DOI QR코드

DOI QR Code

On Implementations of Algorithms for Fast Generation of Normal Bases and Low Cost Arithmetics over Finite Fields

유한체위에서 정규기저의 고속생성과 저비용 연산 알고리즘의 구현에 관한 연구

  • Kim, Yong-Tae (Dept. of Mathematics Education, Gwangju National University of Education)
  • 김용태 (광주교육대학교 수학교육과)
  • Received : 2017.04.27
  • Accepted : 2017.08.01
  • Published : 2017.08.31

Abstract

The efficiency of implementation of the arithmetic operations in finite fields depends on the choice representation of elements of the field. It seems that from this point of view normal bases are the most appropriate, since raising to the power 2 in $GF(2^n)$ of characteristic 2 is reduced in these bases to a cyclic shift of the coordinates. We, in this paper, introduce our algorithm to transform fastly the conventional bases to normal bases and present the result of H/W implementation using the algorithm. We also propose our algorithm to calculate the multiplication and inverse of elements with respect to normal bases in $GF(2^n)$ and present the programs and the results of H/W implementations using the algorithm.

유한체위에서 사칙연산의 H/W 구현의 효율성은 사용하는 유한체의 기저 선택에 의해서 크게 좌우된다. 그러한 H/W 구현의 효율성의 관점에서 보면, 정규기저가 가장 적절한 이유는, 표수가 2인 유한체 $GF(2^n)$의 원소를 GF(2)위에서 정규기저로 표현하면, 원소의 제곱은 단순하게 좌표의 순환이동이 되기 때문이다. 본 논문에서는, 모든 유한체에서 관용기저로 부터 정규기저로 고속으로 변환하는 알고리즘을 소개하였으며 그 알고리즘을 이용한 H/W 구현결과와 우리의 방법으로 구현한 정규기저를 이용하여, 유한체 $GF(2^n)$위에서 두 원소의 곱셈과 역원을 구하는 효율적인 알고리즘에 따른 프로그램과 H/W 구현결과를 제시하였다.

Keywords

References

  1. G. Drolet, "A new representation of elements of finite fields $GF(2^m)$ yielding small complexity arithmetic circuit," IEEE Trans. Computers, vol. 47, no. 9, 1998, pp.938-946. https://doi.org/10.1109/12.713313
  2. R. Lidl and H. Niederreiter, Finite Fields. Cambrideg: Cambridge University Press, 1984.
  3. J. Massey and J. Omura, "Computational method and apparatus for finite field arithmetic," United States Patent vol. 4, Patent Number 4,587,627, May 1986, pp.587-627.
  4. C. Chiou, C. Chang, C. Lee, and T. Hou, "Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over $GF(2^m)$," IEEE Trans. Computers, vol. 58, no. 6, 2009, pp. 851-857. https://doi.org/10.1109/TC.2008.226
  5. C. Kim and S. Chang, "Type II Optimal Normal Basis Multipliers in $GF(2^n)$," J. of the Korea Institute of Information Security and Cryptology, vol. 25, no. 5, 2015, pp. 979-984. https://doi.org/10.13089/JKIISC.2015.25.5.979
  6. S. Kwon, S. Cho, and H. Kim, "Reachable table of non-linear cellular automata", J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 5, 2015, pp. 593-598. https://doi.org/10.13067/JKIECS.2015.10.5.593
  7. U. Choi, S. Cho, H. Kim, M. Kwon, and S. Kim,"Synthesis of 90/102(170)/150 linear CA using 90/150 linear CA," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 9, 2016, pp. 885-891. https://doi.org/10.13067/JKIECS.2016.11.9.885
  8. S. Wolfram, Mathematica. 4th Ed. New York: Wolfram Champaign Research, Inc., 1999.
  9. M. Olofsson, "VLSI Aspects on Inversion in Finite Fields," Ph.D's Thesis, Linkopings University, 2002.
  10. E. Moreno, "Acceleration of Finite Field Arithmetic with an Application to Reverse Engineering Genetic Network," Ph.D's Thesis, University of Puerto Rico Mayaguez Campus, 2008.
  11. J. von zur Gathen and J. Garhard, Modern Computer Algebra, 3rd Ed. Cambridge: Cambridge University Press, 2013.
  12. H. Kim, S. Cho, M. Kwon, and H. An, "A study on the cross sequences," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 61-67. https://doi.org/10.13067/JKIECS.2012.7.1.061