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Abstract – Recently, DC systems are considered as efficient electric power systems for renewable 
energy based clean power generators. This discloses several critical issues that are required to be 
considered before the installation of the DC systems. First of all, voltage/current switching stress, 
which is aggravated by large fault current, might damage DC circuit breakers. This problem can be 
simply solved by applying a superconducting fault current limiter (SFCL) as proposed in this study. It 
allows a simple use of insulated-gate bipolar transistors (IGBTs) as a DC circuit breaker. To evaluate 
the proposed resistive type SFCL application to the DC circuit breaker, a DC distribution system is 
composed of the practical line impedances from the real distribution system in Do-gok area, Korea. 
Also, to reflect the distributed generation (DG) effects, several DC-to-DC converters are applied. The 
locations and sizes of the DGs are optimally selected according to the results of previous studies on 
DG optimization. The performance of the resistive type SFCL applied DC circuit breaker is verified by 
a time-domain simulation based case study using the power systems computer aided design/ 
electromagnetic transients including DC (PSCAD/ EMTDCÒ). 
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1. Introduction 
 
Recently electrical power systems are facing the huge 

challenge of providing sustainable living for the human 
being. As the part of the efforts for the sustainable living, 
many renewable energy based distributed generations 
(DGs) have been studied and substantiated by those in 
academia and industry. The renewable energy based DGs 
increase the number of DC components because they have 
at least one internal DC bus. For example, the photovoltaic 
(PV) intrinsically supplies DC power, and the wind-turbine 
output is rectified before being supplied to the electrical 
grid. Also, the DC load has increased rapidly and occupied 
a large portion of the entire load. Meanwhile, the advanced 
power electronics have contributed to the battery energy 
storage system (BESS) as well as to the DG and the DC 
load. The advancement of the BESS has also contributed to 
increase in DC buses by disseminating the uninterruptable 
power systems (UPSs). The increase of the DC buses has 
inspired many researchers, some of whom are interested in 
the high efficient DC power system [1-3]. 

Despite the beneficial effects of the DC power system, 
several technical issues should be considered before their 
installation. For example, a DC circuit breaker is 

completely different from an AC circuit breaker. The AC 
circuit breaker opens at the zero-crossing current point to 
minimize the electrical stress. Unless the breaker opens at 
the zero-crossing current point, it will suffer from a huge 
induced voltage that is caused by the large fault current. In 
a DC system, however, there is no zero-crossing current 
point, and thus the electrical stress is intrinsically inevitable. 
Therefore, the circuit breaker probably suffers from the 
large induced voltage. 

A superconducting fault current limiter (SFCL) can 
reduce the large fault current to a normal level. Based on 
that, a previous study applied the SFCL to a mechanical 
circuit breaker [4]. However, it is not an effective approach 
to install the SFCLs next to all the breakers considering 
the installation and management costs. This study focuses 
on minimizing the numbers of the insulated-gate bipolar 
transistors (IGBTs) by reducing the voltage across the 
mechanical breakers. The performances of the IGBTs have 
been verified by many converter applications. To analyze 
the SFCL and IGBT effects on the power system, the 
practical system is composed using the real distribution 
system data from Do-gok area, Korea. 

 
 
2. Implementation of DC Distribution System 

 
2.1 Distribution system 

 
In the DC system, the maximum fault current is limited 

by the converter rating [5]. Therefore, the DC circuit 
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breaker does not suffer from the huge fault current in a 
single feeder system of Fig. 1(a). However, the real AC 
distribution system is generally composed of several 
feeders that are connected in parallel to the substation as 
shown in Fig. 1(b). That is, the DC distribution system 
might have multiple feeders in parallel when it is 
implemented in real world. Therefore, the circuit breakers 
on each feeder might be damaged by the large fault current. 

Based on the conventional system of Fig. 1(b), the DC 
distribution system can be implemented in two different 
ways as shown in Fig. 2. In the decentralized converter 
system of Fig. 2(a), a fault on a feeder does not spread to 
the other feeders, and the fault current is limited by the 
converter current rating. In the centralized converter 
system of Fig. 2(b), in contrast, the fault current becomes 
large unless there are SFCLs. Nevertheless, the centralized 
converter system is more realistic considering its high 
efficiency under normal condition [6]. Its fault current can 
be limited in the similar level as that of the decentralized 
converter system by installing the SFCLs on the feeders. 

 
2.2 Modeling of resistive type SFCL 

 
The resistive type SFCL prevents an increase in the 

short-circuit current due to its rapid current limiting ability. 
Despite multiple concepts for the designing of SFCLs have 
been conceived in previous studies, the resistive type 
SFCLs is commonly used for small size and low cost [7, 8]. 

