
J Electr Eng Technol.2017; 12(5): 2067-2078
http://doi.org/10.5370/JEET.2017.12.5.2067

2067
Copyright ⓒ The Korean Institute of Electrical Engineers

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Real-time Face Tracking Algorithm using Improved CamShift with
Depth Information

Jun-Hwan Lee*, Hyun-jo Jung* and Jisang Yoo†

Abstract – In this paper, a new face tracking algorithm is proposed. The CamShift (Continuously
adaptive mean SHIFT) algorithm shows unstable tracking when there exist objects with similar color
to that of face in the background. This drawback of the CamShift is resolved by the proposed algorithm
using Kinect’s pixel-by-pixel depth information and the skin detection method to extract candidate
skin regions in HSV color space. Additionally, even when the target face is disappeared, or occluded,
the proposed algorithm makes it robust to this occlusion by the feature point matching. Through
experimental results, it is shown that the proposed algorithm is superior in tracking performance to that
of existing TLD (Tracking-Learning-Detection) algorithm, and offers faster processing speed. Also, it
overcomes all the existing shortfalls of CamShift with almost comparable processing time.

Keywords: Face tracking, Face-TLD, Haar-Feature, CamShift, Kinect

1. Introduction

Real-time face tracking is a topic that is continuously
being researched for many purposes in image processing
area. However, it still remains a challenge to achieve high
accuracy in a dynamic environment [1-5]. Even a real-time
face tracking is not an easy problem, especially as many
factors are involved. These factors can include skin color,
motion information, and various changes in features. Even
when a system accurately detects a facial region, it still
consumes a long time in tracking, or sometimes even fails
to track the detected face.

In these cases, HCI (human computer interaction) system,
or surveillance system that requires real-time face tracking,
cannot properly operate. The main key to successful real-
time face tracking is the amount of computation. No matter
how accurate the real-time face-tracker is, complex
computations mean that it is bound to be slow and has
only limited areas of applications for tracking. Even Face-
TLD [6, 7], an algorithm renowned for excellent tracking
performance, has a reduced speed of only 5 fps.

Prerequisites for tracking face are first detecting the
face region, obtaining its size and position in an image.
Detecting a face in real time requires fast operation so that
most of the existing algorithms use color and facial feature
information [8-10]. The method of using color information
is simple, and requires a small amount of computation;
however, when an input image has similar color components,
the accuracy of the detection decreases. In addition, the
method [8-10] using the facial features works well with

lighting changes, but has trouble with tracking an object of
similar pattern.

To solve these problems, a new face tracking algorithm
for real-time implementation in an acquired image is
proposed in this paper. It uses color information first to
detect the candidate face region, then uses the Haar
features to detect the accurate face region [11]. When the
face is detected using the Haar features based the AdaBoost
(Adaptive Boosting) strong classifier [11, 12], it occasionally
detects stripes or texts as faces. But, detecting the face
candidate area by using the skin color [13, 14], it reduces
the frequency of such false face detection.

In order to track the detected face, CamShift algorithm
was proposed, which is a method of using color information
for tracking [15]. CamShift is a stable and simple
algorithm that compares the color histogram of the target
face and that of the candidate face. However, when an
object or a background has a color distribution similar to
that of the target face, the algorithm shows instability in its
search. CamShift algorithm uses variable size of search
window, which is advantageous, as it allows objects to be
tracked even when their size differs. But, if a background
object with similar color distribution comes close to the
object being tracked, CamShift may understand the
background as the target object. Therefore, even though it
may be successful in detecting the face candidate area, it
still may be unsuccessful in correctly tracking the detected
face [16, 17].

The use of depth information for tracking a face region
can enhance its performance. Basically, a method of
obtaining depth information is performed by acquiring
images from a stereo camera and then calculating a
disparity value of each pixel [18-20]. However, the method
of calibrating multiple cameras takes time to calibrate after
installing the camera, and it is troublesome to recalculate

† Corresponding Author: Dept. of Electronic Engineering, Kwang-
Woon University, Korea. (jsyoo@kw.ac.kr)

* Dept. of Electronic Engineering, KwangWoon University, Korea.
({tarje3, guswh7905}@kw.ac.kr)

Received: October 3, 2016; Accepted: May 16, 2017

ISSN(Print) 1975-0102
ISSN(Online) 2093-7423

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2068 │ J Electr Eng Technol.2017; 12(5): 2067-2078

each time the position of the camera is changed. In addition,
it is not suitable for real - time tracking algorithm such as
face tracking because it requires considerable computation
time to extract disparity map through images acquired from
multiple cameras [21]. Microsoft’s Kinect has the ability to
obtain depth information in real time by acquiring RGB
images just as general cameras at the same time [22, 23].
The proposed algorithm improves the tracking performance
using the depth information acquired by Kinect, then
applying it to the CamShift algorithm to overcome its
shortcomings. In addition, even if the target face is
disappeared or occluded, re-tracking is possible based on
feature matching between the previously saved face template
and the current frame [24, 25]. The algorithm proposed in
this paper was developed to target a single object, that is,
one face in a typical indoor environment.

This paper is composed as follows. Section 2 introduces
the basic algorithm used to detect face region, while section
3 proposes the new real-time face tracking algorithm using
depth information. Section 4 compares the performance
of the proposed algorithm and that of the conventional
algorithms, and section 5 concludes with the results of the
experiment.

