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A Real-time Face Tracking Algorithm using Improved CamShift with 
Depth Information

Jun-Hwan Lee*, Hyun-jo Jung* and Jisang Yoo†

Abstract – In this paper, a new face tracking algorithm is proposed. The CamShift (Continuously 
adaptive mean SHIFT) algorithm shows unstable tracking when there exist objects with similar color 
to that of face in the background. This drawback of the CamShift is resolved by the proposed algorithm 
using Kinect’s pixel-by-pixel depth information and the skin detection method to extract candidate 
skin regions in HSV color space. Additionally, even when the target face is disappeared, or occluded, 
the proposed algorithm makes it robust to this occlusion by the feature point matching. Through 
experimental results, it is shown that the proposed algorithm is superior in tracking performance to that 
of existing TLD (Tracking-Learning-Detection) algorithm, and offers faster processing speed. Also, it 
overcomes all the existing shortfalls of CamShift with almost comparable processing time.
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1. Introduction

Real-time face tracking is a topic that is continuously 
being researched for many purposes in image processing 
area. However, it still remains a challenge to achieve high 
accuracy in a dynamic environment [1-5]. Even a real-time 
face tracking is not an easy problem, especially as many 
factors are involved. These factors can include skin color, 
motion information, and various changes in features. Even 
when a system accurately detects a facial region, it still 
consumes a long time in tracking, or sometimes even fails 
to track the detected face. 

In these cases, HCI (human computer interaction) system, 
or surveillance system that requires real-time face tracking, 
cannot properly operate. The main key to successful real-
time face tracking is the amount of computation. No matter 
how accurate the real-time face-tracker is, complex 
computations mean that it is bound to be slow and has 
only limited areas of applications for tracking. Even Face-
TLD [6, 7], an algorithm renowned for excellent tracking 
performance, has a reduced speed of only 5 fps. 

Prerequisites for tracking face are first detecting the 
face region, obtaining its size and position in an image. 
Detecting a face in real time requires fast operation so that 
most of the existing algorithms use color and facial feature 
information [8-10]. The method of using color information 
is simple, and requires a small amount of computation; 
however, when an input image has similar color components, 
the accuracy of the detection decreases. In addition, the 
method [8-10] using the facial features works well with 

lighting changes, but has trouble with tracking an object of 
similar pattern.

To solve these problems, a new face tracking algorithm 
for real-time implementation in an acquired image is 
proposed in this paper. It uses color information first to 
detect the candidate face region, then uses the Haar 
features to detect the accurate face region [11]. When the 
face is detected using the Haar features based the AdaBoost 
(Adaptive Boosting) strong classifier [11, 12], it occasionally
detects stripes or texts as faces. But, detecting the face 
candidate area by using the skin color [13, 14], it reduces 
the frequency of such false face detection.

In order to track the detected face, CamShift algorithm 
was proposed, which is a method of using color information
for tracking [15]. CamShift is a stable and simple 
algorithm that compares the color histogram of the target 
face and that of the candidate face. However, when an 
object or a background has a color distribution similar to 
that of the target face, the algorithm shows instability in its 
search. CamShift algorithm uses variable size of search 
window, which is advantageous, as it allows objects to be 
tracked even when their size differs. But, if a background 
object with similar color distribution comes close to the 
object being tracked, CamShift may understand the 
background as the target object. Therefore, even though it 
may be successful in detecting the face candidate area, it 
still may be unsuccessful in correctly tracking the detected
face [16, 17].

The use of depth information for tracking a face region 
can enhance its performance. Basically, a method of 
obtaining depth information is performed by acquiring 
images from a stereo camera and then calculating a 
disparity value of each pixel [18-20]. However, the method 
of calibrating multiple cameras takes time to calibrate after 
installing the camera, and it is troublesome to recalculate 
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each time the position of the camera is changed. In addition, 
it is not suitable for real - time tracking algorithm such as 
face tracking because it requires considerable computation 
time to extract disparity map through images acquired from 
multiple cameras [21]. Microsoft’s Kinect has the ability to 
obtain depth information in real time by acquiring RGB 
images just as general cameras at the same time [22, 23]. 
The proposed algorithm improves the tracking performance
using the depth information acquired by Kinect, then 
applying it to the CamShift algorithm to overcome its 
shortcomings. In addition, even if the target face is 
disappeared or occluded, re-tracking is possible based on 
feature matching between the previously saved face template
and the current frame [24, 25]. The algorithm proposed in 
this paper was developed to target a single object, that is,
one face in a typical indoor environment.