The simple structure of the resistive (non-inductive 
winding) SFCL unit is shown in Fig. 3 [9]. A unit is 
composed of the stabilizer resistance of the n-th unit, Rns, 
the superconducting resistance of the n-th unit, Rnc(t), and 
the coil inductance of the n-th unit, Ln. Rns and Rnc(t) have 
been connected in parallel. The subscript n denotes the 
number of connected units [9]. In the steady-state condition, 
the total composite resistance becomes zero regardless of 
the Rns because the value of Rnc(t) is zero. However, the 
value of Rnc(t) becomes non-zero time-varying parameters 
due to the larger current than the critical current during a 
fault, depending on their unique characteristic. 

The resistive type SFCL requires series and parallel 
arrange structure for high voltage and large current. The 
series connection of the resistive type SFCLs causes 
voltage balancing problems [10]. In this paper, it is 
assumed that the resistive type SFCLs connected in series 
are operated simultaneously in the quenching state. The 
value of total resistance (RSFCL) of the series connected 
resistive type SFCL during a fault depends on the total 
number of units in Fig. 3, which are connected in series 
[11]. The value of Ln is determined by the coils, which are 
wound to have low inductance. Therefore, the value of Ln 
is so small that its effect can be ignored. Then, the 
associated equation for RSFCL can be expressed by (1) to 
describe its unique characteristic [9]. 
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=

= - -

å   (1) 

 
where Rm is the maximum resistance of the series 
connected resistive type SFCL in the quenching state, and 
Tsc is the time constant of transition from the super-
conducting state to the normal state, which is assumed to 
be 10 ms. 

 
2.3 DC circuit breaker 

 
In current, the IGBT is the most common switching 

device for the voltage source converter. That is, the 
reliability and durability of the IGBT have been being 
verified continuously by the numerous converters that are 
installed in real power system. Considering the roles of the 
circuit breaker and the converter, the IGBTs in the circuit 
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Fig. 1. (a) Single feeder DC distribution system, and (b) 

conventional AC distribution system 
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Fig. 3. The simple structure of a resistive type SFCL unit 
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breaker operate sporadically comparing to the frequently 
operating IGBTs in the converter. Therefore, the IGBT is 
reliable and durable enough to be used for the circuit 
breaker role. There are many types of a topology for the 
DC circuit breaker using IGBTs [12-15]. In this study, the 
DC circuit breaker is designed with several high-voltage 
IGBTs, high-voltage diodes, and capacitors as shown in 
Fig. 4. 

According to the high-voltage IGBT and diode module 
characteristics [16, 17], the maximum withstanding voltage 
is 6.5 kV. That is, the circuit breaker shown in Fig. 4 can 
withstand 39 kV if every capacitor is evenly charged. 

In practice, however, the capacitors are not uniformly 
charged due to the physical differences among the capacitors 
or among the IGBTs. The circuit breaker operation is 
illustrated in Fig. 5 to consider the voltage unbalance that 
results from the physical differences of the IGBTs. In other 
words, the IGBTs are not open at the same time. Assume 
that the capacitors begin being charged in numerical order 
from V1 to V6. Then, V1 becomes the highest voltage and 
dominantly affects the withstanding voltage of the circuit 
breaker. As the result, the circuit breaker withstanding 
voltage becomes lower than the arithmetic sum of the 
withstanding voltages of the IGBTs. 

The circuit breaker can be damaged by the high voltage 
spike caused by the fast IGBT switching operation and 
the large line inductance. According to [16, 17], the high-
voltage IGBT has 2 kHz of maximum PWM frequency. 
In other words, the switching period including the rising, 
falling, and dead times is only 500 microseconds. That is, 
the IGBT requires less than 250 microseconds (=half 
period) to separate the feeder. In the DC circuit breaker 

application, the fast switching time can cause serious 
electrical stress on the IGBT due to the line inductance. 
Assume that a fault is occurred between L2 and R in Fig. 4 
and the DC circuit breaker is composed without the 
capacitors. Then, the voltage across the circuit breaker, VCB 
(=V1+V2+V3+V4+V5+V6) is derived by (2) during the 
opening operation. Also, di is negative because the fault 
current is decreased.  

 

 CB S 1 2V V (L +L ) di
dt

= -   (2) 

 
where L1, L2, and VS are fixed and thus small di or large dt 
is required for small VCB. Although the dt can be increased 
by using parallel capacitor, the capacitor size is limited 
considering the cost and the numerous circuit breakers in 
power system. Therefore, the di is also required to be 
decreased, and it can be effectively decreased if the fault 
current is reduced. As described in the previous section, the 
resistive type SFCL can reduce the fault current to the 
normal level. Therefore, VCB is determined by (3) in the 
resistive type SFCL applied system. 

 
normal S1 2

CB S 1 2 S
open open

(0 I ) V(L +L )
V V (L +L ) V

R SFCLt t
-

@ - = +  (3) 

 
where topen is the circuit breaker opening time. 