2. Fundamentals for Tracking the Face

Region

2.1 Skin detection

In this paper, possible regions for skin color in an image
are first detected based on the fact that the object being
tracked is a person’s face [13, 14]. It is not easy to
accurately detect skin color. Finding the optimal algorithm
for all skin colors is difficult, as a person’s skin color
depends on race and even within a race there is a wide
range of skin colors. However, regardless of skin color, all
humans have red tone in their skin because they all have
blood.

The HSV color space, which has better ability to separate
brightness and color components in images, is used. The
candidate regions are detected using the hue value of color
components within the HSV color space. When skin color
candidate regions are detected, all the remaining regions
are converted to zero value. Fig. 1 shows the results of the
skin detection.

Fig. 1. (a) A given image, and (b) candidate areas detected
by the skin detection algorithm

2.2 Face detection using haar features

Before tracking a face, we need to determine whether a
face exists in an image, and perceive its location. In this
paper, a face detection algorithm that uses Haar features is
utilized. The general object detection method based on
Haar features and AdaBoost proposed by Viola and Jones
has high accuracy and fast processing speed [1]. The Haar
feature reduces its processing time by using an integrated
image, while the AdaBoost algorithm selects the highest
distinguishing feature point to train the classifier. Placing
multiple classifiers by complexity in a cascade structure
retains highly effective processing speed, while maintaining
accuracy. After training Haar features for human face, the
cascade structure of Adaboost with the trained Haar
features is used to detect the face region [11, 12].

Fig. 2 shows that many different types of Haar features
are used to extract features from the target objects in an
image. Haar features are composed of two or more adjacent
rectangular regions. Characteristic values for a feature
are defined by subtracting the sum of the pixel values
corresponding to the area marked with white by the sum
of the intensity of pixels on the area marked with black.
Fig. 2 shows that there is nearly an infinite combination
of features from inversion of black and white areas, x-
axis and y-axis scaling, and zooming in and out operations

Fig. 2. Various sizes and shapes of Haar features: (a) edge
features; (b) line features, and (c) center-surround
features

Fig. 3. Face detection through using various Haar features
[26]

Jun-Hwan Lee, Hyun-jo Jung and Jisang Yoo

http://www.jeet.or.kr │ 2069

on these features. From all the options available, it is
important to select and use meaningful features that are
relevant and proper. The meaningful features are
distinguished by having consistently similar values to that
of target, that is a face in this case and by showing
inconsistent values to irrelevant objects. This meaningful
feature selection is done automatically by Boosting learning
algorithm [11, 12]. Fig. 3 shows a process for extracting a
face by using a variety of Haar features [26].

2.3 CamShift algorithm

The CamShift (Continuously adaptive mean SHIFT) is
an improved MeanShift algorithm [27] that adjusts the
size of the search window on its own [15]. MeanShift is
a nonparametric kernel density estimation algorithm that
is repeatedly performed to find the local maximum value
of probability distribution. CamShift also tracks an object
using a color histogram. When the user inputs the size and
position of the initial search area, it repeatedly compares
histograms to track the target object. The biggest difference
from MeanShift is that by applying variable window size,
CamShift easily tracks objects that change size. CamShift
processes in accord with the following order [15]:

a. Set the size and initial position of the search window.
b. Calculate the probability distribution of color infor-

mation and perform the MeanShift to find the center
of the search window.

c. Reset the search window by using the center position
and size of the color histogram.

d. Using the reset search window, repeatedly perform
the MeanShift until the search window converges, or
repeat Steps b-d as often as defined. The position and
size of the search window is determined through
the calculation of the zeroth, 1st, and 2nd moments of
the color histogram within the window. The zeroth,
1st, and 2nd moment are obtained by Eqs. (1) - (3),
respectively.

��� =	∑� ∑ �(�, �)� (1)

��� =	∑� ∑ ��(�, �)� , ��� =	∑� ∑ ��(�, �)� (2)

��� =	∑� ∑ ���(�, �)� , ��� =	∑� ∑ ���(�, �)� (3)

where �(�, �) represents the search window’s pixel value
at (�, �). Using the zeroth, 1st, and 2nd moment, we can
obtain the search window’s center position (�� , ��) along
with Eq. (4).

�� =	
���

���
, 	�� =	

���

���
(4)

3. The Proposed Algorithm

Fig. 4 shows the block diagram of the proposed face
tracking algorithm in this paper that is composed of three

main parts, detection, tracking and re-tracking of the target
face. First, in the Detection part, the face candidate group
is generated by applying the skin detection algorithm
described in Section 2.1 to the input image obtained from
the Kinect. Then, the face is detected using the Haar
feature described in Section 2.2. The position and size of
the detected face are set to the initial value of CamShift.

In the Tracking part that tracks the detected face, the
depth value of the detected face can be obtained through
color image obtained from the Kinect and the calibration
process of the depth map. We tracking faces with CamShift
using depth information as described in Section 3.1. The
Bhattacharyya distance [28] is calculated as described in
Section 3.2. It saves the face template for the case that the
tracking fails later or the failure of the tracking is judged.
Finally, in the Re-Tracking part, the feature point matching
is performed between the stored face template and the
current frame when it is determined that the tracking has
failed. If there are more than 4 pairs of correct matches, the
validity is checked by homography calculation [29]. If it is
valid, CamShift is set to the initial value and the tracking is
restarted. Through these processes, we can propose a more
stable and robust tracker by overcoming problems of
CamShift.