This paper is composed as follows. Section 2 introduces 
the basic algorithm used to detect face region, while section
3 proposes the new real-time face tracking algorithm using 
depth information. Section 4 compares the performance 
of the proposed algorithm and that of the conventional 
algorithms, and section 5 concludes with the results of the 
experiment.

2. Fundamentals for Tracking the Face 

Region

2.1 Skin detection

In this paper, possible regions for skin color in an image 
are first detected based on the fact that the object being 
tracked is a person’s face [13, 14]. It is not easy to 
accurately detect skin color. Finding the optimal algorithm 
for all skin colors is difficult, as a person’s skin color 
depends on race and even within a race there is a wide 
range of skin colors. However, regardless of skin color, all 
humans have red tone in their skin because they all have 
blood.

The HSV color space, which has better ability to separate
brightness and color components in images, is used. The 
candidate regions are detected using the hue value of color 
components within the HSV color space. When skin color 
candidate regions are detected, all the remaining regions 
are converted to zero value. Fig. 1 shows the results of the 
skin detection.

Fig. 1. (a) A given image, and (b) candidate areas detected 
by the skin detection algorithm

2.2 Face detection using haar features

Before tracking a face, we need to determine whether a 
face exists in an image, and perceive its location. In this 
paper, a face detection algorithm that uses Haar features is 
utilized. The general object detection method based on 
Haar features and AdaBoost proposed by Viola and Jones 
has high accuracy and fast processing speed [1]. The Haar 
feature reduces its processing time by using an integrated 
image, while the AdaBoost algorithm selects the highest 
distinguishing feature point to train the classifier. Placing 
multiple classifiers by complexity in a cascade structure 
retains highly effective processing speed, while maintaining
accuracy. After training Haar features for human face, the 
cascade structure of Adaboost with the trained Haar 
features is used to detect the face region [11, 12].

Fig. 2 shows that many different types of Haar features 
are used to extract features from the target objects in an 
image. Haar features are composed of two or more adjacent 
rectangular regions. Characteristic values for a feature 
are defined by subtracting the sum of the pixel values 
corresponding to the area marked with white by the sum 
of the intensity of pixels on the area marked with black. 
Fig. 2 shows that there is nearly an infinite combination 
of features from inversion of black and white areas, x-
axis and y-axis scaling, and zooming in and out operations

Fig. 2. Various sizes and shapes of Haar features: (a) edge 
features; (b) line features, and (c) center-surround 
features

Fig. 3. Face detection through using various Haar features 
[26]
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on these features. From all the options available, it is 
important to select and use meaningful features that are 
relevant and proper. The meaningful features are
distinguished by having consistently similar values to that 
of target, that is a face in this case and by showing 
inconsistent values to irrelevant objects. This meaningful 
feature selection is done automatically by Boosting learning
algorithm [11, 12]. Fig. 3 shows a process for extracting a 
face by using a variety of Haar features [26].

2.3 CamShift algorithm

The CamShift (Continuously adaptive mean SHIFT) is 
an improved MeanShift algorithm [27] that adjusts the 
size of the search window on its own [15]. MeanShift is 
a nonparametric kernel density estimation algorithm that 
is repeatedly performed to find the local maximum value 
of probability distribution. CamShift also tracks an object 
using a color histogram. When the user inputs the size and 
position of the initial search area, it repeatedly compares 
histograms to track the target object. The biggest difference 
from MeanShift is that by applying variable window size, 
CamShift easily tracks objects that change size. CamShift 
processes in accord with the following order [15]:

a. Set the size and initial position of the search window.
b. Calculate the probability distribution of color infor-

mation and perform the MeanShift to find the center 
of the search window.

c. Reset the search window by using the center position 
and size of the color histogram.

d. Using the reset search window, repeatedly perform 
the MeanShift until the search window converges, or 
repeat Steps b-d as often as defined. The position and 
size of the search window is determined through 
the calculation of the zeroth, 1st, and 2nd moments of 
the color histogram within the window. The zeroth, 
1st, and 2nd moment are obtained by Eqs. (1) - (3), 
respectively.