 
 

3. Case Studies 
 
To investigate the resistive type SFCL effects, a practical 

DC distribution system is implemented by benchmarking 
the real distribution system in Do-gok area, Seoul Korea 
as shown in Fig. 6. The DG locations and sizes are 
optimally selected corresponding to the results of the 
previous studies [18, 19]. To simulate the most severe 
and realistic condition, the DGs are set as constant current 
sources. That is, the DGs are continuously supplying their 
maximum current regardless of the fault conditions. Also, 
four resistive type SFCLs are applied together with the 
maximum impedance of 380 Ω in the quenching state to 
investigate the resistive SFCL effects and the critical 
current is 1 kA. The circuit breaker is operated 20 ms later 
after a fault. 

 
3.1 In case of fault near substation 

 
To analyze the SFCL effects on the fault near the 

substation, the ground fault is simulated with 0.01 Ω at the 
center of the line between buses 1 and 36. It is described in 
Fig. 7(a) that the fault current through the circuit breaker 
on bus 1 increases up to 3.88 kA without the SFCLs. In 
contrast, the maximum fault current is about 0.12 kA with 
the SFCLs as shown in Fig. 7(b). The large fault current 
causes voltage surge up to 54 kV as shown in Fig. 7(c) and 
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Fig. 4. DC circuit breaker in simplified DC feeder 
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Fig. 5. DC circuit breaker operations and current flows: (a) 

during V1 charging, (b) during V1-V3 charging, and 
(c) during V1-V5 charging 
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severely damages the IGBTs. The voltage surge is removed 
by the SFCLs as shown in Fig. 7(d). 

It is described in Fig. 8(a) that the fault current through 
the circuit breaker on bus 36 increases up to 1 kA without 
the SFCLs. In contrast, the maximum fault current is about 
0.24 kA with the SFCLs as shown in Fig. 8(b). The large 
fault current causes voltage surge up to 24 kV as shown in 
Fig. 8(c) and severely damages the IGBTs. The voltage 
surge is reduced to about 5 kV by the SFCLs as shown in 
Fig. 8(d). 

 
3.2 In case of fault at center of feeder 

 
To see the SFCL effects on the fault at the center of the 

feeder, the fault is simulated at the center of the line 
between buses 38 and 39. As shown in Fig. 9(a), the fault 
current through the circuit breaker on bus 38 increases up 
to 1.6 kA without the SFCLs. In contrast, the maximum 
fault current is about 0.36 kA with the SFCLs as shown in 
Fig. 9(b). The large fault current causes the voltage surge 
up to 31 kV as shown in Fig. 9(c) and severely damages 
the IGBTs. The voltage surge is reduced to less than 6 kV 
by the SFCLs as shown in Fig. 9(d). 

During normal operation, a current of 11 A flows from 
the bus 38 to the bus 39. That is, the sum of the loads on 
buses 39-44 is larger than the DG generation. In the fault 
condition, the current direction is changed and the fault 
current through the circuit breaker on bus 39 comes only 
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Fig. 6. Practical DC distribution system benchmarking real distribution system in Do-gok area, Seoul Korea 

 

 
Fig. 7. Currents through circuit breaker on bus 1: (a) without 

SFCLs, (b) with SFCLs, and voltages across internal 
IGBTs (c) without SFCLs, (d) with SFCLs 

 
Fig. 8. Currents through circuit breaker on bus 36: (a) 

without SFCLs, (b) with SFCLs, and voltages across
internal IGBTs (c) without SFCLs, (d) with SFCLs 
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from the DG on bus 40. The fault current is only 4.8 A 
because it is limited by the current rating of the DG and the 
load consumptions on buses 39-44. The SFCLs hardly 
affect the circuit breaker on bus 39 because that breaker 
does not inherently suffer from the voltage surge as shown 
in Fig. 10. 

 
3.3 In case of fault at end of feeder 

 
To see the SFCL effects on the fault at the end of the 

feeder, a fault is simulated at the bus 44. As shown in Fig. 
11(a), the fault current through the circuit breaker on bus 
44 increases up to 1.4 kA without the SFCLs. In contrast, 
the maximum fault current is about 0.35 kA with the 
SFCLs as shown in Fig. 11(b). The large fault current 

causes the voltage surge up to 28 kV as shown in Fig. 11(c) 
and severely damages the IGBTs. The voltage surge is 
reduced by the SFCLs to less than 6 kV as shown in Fig. 
11(d). 

 
 

4. Conclusion 
 
This study investigates the SFCL effects on the DC 

circuit breakers in the practical power system. The voltage 
surges across the DC circuit breakers are effectively 
reduced by a set of SFCLs near the substation. This study 
demonstrates the DC circuit breaker can be implemented 
using the IGBT instead of the mechanical device. These 
results are expected to contribute to the researches on the 
efficient DC power systems. 
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