 선택적 광 결합기 구조가 효율적인 수단으로 고려될 수 있다. 본 논문에서는 공기 도랑 격자를 지닌 실리콘 도파로와 단일 모드 광섬유 간 결합을 고려하였다. 격자의 깊이에 따른 결합 효율의 경향성과 그 한계점을 조사하였다. 이를 위해 결합 모드 이론에 기반을 둔 모델링을 통하여 설계된 결합기 구조의 결합효율을 예측하고, 유한요소법을 이용한 시뮬레이션 결과와 정량적으로 비교 분석 하였다.

In order to effectively utilize the Coarse Wavelength Division Multiplexing(CWDM) technology in optical integrated devices, a design of a wavelength selective coupler structure between an optical fiber and an optical waveguide in a flat substrate is can be considered. In this paper, we consider the coupling between a silicon waveguide with an air trench and a single mode fiber. We investigated the tendency of coupling efficiency and its limitations according to the grating depth. For this purpose, the coupling efficiency of coupler structure designed through modeling based on coupled mode theory is predicted and quantitatively compared with simulation results using finite element method.

키워드

참고문헌

  1. E. Kim, "Implementation of weight sensor with polarization maintaining photonic crystal fiber," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 1, 2015, pp. 133-138 https://doi.org/10.13067/JKIECS.2015.10.1.133
  2. K. Choi, "Effect .of spectral drift to coherent optical fiber sensor," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 277-282. https://doi.org/10.13067/JKIECS.2016.11.3.277
  3. Z. Yang, N. Fang, A. Wu, J. Chen, M. Zhang, X. Wang, and S. Zou, "Fabrication and characterization of integrated three-dimensional linear taper on silicon-on-insulator," Optical Engineering, vol. 48, no. 3, 2009, pp. 030503(1)- 030503(3).
  4. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Daele, I. Moerman, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. of Quantum Electronics, vol. 38, no. 7, 2002, pp. 949-955. https://doi.org/10.1109/JQE.2002.1017613
  5. F. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Thourhout, and R. Baets, "Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides," J. of Lightwave Technology, vol. 25, no. 1, 2007, pp. 151-156. https://doi.org/10.1109/JLT.2006.888164
  6. J. Song and J. Ding, "Silicon Nanowire Waveguides and Their Applications in Planar Wavelength Division Multiplexers/Demultiplexers," Nanowires-Fundamental Research, July 19, 2011.
  7. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. Russell, "Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler," IEEE Photonics Technology Letters, vol. 8, no. 12, 1996, pp. 1656-1658. https://doi.org/10.1109/68.544709
  8. P. Yeh and H. Taylor, "Contradirectional frequency-selective couplers for guided-wave optics," Applied Optics, vol. 19, no. 16, 1980, pp. 2848-2855. https://doi.org/10.1364/AO.19.002848
  9. J. Weber, "Spectral characteristics of coupledwaveguide Bragg-reflection tunable optical filter," IEE Proc. J. (Optoelectronics), vol. 140, no. 5, 1993, pp. 275-284. https://doi.org/10.1049/ip-j.1993.0045
  10. C. Bulmer and M. Wilson. "Single mode grating coupling between thin-film and fiber optical waveguides," IEEE J. of Quantum Electronics, vol. 14, no. 10, 1978, pp. 741-749. https://doi.org/10.1109/JQE.1978.1069686
  11. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Jones, and L. Chrostowski, "Silicon photonic grating-assisted, contra-directional couplers," Optics Express, vol. 21, no. 3, 2013, pp. 3633-3650. https://doi.org/10.1364/OE.21.003633
  12. T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," J. of the Optical Society of America A, vol. 14, no. 8, 1997, pp. 1760-1773. https://doi.org/10.1364/JOSAA.14.001760