��� =	∑� ∑ �(�, �)� (1)

��� =	∑� ∑ ��(�, �)� , ��� =	∑� ∑ ��(�, �)� (2)

��� =	∑� ∑ ���(�, �)� , ��� =	∑� ∑ ���(�, �)� (3)

where �(�, �) represents the search window’s pixel value 
at (�, �). Using the zeroth, 1st, and 2nd moment, we can 
obtain the search window’s center position (�� , ��) along
with Eq. (4).

�� =	
���

���
, 	�� =	

���

���
(4)

3. The Proposed Algorithm

Fig. 4 shows the block diagram of the proposed face 
tracking algorithm in this paper that is composed of three 

main parts, detection, tracking and re-tracking of the target 
face. First, in the Detection part, the face candidate group 
is generated by applying the skin detection algorithm 
described in Section 2.1 to the input image obtained from 
the Kinect. Then, the face is detected using the Haar 
feature described in Section 2.2. The position and size of 
the detected face are set to the initial value of CamShift. 

In the Tracking part that tracks the detected face, the 
depth value of the detected face can be obtained through 
color image obtained from the Kinect and the calibration 
process of the depth map. We tracking faces with CamShift 
using depth information as described in Section 3.1. The 
Bhattacharyya distance [28] is calculated as described in 
Section 3.2. It saves the face template for the case that the 
tracking fails later or the failure of the tracking is judged. 
Finally, in the Re-Tracking part, the feature point matching 
is performed between the stored face template and the 
current frame when it is determined that the tracking has 
failed. If there are more than 4 pairs of correct matches, the 
validity is checked by homography calculation [29]. If it is 
valid, CamShift is set to the initial value and the tracking is 
restarted. Through these processes, we can propose a more 
stable and robust tracker by overcoming problems of 
CamShift.

3.1 Improved CamShift with depth information

Even though CamShift [15] are used in many areas of 
object tracking, there is still room for improvement. 
Problems of the Camshift include the initial search window 
settings, incorrect tracking of variable search windows, and 
tracking target objects apart from the search window. The 
proposed algorithm solves these problems. First, we solve 
the problem of having to set the initial search window 

Fig. 4. A block diagram of the proposed algorithm
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every time by face detection with the Haar features. By 
finding the position of the candidate face area in a given 
image, automatically setting it as the position of the initial 
search window. Then user can avoid having to set the 
search window every time.

Unlike MeanShift [27] that uses a fixed search window, 
CamShift uses variable search windows, which has the 
advantage of tracking objects that change size. However, a 
problem occurs if the tracking face comes close to a 
background with similar color distribution. The algorithm 
then recognizes the whole background with the similar 
color as the target object. Therefore, even though it may be 
successful at detecting the face region, it frequently fails to 
track the face correctly. Fig. 5 is an example of an unstable 
tracking case due to similar colors in the background.

In the proposed algorithm, the depth information along 
with color information is used to solve this problem. Fig. 6 
(a) shows an image that visualizes the brightness value in 
the range 0 to 255 to represent the color similarity with the 
target face by computing the color distribution of the object 
that is selected in the initial search window. Fig. 6 (b) is 
also a visualized image of the pixels with brightness value 
of 255, which have the same depth value as that of the 
central pixel of the tracked face region in the previous 
frame. Fig. 6 (c) is the result of taking AND operation on 
Figs. 6 (a) and (b). Finally, Fig. 6 (d) shows the result of 

face tracking in a red ellipse. The proposed algorithm 
tracks the color using the depth information given in Fig. 6 
(c), so that it improves the performance of CamShift and it 
is robust to backgrounds with similar colors.

In Fig. 7, it is shown that the proposed algorithm 
successfully tracks the face even when it is near a 
background with similar colors while the CamShift failed 
to do so.