3.1 Improved CamShift with depth information

Even though CamShift [15] are used in many areas of
object tracking, there is still room for improvement.
Problems of the Camshift include the initial search window
settings, incorrect tracking of variable search windows, and
tracking target objects apart from the search window. The
proposed algorithm solves these problems. First, we solve
the problem of having to set the initial search window

Fig. 4. A block diagram of the proposed algorithm

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2070 │ J Electr Eng Technol.2017; 12(5): 2067-2078

every time by face detection with the Haar features. By
finding the position of the candidate face area in a given
image, automatically setting it as the position of the initial
search window. Then user can avoid having to set the
search window every time.

Unlike MeanShift [27] that uses a fixed search window,
CamShift uses variable search windows, which has the
advantage of tracking objects that change size. However, a
problem occurs if the tracking face comes close to a
background with similar color distribution. The algorithm
then recognizes the whole background with the similar
color as the target object. Therefore, even though it may be
successful at detecting the face region, it frequently fails to
track the face correctly. Fig. 5 is an example of an unstable
tracking case due to similar colors in the background.

In the proposed algorithm, the depth information along
with color information is used to solve this problem. Fig. 6
(a) shows an image that visualizes the brightness value in
the range 0 to 255 to represent the color similarity with the
target face by computing the color distribution of the object
that is selected in the initial search window. Fig. 6 (b) is
also a visualized image of the pixels with brightness value
of 255, which have the same depth value as that of the
central pixel of the tracked face region in the previous
frame. Fig. 6 (c) is the result of taking AND operation on
Figs. 6 (a) and (b). Finally, Fig. 6 (d) shows the result of

face tracking in a red ellipse. The proposed algorithm
tracks the color using the depth information given in Fig. 6
(c), so that it improves the performance of CamShift and it
is robust to backgrounds with similar colors.

In Fig. 7, it is shown that the proposed algorithm
successfully tracks the face even when it is near a
background with similar colors while the CamShift failed
to do so.

As we already said, the CamShift algorithm tracks
objects based on the specific kernel called the search
window by using the distribution of color within the kernel.
In particular, when the tracked object moves rapidly,
processing the image takes a long time or the object’s
position is suddenly changed by the camera characteristics,
then the target object does not exist within the search
window so that the search is not possible any longer. In
addition, tracking is also impossible if the object being
tracked moves out of the camera’s field of view. However,
the proposed algorithm has the advantage of being able to
re-track the target object, face by a feature matching even
for these cases.

3.2 Determining the motion of face

In pattern recognition, the concept of distance generally
represents the distance between the features, and is used
as the standard to measure similarity between patterns.
Two patterns positioned closer to a feature space usually
have a greater degree of similarity. Many tools are used
to measure the distance, such as Euclidean distance [30],
Dynamic Time Warping(DTW) algorithm [31], and
Bhattacharyya distance [28].

In this paper, the Bhattacharyya distance is used to
measure the change in the tracked face, and to confirm
failure in tracking. The Bhattacharyya distance � is
defined by histogram comparison of the previous frame
with the current frame as in Eq. (5). [28]

�(��, ��) = 	�1 − ∑
���(�)∙��(�)

�∑ ��(�)∙∑ ��(�)��
� (5)

where, �� and �� are the histograms of two images
being compared. � indicates the index of the histogram
bin, while ��(�) and ��(�) mean histograms of the �th
bin of �� and ��, respectively.

Fig. 5. Unstable tracking in an image due to similar colors

Fig. 6. (a) Visualization of color similarity: (b) pixels with
the same depth as the face region tracked in the
previous frame, (c) result of AND operation with (a)
and (b), and (d) the result of face tracking

(a) (b)

Fig. 7. Results of (a) the proposed algorithm and (b) of the
CamShift

Jun-Hwan Lee, Hyun-jo Jung and Jisang Yoo

http://www.jeet.or.kr │ 2071

Fig. 8. Various size and angles of saved face templates

The histograms of two image are first normalized, then
compared using Eq. (5). When two images being compared
are perfectly the same, the Bhattacharyya distance should
be 0, and approaches a value of 1 as the degree of
similarity decreases. By comparing the results of CamShift
for each frame, the frame with a similarity value greater
than a threshold is saved to the template. A Bhattacharyya
distance greater than the threshold means that the object
has not come to a stop, but is still moving or rotating,
causing changes in brightness distribution in an image. Fig.
8 illustrates face templates saved in various sizes and
angles.

In the proposed algorithm, two threshold values��, ��
(0 < �� < �� < 1) are used. �� and �� are determined
through experiments and can change depending on the
performance of hardware, camera, and light condition. Three
cases are considered by comparing the Bhattacharyya
distance	� in Eq. (5), with �� and �� . First, when the
value of the Bhattacharyya distance � is less than ��, the
movement of the face is little to none, as there is a small
difference between histograms of the previous and the
current frames. In this case, by not processing anything,
template duplications of a stationary object can be
prevented.

Second, when the value of Bhattacharyya distance d is
greater than �� and less than	��, it can be assumed that
there is movement of the face. In this case, face being
tracked is saved to the template. In the proposed algorithm,
if tracking is successful and a large number of templates
are saved, it increases the possibility for re-tracking.