As we already said, the CamShift algorithm tracks 
objects based on the specific kernel called the search 
window by using the distribution of color within the kernel. 
In particular, when the tracked object moves rapidly, 
processing the image takes a long time or the object’s 
position is suddenly changed by the camera characteristics, 
then the target object does not exist within the search 
window so that the search is not possible any longer. In 
addition, tracking is also impossible if the object being 
tracked moves out of the camera’s field of view. However, 
the proposed algorithm has the advantage of being able to 
re-track the target object, face by a feature matching even 
for these cases. 

3.2 Determining the motion of face

In pattern recognition, the concept of distance generally 
represents the distance between the features, and is used 
as the standard to measure similarity between patterns. 
Two patterns positioned closer to a feature space usually 
have a greater degree of similarity. Many tools are used 
to measure the distance, such as Euclidean distance [30], 
Dynamic Time Warping(DTW) algorithm [31], and 
Bhattacharyya distance [28].

In this paper, the Bhattacharyya distance is used to 
measure the change in the tracked face, and to confirm 
failure in tracking. The Bhattacharyya distance � is 
defined by histogram comparison of the previous frame 
with the current frame as in Eq. (5). [28]

�(��, ��) = 	�1 − ∑
���(�)∙��(�)

�∑ ��(�)∙∑ ��(�)��
� (5)

where, �� and �� are the histograms of two images 
being compared. � indicates the index of the histogram 
bin, while ��(�) and ��(�) mean histograms of the �th
bin of �� and ��, respectively. 

Fig. 5. Unstable tracking in an image due to similar colors

Fig. 6. (a) Visualization of color similarity: (b) pixels with 
the same depth as the face region tracked in the 
previous frame, (c) result of AND operation with (a) 
and (b), and (d) the result of face tracking

(a)                      (b)

Fig. 7. Results of (a) the proposed algorithm and (b) of the 
CamShift
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Fig. 8. Various size and angles of saved face templates

The histograms of two image are first normalized, then 
compared using Eq. (5). When two images being compared 
are perfectly the same, the Bhattacharyya distance should 
be 0, and approaches a value of 1 as the degree of 
similarity decreases. By comparing the results of CamShift 
for each frame, the frame with a similarity value greater 
than a threshold is saved to the template. A Bhattacharyya 
distance greater than the threshold means that the object 
has not come to a stop, but is still moving or rotating, 
causing changes in brightness distribution in an image. Fig. 
8 illustrates face templates saved in various sizes and 
angles.

In the proposed algorithm, two threshold values��, ��
(0 < �� < �� < 1) are used. �� and �� are determined 
through experiments and can change depending on the 
performance of hardware, camera, and light condition. Three
cases are considered by comparing the Bhattacharyya 
distance	� in Eq. (5), with �� and �� . First, when the 
value of the Bhattacharyya distance � is less than ��, the 
movement of the face is little to none, as there is a small 
difference between histograms of the previous and the 
current frames. In this case, by not processing anything, 
template duplications of a stationary object can be 
prevented. 

Second, when the value of Bhattacharyya distance d is 
greater than �� and less than	��, it can be assumed that 
there is movement of the face. In this case, face being 
tracked is saved to the template. In the proposed algorithm, 
if tracking is successful and a large number of templates 
are saved, it increases the possibility for re-tracking.

In other words, running the algorithm many times leads 
to better performance because the algorithm learns more 
about the object as the number of trials increases. However, 
template matching is based on features and the increase in 
the number of saved templates leads to longer process time 
for re-tracking. Therefore, appropriately controlling the 
maximum number of saved templates is crucial in 
determining the performance and process time of the 
algorithm. 

Finally, when the value of the Bhattacharyya distance �
is greater than ��, it can be assumed that the histogram 
change of the face being tracked is great. In this case, it 

fails to track due to occlusion, or because the face is moving
fast. When this case occurs, re-tracking is proceeded.

3.3 Re-tracking using feature matching

When failure occurs due to occlusion and/or due to fast 
movement of the face, the face can be tracked again through
feature matching between stored templates and the current 
frame. The feature extraction algorithm and descriptor are 
determined in order to reduce the processing time because 
the proposed algorithm must be applied in real-time. FAST 
(Features from Accelerated Segment Test) algorithm is 
applied [24], because it has a fast processing time and 
excellent repeatability. In the case of the feature point 
descriptor, the SIFT algorithm [32] is most detailed in 128 
dimensions and can be expected to have high accuracy. 
However, since the dimension of descriptors increases, 
the computational complexity increases. Therefore, in the 
proposed algorithm, the feature point matching is performed
using the BRIEF descriptor [25]

3.4 Fast feature extraction by FAST

The feature points from FAST (Features from Accelerated
Segment Test) algorithm [24] is better fitted for real-time 
because it extracts features very fast compared to that of 
basic feature extraction algorithms such as Harris Corner 
Detector [33], SIFT [32], and SURF [34]. 

Fig. 9 below illustrates the relationship between the 
center and nearby pixels in deciding the feature point. In a 
given image, a circle with distance 3 from the reference 
pixel P is first defined. If 16 pixels on the blue circle 
defined above are represented as � → �� , the feature 
points can be found by comparing the result of adding or 
subtracting the threshold value from either the intensity 
values of ��→�� or the intensity value of the reference 
pixel, �� [24].

If intensity value of any of 16 pixels is greater than that 
of the summation of the intensity value of the reference 
pixel P and the threshold value, or it is smaller than the 
difference of the intensity value of the reference pixel P
and the threshold value, and if this occurs more than N

Fig. 9. Pixels on a circle centered at P with distance of 3
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times, reference pixel P is determined to be a feature point. 
The value of N is usually 9, 10, 11, 12, etc., but when the 
value is 9, the repeatability of the feature is the highest [24]. 
Similar to the value of N, the threshold can be selected 
accordingly by the user. Selecting a low threshold means 
that more feature points are extracted, while selecting a 
high threshold means that less feature points are extracted.

A decision tree can also be used for faster processing. 
There are 3 cases: intensity values of 16 pixels are all 
greater than that of P, they are all less than P, or similar to 
P; by using this classification, the intensity distribution of 
pixels can be described as a ternary vector. Determining 
whether a pixel is a feature point or not can be done 
efficiently by applying this vector to the decision tree [24].

Because the above feature point extraction process only 
compares the intensity of corresponding pixels, feature 
points may be clustered. Therefore, choosing a representa-
tive point from the clustered features is necessary and
done by NMS (Non-Maximum Suppression) method. The 
performance of FAST is sensitive to the image size: a 
bigger image means more feature points, and a smaller 
means less. Through NMS, it becomes robust to size 
change, decreasing the number of feature points in a big 
image by replacing multiple feature points into one 
representation.

3.5 Fast matching by the binary descriptor, BRIEF

BRIEF (Binary Robust Independent Elementary Features)
[25] has a huge advantage in the memory efficiency by 
using a binary descriptor. The descriptor uses relatively 
small bits in comparison to ordinary descriptors, but still 
shows good performance. BRIEF descriptors use Hamming 
distance [35], rather than Euclidean distance [30], to provide
faster and better efficiency than that of other descriptors. 
The Hamming distance between two binary strings of 
equal length is defined as the number of positions at which 
the corresponding bits are different. By comparing SURF 
[34] to BRIEF, BRIEF has better or equal recognition and 
matching performance with significantly faster processing 
[25].

3.6 Judgement validity of homography

A homography is a 3x3 matrix that represents the 
projection relationship between two images. In the proposed
algorithm, homography is used to determine if the projection
relationship is normal during the re-tracking process with a 
saved face templates and current frame [29]. 

Minimum of 4 pairs of feature points are required in 
order to find the homography matrix. Through feature-based
matching between the saved templates and current frame, if 
4 or more pairs correctly match, then the homography matrix
can be calculated. At this time, RANSAC (RANdom 
SAmple Consensus) [36], an algorithm which reduces 
errors by predicting correct models within data mixed with 

errors and noise, is used to remove outliers (incorrect 
feature points). There are few cases of RANSAC failing so 
the result of project relationship is not always correct. 
Therefore, an additional process for double-checking the 
obtained homography matrix has correct relationship [29].

Normalized homography matrix H with 3 rows and 3 
columns is defined by Eq. (6). The elements of the matrix 
are expressed as ℎ�~ℎ� in order from row 1 and column 1 
and the last one has 1. 