In other words, running the algorithm many times leads
to better performance because the algorithm learns more
about the object as the number of trials increases. However,
template matching is based on features and the increase in
the number of saved templates leads to longer process time
for re-tracking. Therefore, appropriately controlling the
maximum number of saved templates is crucial in
determining the performance and process time of the
algorithm.

Finally, when the value of the Bhattacharyya distance �
is greater than ��, it can be assumed that the histogram
change of the face being tracked is great. In this case, it

fails to track due to occlusion, or because the face is moving
fast. When this case occurs, re-tracking is proceeded.

3.3 Re-tracking using feature matching

When failure occurs due to occlusion and/or due to fast
movement of the face, the face can be tracked again through
feature matching between stored templates and the current
frame. The feature extraction algorithm and descriptor are
determined in order to reduce the processing time because
the proposed algorithm must be applied in real-time. FAST
(Features from Accelerated Segment Test) algorithm is
applied [24], because it has a fast processing time and
excellent repeatability. In the case of the feature point
descriptor, the SIFT algorithm [32] is most detailed in 128
dimensions and can be expected to have high accuracy.
However, since the dimension of descriptors increases,
the computational complexity increases. Therefore, in the
proposed algorithm, the feature point matching is performed
using the BRIEF descriptor [25]

3.4 Fast feature extraction by FAST

The feature points from FAST (Features from Accelerated
Segment Test) algorithm [24] is better fitted for real-time
because it extracts features very fast compared to that of
basic feature extraction algorithms such as Harris Corner
Detector [33], SIFT [32], and SURF [34].

Fig. 9 below illustrates the relationship between the
center and nearby pixels in deciding the feature point. In a
given image, a circle with distance 3 from the reference
pixel P is first defined. If 16 pixels on the blue circle
defined above are represented as � → �� , the feature
points can be found by comparing the result of adding or
subtracting the threshold value from either the intensity
values of ��→�� or the intensity value of the reference
pixel, �� [24].

If intensity value of any of 16 pixels is greater than that
of the summation of the intensity value of the reference
pixel P and the threshold value, or it is smaller than the
difference of the intensity value of the reference pixel P
and the threshold value, and if this occurs more than N

Fig. 9. Pixels on a circle centered at P with distance of 3

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2072 │ J Electr Eng Technol.2017; 12(5): 2067-2078

times, reference pixel P is determined to be a feature point.
The value of N is usually 9, 10, 11, 12, etc., but when the
value is 9, the repeatability of the feature is the highest [24].
Similar to the value of N, the threshold can be selected
accordingly by the user. Selecting a low threshold means
that more feature points are extracted, while selecting a
high threshold means that less feature points are extracted.

A decision tree can also be used for faster processing.
There are 3 cases: intensity values of 16 pixels are all
greater than that of P, they are all less than P, or similar to
P; by using this classification, the intensity distribution of
pixels can be described as a ternary vector. Determining
whether a pixel is a feature point or not can be done
efficiently by applying this vector to the decision tree [24].

Because the above feature point extraction process only
compares the intensity of corresponding pixels, feature
points may be clustered. Therefore, choosing a representa-
tive point from the clustered features is necessary and
done by NMS (Non-Maximum Suppression) method. The
performance of FAST is sensitive to the image size: a
bigger image means more feature points, and a smaller
means less. Through NMS, it becomes robust to size
change, decreasing the number of feature points in a big
image by replacing multiple feature points into one
representation.

3.5 Fast matching by the binary descriptor, BRIEF

BRIEF (Binary Robust Independent Elementary Features)
[25] has a huge advantage in the memory efficiency by
using a binary descriptor. The descriptor uses relatively
small bits in comparison to ordinary descriptors, but still
shows good performance. BRIEF descriptors use Hamming
distance [35], rather than Euclidean distance [30], to provide
faster and better efficiency than that of other descriptors.
The Hamming distance between two binary strings of
equal length is defined as the number of positions at which
the corresponding bits are different. By comparing SURF
[34] to BRIEF, BRIEF has better or equal recognition and
matching performance with significantly faster processing
[25].

3.6 Judgement validity of homography

A homography is a 3x3 matrix that represents the
projection relationship between two images. In the proposed
algorithm, homography is used to determine if the projection
relationship is normal during the re-tracking process with a
saved face templates and current frame [29].

Minimum of 4 pairs of feature points are required in
order to find the homography matrix. Through feature-based
matching between the saved templates and current frame, if
4 or more pairs correctly match, then the homography matrix
can be calculated. At this time, RANSAC (RANdom
SAmple Consensus) [36], an algorithm which reduces
errors by predicting correct models within data mixed with

errors and noise, is used to remove outliers (incorrect
feature points). There are few cases of RANSAC failing so
the result of project relationship is not always correct.
Therefore, an additional process for double-checking the
obtained homography matrix has correct relationship [29].

Normalized homography matrix H with 3 rows and 3
columns is defined by Eq. (6). The elements of the matrix
are expressed as ℎ�~ℎ� in order from row 1 and column 1
and the last one has 1.