H = �
ℎ�	ℎ�	ℎ�
ℎ�	ℎ�	ℎ�
	ℎ�	ℎ�	1	

� (6)

D in Eq. (7) is the determinant value of the 2x2 
submatrix of H; if D is less than 0, the rotating order is not 
correct. If reflection or twist occurs, Eq. (7) is the crucial 
factor to determine the incorrect homography.

D =	ℎ�ℎ� − ℎ�ℎ� (7)

In Eq. (8), �� and �� are the scale factor that measures 
the amount of zoom-in and zoom-out of the x and y
directions respectively. P is a perspective factor that 
represents the trapezoidal degree. If P has 0, it represents a 
rectangle, while as the value of P grows, it represents a 
shape further from a rectangle, i.e. a trapezoid.

�� =	�ℎ�
� + ℎ�

�

�� =	�ℎ�
� + ℎ�

� (8)

P = 	�ℎ�
� + ℎ�

�

Various factors as shown above are used to determine 
whether or not the obtained homography is not proper.

Especially, 6 discriminants in Eq. (9) are used for this 
purpose. If any of the 6 givens are applicable, it is an 
incorrect transformation [29].

D ≤ 0 ∥ 	�� < 0.1 ∥ 	�� > 3 ∥ 	�� < 0.1 ∥ 	�� > 3 ∥
							� > 0.002 (9)

If there is no case in Eq. (9) occurred, the current 
frame’s projected position of the target face is reset as the 

(a)                    (b)

Fig. 10. Mismatching result with various templates, and (b) 
success in re-tracking the face with the correct 
homography conversion
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initial position, and re-tracking is started. Fig. 10 illustrates 
the re-tracking process after it has stopped, due to 
occlusion of the target face. The face on the top left corner 
in Fig. 10 is one of the templates that are saved and the 
right one show current frame. Fig. 10 (a) represents the 
mismatching case with a saved template and consequently 
results in incorrect homography matrix while Fig. 10 (b) 
represents success in re-tracking the face with correct 
homography after correct feature point matching.

4. Experimental Results

The proposed algorithm receives RGB images of 3 
channel with 1920x1080 resolution and depth image of 1 
channel with 512x424 resolution through Microsoft's 
Kinect-v2. After resizing RGB images to 960x540, we 
performed experiments on Intel i5-4690 3.50GHz CPU, 
16GB RAM and Visual Studio 2013 environment without
acceleration of the graphics card (GPU). Since the proposed
algorithm uses depth image acquired from Kinect, it is 
assumed that an object moves within 0.5m ~ 4.5m range 
of Kinect’s depth acquisition. The proposed algorithm is 
compared with Face-TLD: Tracking-Learning-Detection [6, 
7], CamShift [15].

Due to the nature of the proposed algorithm, color images
and depth images with depth information are needed at 
the same time. Therefore, we can’t experiment on all 
public datasets. A total of 726 frames were taken from 
Kinect-v2 self-shooting sequence. In addition, we used 
five sequences of human faces among sequences [37] that
provide both color and depth information. The sequences 
were taken using Kinect-v1, both color and depth images 

are provided with a 640x480 resolution per frame PNG file 
format [37]. The self-shooting sequence captures color and 
depth images in real time from Kinect-v2, so it shows a 
slightly slower speed than that of other five sequences by 
loading the stored image

Fig. 11 compares the processing speed of the three 
algorithms. Since all three algorithms start at 0 fps, it is the 
speed before setting the initial position of an object to be 
tracked, so some frames with 0 fps rate are excluded in 
calculating the minimum fps and average fps. There was an 
increase in TLD algorithm’s processing speed because 
when it was unable to track a candidate face area due to 
occlusion. On the other hand, the proposed algorithm 
showed a decrease in processing speed for the same case. 
In general, CamShift algorithm using depth information 
improves the processing time; but in situations when an 
object cannot be tracked, performing feature point matching
between the face template and current frame demands more 
computations.

The CamShift algorithm shows fast and stable speed at a 
speed of at least 28 fps, but there is no processing speed as 
shown in Fig. 11 (a) after 349 frames in the self-shooting 
sequence due to the problem that tracking fails and the 
object can’t be retraced. There is no case where retrace 
fails for the remaining 5 sequences except the self-shooting 
sequence. However, resulting images show that they are all 
false traces.