H = �
ℎ�	ℎ�	ℎ�
ℎ�	ℎ�	ℎ�
	ℎ�	ℎ�	1	

� (6)

D in Eq. (7) is the determinant value of the 2x2
submatrix of H; if D is less than 0, the rotating order is not
correct. If reflection or twist occurs, Eq. (7) is the crucial
factor to determine the incorrect homography.

D =	ℎ�ℎ� − ℎ�ℎ� (7)

In Eq. (8), �� and �� are the scale factor that measures
the amount of zoom-in and zoom-out of the x and y
directions respectively. P is a perspective factor that
represents the trapezoidal degree. If P has 0, it represents a
rectangle, while as the value of P grows, it represents a
shape further from a rectangle, i.e. a trapezoid.

�� =	�ℎ�
� + ℎ�

�

�� =	�ℎ�
� + ℎ�

� (8)

P = 	�ℎ�
� + ℎ�

�

Various factors as shown above are used to determine
whether or not the obtained homography is not proper.

Especially, 6 discriminants in Eq. (9) are used for this
purpose. If any of the 6 givens are applicable, it is an
incorrect transformation [29].

D ≤ 0 ∥ 	�� < 0.1 ∥ 	�� > 3 ∥ 	�� < 0.1 ∥ 	�� > 3 ∥
							� > 0.002 (9)

If there is no case in Eq. (9) occurred, the current
frame’s projected position of the target face is reset as the

(a) (b)

Fig. 10. Mismatching result with various templates, and (b)
success in re-tracking the face with the correct
homography conversion

Jun-Hwan Lee, Hyun-jo Jung and Jisang Yoo

http://www.jeet.or.kr │ 2073

initial position, and re-tracking is started. Fig. 10 illustrates
the re-tracking process after it has stopped, due to
occlusion of the target face. The face on the top left corner
in Fig. 10 is one of the templates that are saved and the
right one show current frame. Fig. 10 (a) represents the
mismatching case with a saved template and consequently
results in incorrect homography matrix while Fig. 10 (b)
represents success in re-tracking the face with correct
homography after correct feature point matching.

4. Experimental Results

The proposed algorithm receives RGB images of 3
channel with 1920x1080 resolution and depth image of 1
channel with 512x424 resolution through Microsoft's
Kinect-v2. After resizing RGB images to 960x540, we
performed experiments on Intel i5-4690 3.50GHz CPU,
16GB RAM and Visual Studio 2013 environment without
acceleration of the graphics card (GPU). Since the proposed
algorithm uses depth image acquired from Kinect, it is
assumed that an object moves within 0.5m ~ 4.5m range
of Kinect’s depth acquisition. The proposed algorithm is
compared with Face-TLD: Tracking-Learning-Detection [6,
7], CamShift [15].

Due to the nature of the proposed algorithm, color images
and depth images with depth information are needed at
the same time. Therefore, we can’t experiment on all
public datasets. A total of 726 frames were taken from
Kinect-v2 self-shooting sequence. In addition, we used
five sequences of human faces among sequences [37] that
provide both color and depth information. The sequences
were taken using Kinect-v1, both color and depth images

are provided with a 640x480 resolution per frame PNG file
format [37]. The self-shooting sequence captures color and
depth images in real time from Kinect-v2, so it shows a
slightly slower speed than that of other five sequences by
loading the stored image

Fig. 11 compares the processing speed of the three
algorithms. Since all three algorithms start at 0 fps, it is the
speed before setting the initial position of an object to be
tracked, so some frames with 0 fps rate are excluded in
calculating the minimum fps and average fps. There was an
increase in TLD algorithm’s processing speed because
when it was unable to track a candidate face area due to
occlusion. On the other hand, the proposed algorithm
showed a decrease in processing speed for the same case.
In general, CamShift algorithm using depth information
improves the processing time; but in situations when an
object cannot be tracked, performing feature point matching
between the face template and current frame demands more
computations.

The CamShift algorithm shows fast and stable speed at a
speed of at least 28 fps, but there is no processing speed as
shown in Fig. 11 (a) after 349 frames in the self-shooting
sequence due to the problem that tracking fails and the
object can’t be retraced. There is no case where retrace
fails for the remaining 5 sequences except the self-shooting
sequence. However, resulting images show that they are all
false traces.

Table 1 compares the performance of TLD, CamShift,
and the proposed algorithm. The order in terms of speed
was CamShift algorithm, proposed algorithm, and then
TLD algorithm with the CamShift being the fastest; and the
order for accuracy was the proposed algorithm, TLD, then
CamShift with the proposed algorithm being the most

Table 1. Comparison of algorithm performance

Sequence Algorithm Max fps(fps) Min fps(fps) Average(fps)
Object miss frame

(frame)
Total frame

(frame)
Tracking success rate

(%)

self-shooting

TLD 5 2 2.362 61 726 91.597

Proposed 23 9 19.336 43 726 94.077

CamShift 30 28 28.500 377 726 48.071

face_move1

TLD 6 4 4.223 0 469 100.000

Proposed 33 32 32.147 0 469 100.000

CamShift 34 32 32.850 0 469 100.000

face_occ2

TLD 8 3 5.829 8 387 97.933

Proposed 33 7 22.608 59 387 84.755

CamShift 34 33 33.094 0 387 100.000

face_occ3

TLD 10 5 8.231 40 262 84.733

Proposed 33 7 25.848 39 262 85.115

CamShift 33 32 32.707 0 262 100.000

face_occ5

TLD 8 4 4.529 0 330 100.000

Proposed 33 7 28.161 22 330 93.333

CamShift 33 32 32.439 0 330 100.000

face_turn2

TLD 7 4 4.207 0 600 100.000

Proposed 33 7 30.468 10 600 98.333

CamShift 51 40 45.386 0 600 100.000

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2074 │ J Electr Eng Technol.2017; 12(5): 2067-2078

precise. It has already been shown that CamShift is
unsuitable for tracking at self-shooting sequence, as it is
unable to re-track the face. Other five sequences shows
incorrect tracking result because CamShift uses only
simple color information.

When the object being tracked is occluded, the entire
image is regarded as an object so that the tracking success
rate is high. TLD algorithm and proposed algorithm
showed high tracking success rate. However, the problem
of tracking a non-real object region in the TLD algorithm
was found in 4 sequences out of 6 sequences, but 1 out of 6
sequences in the proposed algorithm. The TLD algorithm
has an average processing speed of 4.897 fps while the
proposed algorithm has an average of 26.428 fps. If we use

GPU to speed up, it seems to be no problem in real time
implementation.

Fig. 12 shows how all 3 algorithms are successful in
tracking, even when the face is half-occluded with the 112th

frame of self-shooting sequence. Unlike the TLD algorithm
in Fig. 12 (b), the proposed algorithm in Fig. 12 (c) and the
CamShift algorithm in Fig. 12 (d) track only non-occluded
facial regions due to the variable size of the search window.

Fig. 13 shows the situation when the face is completely
occluded at the 133th frame of the self-shooting sequence.
Fig. 13 (b) and (d) show that the TLD algorithm and the
CamShift algorithm are tracking incorrectly, even though
the object to be tracked has disappeared. The proposed
algorithm in Fig. 13(c) determines that the tracked object

Fig. 11. Comparison of the processing speed of three algorithms. (a) self-shooting sequence (b) face_move1 sequence (c)
face_occ2 sequence (d) face_occ3 sequence (e) face_occ5 sequence (f) face_turn2 sequence.

Jun-Hwan Lee, Hyun-jo Jung and Jisang Yoo

http://www.jeet.or.kr │ 2075

is occluded by Bhattacharyya distance calculation and
switches to the re-tracking mode.

Fig. 14 illustrates the situation when the occluded face

Fig. 15. The result of face tracking of frame #403: (a)
reference image, (b) TLD algorithm, and (c) the
proposed algorithm

Fig. 16. The result of face tracking for face_occ2 sequence
frame #24: (a) reference image, (b) TLD algorithm,
(c) the proposed algorithm, (d) CamShift algorithm

Fig. 17. The result of face tracking for face_occ2 sequence
frame #175: (a) reference image, (b) TLD algorithm,
(c) the proposed algorithm, (d) CamShift algorithm

Fig. 12. The result of face tracking for frame #112: (a)
reference image, (b) TLD algorithm, (c) the
proposed algorithm, and (d) CamShift algorithm

Fig. 13. The result of face tracking for frame #133: (a)
reference image, (b) TLD algorithm, (c) the
proposed algorithm, and (d) CamShift algorithm

Fig. 14. The result of face tracking of frame #360: (a)
reference image, (b) TLD algorithm, and (c) the
proposed algorithm

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2076 │ J Electr Eng Technol.2017; 12(5): 2067-2078

reappears as in the 360th frame. Fig. 14(b) and (c), each
shows success in re-tracking for the TLD algorithm and the
proposed algorithm, while CamShift algorithm is unable to
do so, as it failed in re-tracking after occlusion from the
349th frame onwards.

Fig. 15 also shows a situation where the face cannot be
seen as in the 403th frame. The TLD algorithm of Fig. 15
(b) shows the result of incorrect tracking.

In self-shooting sequence, the calculated successful
tracking-rate for TLD algorithm is 91.597%, as it failed to
track 61 frames from a total of 726 frames. The algorithm
may recognize it as successful tracking, when in reality
there was occasionally incorrect object tracking in frames
as in Figs. 13(b) and 15(b). Consequently, we predicted
that the success rate of correct face tracking in the TLD

algorithm be a bit lower than the calculated 91.597%.
In self-shooting sequence, the proposed algorithm had a

high tracking rate of 94.077%. There were no signs of
incorrect object tracking frames. Even though CamShift
algorithm has fast and stable processing, it had various
issues, as it failed to track correct objects in occlusion, and
to re-track after occlusion, as shown in Fig. 13(d).
CamShift had a low success rate in tracking of 48.071%.

Fig. 16 shows that TLD algorithm and CamShift
algorithm do incorrect tracing in the 24th frame of the
face_occ2 sequence. In the case of the TLD algorithm, the
case of incorrect tracking immediately before the object
being tracked was found in four of the six sequences. For
the remaining 5 sequences except the self-shooting
sequence, the CamShift algorithm shows false traces that
recognize all backgrounds other than the face to be tracked
as objects. This is because it uses color information and
variable windows that are the characteristics of CamShift.

Fig. 17 shows the 175th frame of the face_occ2 sequence.
The TLD algorithm keeps track of the position of the face
in the previous frame, although the face is covered by the
hand as shown in Fig. 17 (b). The algorithm shows the case
of false tracking when the tracking face disappears due to
occlusion. The proposed algorithm shows false tracking
only in one of six sequences.