Table 1 compares the performance of TLD, CamShift, 
and the proposed algorithm. The order in terms of speed 
was CamShift algorithm, proposed algorithm, and then 
TLD algorithm with the CamShift being the fastest; and the 
order for accuracy was the proposed algorithm, TLD, then 
CamShift with the proposed algorithm being the most 

Table 1. Comparison of algorithm performance

Sequence Algorithm Max fps(fps) Min fps(fps) Average(fps)
Object miss frame

(frame)
Total frame

(frame)
Tracking success rate

(%)

self-shooting

TLD 5 2 2.362 61 726 91.597

Proposed 23 9 19.336 43 726 94.077

CamShift 30 28 28.500 377 726 48.071

face_move1

TLD 6 4 4.223 0 469 100.000

Proposed 33 32 32.147 0 469 100.000

CamShift 34 32 32.850 0 469 100.000

face_occ2

TLD 8 3 5.829 8 387 97.933

Proposed 33 7 22.608 59 387 84.755

CamShift 34 33 33.094 0 387 100.000

face_occ3

TLD 10 5 8.231 40 262 84.733

Proposed 33 7 25.848 39 262 85.115

CamShift 33 32 32.707 0 262 100.000

face_occ5

TLD 8 4 4.529 0 330 100.000

Proposed 33 7 28.161 22 330 93.333

CamShift 33 32 32.439 0 330 100.000

face_turn2

TLD 7 4 4.207 0 600 100.000

Proposed 33 7 30.468 10 600 98.333

CamShift 51 40 45.386 0 600 100.000
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precise. It has already been shown that CamShift is 
unsuitable for tracking at self-shooting sequence, as it is 
unable to re-track the face. Other five sequences shows 
incorrect tracking result because CamShift uses only 
simple color information.

When the object being tracked is occluded, the entire 
image is regarded as an object so that the tracking success 
rate is high. TLD algorithm and proposed algorithm 
showed high tracking success rate. However, the problem 
of tracking a non-real object region in the TLD algorithm 
was found in 4 sequences out of 6 sequences, but 1 out of 6 
sequences in the proposed algorithm. The TLD algorithm 
has an average processing speed of 4.897 fps while the 
proposed algorithm has an average of 26.428 fps. If we use 

GPU to speed up, it seems to be no problem in real time 
implementation.

Fig. 12 shows how all 3 algorithms are successful in 
tracking, even when the face is half-occluded with the 112th

frame of self-shooting sequence. Unlike the TLD algorithm 
in Fig. 12 (b), the proposed algorithm in Fig. 12 (c) and the 
CamShift algorithm in Fig. 12 (d) track only non-occluded 
facial regions due to the variable size of the search window.

Fig. 13 shows the situation when the face is completely 
occluded at the 133th frame of the self-shooting sequence.
Fig. 13 (b) and (d) show that the TLD algorithm and the
CamShift algorithm are tracking incorrectly, even though 
the object to be tracked has disappeared. The proposed 
algorithm in Fig. 13(c) determines that the tracked object 

Fig. 11. Comparison of the processing speed of three algorithms. (a) self-shooting sequence (b) face_move1 sequence (c) 
face_occ2 sequence (d) face_occ3 sequence (e) face_occ5 sequence (f) face_turn2 sequence.
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is occluded by Bhattacharyya distance calculation and 
switches to the re-tracking mode.

Fig. 14 illustrates the situation when the occluded face 

Fig. 15. The result of face tracking of frame #403: (a) 
reference image, (b) TLD algorithm, and (c) the 
proposed algorithm

Fig. 16. The result of face tracking for face_occ2 sequence 
frame #24: (a) reference image, (b) TLD algorithm, 
(c) the proposed algorithm, (d) CamShift algorithm

Fig. 17. The result of face tracking for face_occ2 sequence 
frame #175: (a) reference image, (b) TLD algorithm, 
(c) the proposed algorithm, (d) CamShift algorithm

Fig. 12. The result of face tracking for frame #112: (a) 
reference image, (b) TLD algorithm, (c) the 
proposed algorithm, and (d) CamShift algorithm

Fig. 13. The result of face tracking for frame #133: (a) 
reference image, (b) TLD algorithm, (c) the 
proposed algorithm, and (d) CamShift algorithm

Fig. 14. The result of face tracking of frame #360: (a) 
reference image, (b) TLD algorithm, and (c) the 
proposed algorithm
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reappears as in the 360th frame. Fig. 14(b) and (c), each 
shows success in re-tracking for the TLD algorithm and the 
proposed algorithm, while CamShift algorithm is unable to 
do so, as it failed in re-tracking after occlusion from the 
349th frame onwards.

Fig. 15 also shows a situation where the face cannot be
seen as in the 403th frame. The TLD algorithm of Fig. 15 
(b) shows the result of incorrect tracking.

In self-shooting sequence, the calculated successful 
tracking-rate for TLD algorithm is 91.597%, as it failed to 
track 61 frames from a total of 726 frames. The algorithm 
may recognize it as successful tracking, when in reality 
there was occasionally incorrect object tracking in frames 
as in Figs. 13(b) and 15(b). Consequently, we predicted 
that the success rate of correct face tracking in the TLD 

algorithm be a bit lower than the calculated 91.597%. 
In self-shooting sequence, the proposed algorithm had a 

high tracking rate of 94.077%. There were no signs of 
incorrect object tracking frames. Even though CamShift 
algorithm has fast and stable processing, it had various 
issues, as it failed to track correct objects in occlusion, and 
to re-track after occlusion, as shown in Fig. 13(d). 
CamShift had a low success rate in tracking of 48.071%. 

Fig. 16 shows that TLD algorithm and CamShift 
algorithm do incorrect tracing in the 24th frame of the 
face_occ2 sequence. In the case of the TLD algorithm, the 
case of incorrect tracking immediately before the object 
being tracked was found in four of the six sequences. For 
the remaining 5 sequences except the self-shooting 
sequence, the CamShift algorithm shows false traces that 
recognize all backgrounds other than the face to be tracked 
as objects. This is because it uses color information and 
variable windows that are the characteristics of CamShift.

Fig. 17 shows the 175th frame of the face_occ2 sequence. 
The TLD algorithm keeps track of the position of the face 
in the previous frame, although the face is covered by the 
hand as shown in Fig. 17 (b). The algorithm shows the case 
of false tracking when the tracking face disappears due to 
occlusion. The proposed algorithm shows false tracking 
only in one of six sequences.

Fig. 18 is the 104th frame of the face_occ3 sequence and 
Fig. 19 is the 178th frame of the face_occ5 sequence. As 
mentioned above, the TLD algorithm incorrectly tracks 
objects after they were hidden. The proposed algorithm 
distinguishes the occlusion by calculating the distance 
between the frames. CamShift failed in tracking for all
frames.

The video results of these experiments are also available 
at https://www.youtube.com/channel/UCrNCHOY3CUhWpnd
RbP6O7Yg

5. Conclusion

In this paper, we propose a face tracking algorithm in 
indoor environment, which improves the disadvantages 
of CamShift using depth information obtained from 
Microsoft's Kinect. In this paper, a new face tracking 
algorithm that uses depth information from Microsoft’s 
Kinect to overcome drawbacks in the existing CamShift is 
proposed. The proposed algorithm solved the following 
issues in the old CamShift: incorrect tracking when the 
object lies adjacent to similar colors, failing to re-track, and 
cumbersomeness for users to have to manually input the 
targets being tracked. There are many researches being 
conducted for face tracking. But there are problems for 
algorithms with high efficiency, as they generally have 
greater calculation and processing time, which causes 
difficulty in real-time implementation. The proposed 
algorithm showed a high processing speed with Intel i5-
4690 3.50GHz CPU, 16GB RAM, Visual Studio 2013, 

Fig. 18. The result of face tracking for face_occ3 sequence 
frame #104: (a) reference image, (b) TLD 
algorithm, (c) the proposed algorithm, (d) CamShift
algorithm.

Fig. 19. The result of face tracking for face_occ5 sequence 
frame #178: (a) reference image, (b) TLD algorithm,
(c) the proposed algorithm, (d) CamShift algorithm
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even without acceleration of the GPU. It also shows a 
similar or better face tracking success rate than the TLD 
algorithm for self-shooting sequences and also shows 
superior tracking speed compared to TLD algorithm.
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