Fig. 18 is the 104th frame of the face_occ3 sequence and
Fig. 19 is the 178th frame of the face_occ5 sequence. As
mentioned above, the TLD algorithm incorrectly tracks
objects after they were hidden. The proposed algorithm
distinguishes the occlusion by calculating the distance
between the frames. CamShift failed in tracking for all
frames.

The video results of these experiments are also available
at https://www.youtube.com/channel/UCrNCHOY3CUhWpnd
RbP6O7Yg

5. Conclusion

In this paper, we propose a face tracking algorithm in
indoor environment, which improves the disadvantages
of CamShift using depth information obtained from
Microsoft's Kinect. In this paper, a new face tracking
algorithm that uses depth information from Microsoft’s
Kinect to overcome drawbacks in the existing CamShift is
proposed. The proposed algorithm solved the following
issues in the old CamShift: incorrect tracking when the
object lies adjacent to similar colors, failing to re-track, and
cumbersomeness for users to have to manually input the
targets being tracked. There are many researches being
conducted for face tracking. But there are problems for
algorithms with high efficiency, as they generally have
greater calculation and processing time, which causes
difficulty in real-time implementation. The proposed
algorithm showed a high processing speed with Intel i5-
4690 3.50GHz CPU, 16GB RAM, Visual Studio 2013,

Fig. 18. The result of face tracking for face_occ3 sequence
frame #104: (a) reference image, (b) TLD
algorithm, (c) the proposed algorithm, (d) CamShift
algorithm.

Fig. 19. The result of face tracking for face_occ5 sequence
frame #178: (a) reference image, (b) TLD algorithm,
(c) the proposed algorithm, (d) CamShift algorithm

Jun-Hwan Lee, Hyun-jo Jung and Jisang Yoo

http://www.jeet.or.kr │ 2077

even without acceleration of the GPU. It also shows a
similar or better face tracking success rate than the TLD
algorithm for self-shooting sequences and also shows
superior tracking speed compared to TLD algorithm.

Acknowledgements

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (No. 2015-0-00258,
Development of hybrid audio contents production and
representation technology for supporting channel and object
based audio)

References

[1] Viola, Paul, and Michael J. Jones. “Robust real-time
face detection.” International journal of computer
vision 57.2 (2004): 137-154.

[2] Rowley, Henry A., Shumeet Baluja, and Takeo Kanade.
“Neural network-based face detection.” IEEE Trans-
actions on pattern analysis and machine intelligence
20.1 (1998): 23-38.

[3] Osuna, Edgar, Robert Freund, and Federico Girosit.
“Training support vector machines: an application
to face detection.” Computer vision and pattern
recognition, 1997. Proceedings., 1997 IEEE computer
society conference on. IEEE, 1997.

[4] Hsu, Rein-Lien, Mohamed Abdel-Mottaleb, and
Anil K. Jain. “Face detection in color images.”
IEEE transactions on pattern analysis and machine
intelligence 24.5 (2002): 696-706.

[5] Hjelmås, Erik, and Boon Kee Low. “Face detection:
A survey.” Computer vision and image understand-
ing 83.3 (2001): 236-274.

[6] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas.
“Face-tld: Tracking-learning-detection applied to
faces.” Image Processing (ICIP), 2010 17th IEEE
International Conference on. IEEE, 2010.

[7] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas.
“Tracking-learning-detection.” IEEE transactions on
pattern analysis and machine intelligence 34.7
(2012): 1409-1422.

[8] Kim, Young-Gon, Rae-Hong Park, and Seong-Su
Mun. “Face Detection Using Adaboost and Template
Matching of Depth Map based Block Rank Patterns.”
Journal of Broadcast Engineering 17.3 (2012): 437-
446.

[9] Kim, Hoo Hyun, et al. “Rotation Invariant Face
Detection with Boosted Random Ferns.” Proceedings
of the Korean Society of Broadcast Engineers Con-
ference. The Korean Institute of Broadcast and Media
Engineers, 2013.

[10] Lee, Kyong-Ho. “Face Tracking Using Face Feature

and Color Information.” Journal of the Korea Society
of Computer and Information 18.11 (2013): 167-174.

[11] Viola, Paul, and Michael Jones. “Rapid object
detection using a boosted cascade of simple features.”
Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on. vol. 1. IEEE, 2001.

[12] Viola, Paul, and Michael Jones. “Fast and robust
classification using asymmetric adaboost and a
detector cascade.” Advances in neural information
processing systems. 2002.

[13] Jones, Michael J., and James M. Rehg. “Statistical
color models with application to skin detection.”
International Journal of Computer Vision 46.1
(2002): 81-96.

[14] Vezhnevets, Vladimir, Vassili Sazonov, and Alla
Andreeva. “A survey on pixel-based skin color
detection techniques.” Proc. Graphicon. vol. 3. 2003.

[15] Bradski, Gary R. “Computer vision face tracking for
use in a perceptual user interface.” (1998).

[16] Allen, John G., Richard YD Xu, and Jesse S. Jin.
“Object tracking using camshift algorithm and
multiple quantized feature spaces.” Proceedings of
the Pan-Sydney area workshop on Visual information
processing. Australian Computer Society, Inc., 2004.

[17] Wang, Zhaowen, et al. “CamShift guided particle
filter for visual tracking.” Pattern Recognition Letters
30.4 (2009): 407-413.

[18] Zhang, Zhengyou. “A flexible new technique for
camera calibration.” IEEE Transactions on pattern
analysis and machine intelligence 22.11 (2000):
1330-1334.

[19] Tsai, Roger. “A versatile camera calibration technique
for high-accuracy 3D machine vision metrology
using off-the-shelf TV cameras and lenses.” IEEE
Journal on Robotics and Automation 3.4 (1987):
323-344.

[20] Weng, Juyang, Paul Cohen, and Marc Herniou.
“Camera calibration with distortion models and
accuracy evaluation.” IEEE Transactions on pattern
analysis and machine intelligence 14.10 (1992): 965-
980.

[21] Mühlmann, Karsten, et al. “Calculating dense dis-
parity maps from color stereo images, an efficient
implementation.” International Journal of Computer
Vision 47.1-3 (2002): 79-88.

[22] Zhang, Zhengyou. “Microsoft kinect sensor and its
effect.” IEEE multimedia19.2 (2012): 4-10.

[23] Pagliari, Diana, and Livio Pinto. “Calibration of
kinect for xbox one and comparison between the two
generations of microsoft sensors.” Sensors 15.11
(2015): 27569-27589.

[24] Rosten, Edward, and Tom Drummond. “Machine
learning for high-speed corner detection.” Computer
Vision–ECCV 2006 (2006): 430-443.

[25] Calonder, Michael, et al. “Brief: Binary robust

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

2078 │ J Electr Eng Technol.2017; 12(5): 2067-2078

independent elementary features.” Computer Vision–
ECCV 2010 (2010): 778-792.

[26] https://www.flickr.com/photos/unavoidablegrain/688
4354772/in/photostream/ (Image by Greg Borenstein)

[27] Comaniciu, Dorin, and Peter Meer. “Mean shift: A
robust approach toward feature space analysis.”
IEEE Transactions on pattern analysis and machine
intelligence 24.5 (2002): 603-619.

[28] Bhattacharyya, Anil. “On a measure of divergence
between two multinomial populations.” Sankhyā:
the indian journal of statistics (1946): 401-406.

[29] Trzcinski, Tomasz, and Vincent Lepetit. “Efficient
discriminative projections for compact binary
descriptors.” European Conference on Computer
Vision. Springer, Berlin, Heidelberg, 2012.

[30] Danielsson, Per-Erik. “Euclidean distance mapping.”
Computer Graphics and image processing 14.3
(1980): 227-248.

[31] Müller, Meinard. Information retrieval for music and
motion. vol. 2. Heidelberg: Springer, 2007.

[32] Lowe, David G. “Distinctive image features from
scale-invariant keypoints.” International journal of
computer vision 60.2 (2004): 91-110.

[33] Harris, Chris, and Mike Stephens. “A combined
corner and edge detector.” Alvey vision conference.
vol. 15, no. 50. 1988.

[34] Bay, Herbert, et al. “Speeded-up robust features
(SURF).” Computer vision and image understanding
110.3 (2008): 346-359.

[35] Hamming, Richard W. “Error detecting and error
correcting codes.” Bell Labs Technical Journal 29.2
(1950): 147-160.

[36] Fischler, Martin A., and Robert C. Bolles. “Random
sample consensus: a paradigm for model fitting
with applications to image analysis and automated
cartography.” Communications of the ACM 24.6
(1981): 381-395.

[37] http://tracking.cs.princeton.edu/index.html
[38] Song, Shuran, and Jianxiong Xiao. “Tracking

revisited using RGBD camera: Unified benchmark
and baselines.” Proceedings of the IEEE inter-
national conference on computer vision. 2013.

[39] http://darkpgmr.tistory.com/80

Jun-Hwan Lee He received the B.S
degree at department of electrical
engineering, KwangWoon University,
Wolgye-dong, Nowon-gu, Seoul 01897,
Republic of Korea in 2016. He is
currently pursuing the M.S degree at
Kwangwoon University. His research
interests include computer vision, image

processing, signal processing and deep-learning.

Hyun-jo Jung He received the B.S
degree at department of electrical
engineering, KwangWoon University,
Wolgye-dong, Nowon-gu, Seoul 01897,
Republic of Korea in 2015. He
received the M.S. degree at department
of electrical engineering, KwangWoon
university, Wolgye-dong, Nowon-gu,

Seoul 01897, Republic of Korea in 2017. His research
interests include computer vision, image processing, signal
processing and deep-learning.

Jisang Yoo He received the B.S degree
at department of electrical engineering,
Seoul National University, 1, Gwanak-
ro, Gwanak-gu, Seoul 08826, Republic
of Korea in 1985. He received the
M.S. degree at department of electrical
engineering, Seoul National University,
1, Gwanak-ro, Gwanak-gu, Seoul 08826,

Republic of Korea in 1987. He received the Ph.D degree at
department of electrical engineering, Purdue University,
610 Purdue Mall, West Lafayette, IN 47907, the United
States of America in 1993. He is currently a professor with
the department of electronics engineering, KwangWoon
University, Wolgye-dong, Nowon-gu, Seoul 01897, Republic
of Korea. His research interests include computer vision,
image processing, signal processing and deep learning.

