DOI QR코드

DOI QR Code

Residential Humidifying Elements Comprizing Horizontal Corrugated Channels

수평 코류게이트 채널로 구성된 가정용 가습 소자

  • Kim, Nae-Hyun (Dept. of Mechanical Engineering, Incheon Nat'l Univ.)
  • Received : 2017.02.11
  • Accepted : 2017.06.11
  • Published : 2017.09.01

Abstract

In this study, new materials and shapes for a residential humidifying element were investigated. These elements could replace the current Japanese folded-type rayon/PE elements. Samples were taken from three different materials - rayon/PET (50:50), kraft/PET (40:60), kraft/PET/carbon. Results showed that the humidification efficiencies of the new samples were lower than those of the Japanese product. The efficiencies were 59% for the Japanese product (rayon/PET), 62% for kraft/PET and 84% for kraft/PET/carbon. This could be due to lower rayon or kraft content in the present samples than that in the Japanese product. However, pressure drops in the present samples were significantly lower than that in the Japanese product, due to improved channel configuration. The humidification capacity at the same pumping power ($j_m/f^{1/3}$) was 60% to 82% higher for the kraft/PET/carbon sample compared with the Japanese product. Furthermore, the results are compared with theoretical predictions.

본 연구에서는 절곡 방식의 일제 레이온/PE(90:10) 가정용 가습 소자를 대체할 수 있는 새로운 가습 원단과 형상에 대해 검토하였다. 레이온/PET(50:50), 크라프트/PET (40:60), 크라프트/PET/활성탄, 세 종류 원단으로 시료를 만들고 가습 성능 실험을 수행하였다. 가습 효율은 일본 제품을 100%로 볼 때 레이온/PET 소자는 대략 59%, 크라프트/PET 소자는 62%, 크라프트/PET/활성탄 소자는 84%로 나타났다. 이는 소자에 흡습성을 부여하는 레이온 또는 크라프트 섬유의 양이 일본 소자에 비하여 작기 때문이다. 한편 활성탄이 코팅된 경우는 가습 성능이 현저히 향상되었다. 반면 압력 손실은 일본 제품에 비해 개발품에서 현저히 작게 나타났다. 동일 소비 동력에서의 가습 성능을 의미하는 $j_m/f^{1/3}$의 값은 크라프트/PET/활성탄 소자에서 일본 소자보다 60%에서 82% 크게 나타났다. 실험 데이터를 이론 모델의 예측치와 비교하였다.

Keywords

References

  1. Kim, I. H., Kim, K. Y. and Kim, D. K., 2012, "Characteristics of Bio-Aerosol Generation of Household Humidifiers by User Practices," Environ. Health, Vol. 38, pp. 503-509.
  2. Kim, T. W., Kim, M., Kim, G. T., Kim, D. Y., Youn, B., Kim, D. K. and Han, Y. W., 2015, "A Theoretical Study on the Performance of Humidification Element," Proc. Summer Annual Conf., SAREK, pp. 163-166.
  3. Liao, C. M., Singh, S. and Wang, T. S., 1998, "Characterizing the Performance of Alternative Evaporative Cooling Media in Thermal Environmental Control Application," J. Environ. Sci. Health, Vol. 33, pp. 1391-1417. https://doi.org/10.1080/10934529809376795
  4. Al-Sulaiman, F., 2002, "Evaluation of the Performance of Local Fibers in Evaporative Cooling," Energy Conver. Management, Vol. 43, pp. 2267-2273. https://doi.org/10.1016/S0196-8904(01)00121-2
  5. Liao, C. M. and Chiu, K. H., 2002, "Wind Tunnel Modeling the System Performance of Alternative Cooling Pads in Taiwan Region," Build. Environ., Vol. 37, pp. 77-87.
  6. Gunhan, T., Demir, V. and Yagcioglu, A. K., 2007, "Evaluation of the Suitability of Some Local Materials as Cooling Pads," Biosystems Eng., Vol. 96, No. 3, pp. 369-377. https://doi.org/10.1016/j.biosystemseng.2006.12.001
  7. Rawangkul, R., Khedary, J., Hirunlabh, J. and Zeghmati, B., 2008, "Performance Analysis of a New Sustainable Evaporative Cooling Pad Made From Coconut Coir," Int. J. Sustain. Eng., Vol. 1, No. 2, pp. 117-131. https://doi.org/10.1080/19397030802326726
  8. http://www.munters.com
  9. Ahmed, E. M., Abaas, O., Ahmed, M. and Ismail, M. R., 2011, "Performance Evaluation of Three Different Types of Local Evaporative Cooling Pads in Greenhouse in Sudan, Saudi J. Bio. Sic., Vol. 18, pp. 45-51. https://doi.org/10.1016/j.sjbs.2010.09.005
  10. Khond, V. W., 2011, "Experimental Investigation of Desert Cooler Performance Using Four Different Cooling Pad Materials," Am. J. Sci. Ind. Res., ISSN 2153-649X.
  11. Jain, J. K. and Hindoliya, D. A., 2011, "Experimental Performance of New Evaporative Cooling Pad Materials," Sustainable Cities and Society, Vol. 1, pp. 252-256. https://doi.org/10.1016/j.scs.2011.07.005
  12. Barzegar, M., Layeghi, M., Ebrahimi, G., Hamzeh, Y. and Khorasani, M., "Experimental Evaluation of the Performances of Cellulosic Pads Made out of Kraft and NSSC Corrugated Paper as Evaporative Media," Energy Conversion and Management, Vol. 54, pp. 24-29.
  13. Kulkarni, R. K. and Rajput, S. P. S., 2013, "Comparative Performance Analysis of Evaporative Cooling Pads of Alternative Configurations and Materials," Int. J. Adv. Eng. Tech., ISSN 22311963.
  14. Maurya, R. M., Shrivastvaya, N. and Shrivastvaya, V., 2014, "Performance Evaluation of Alternative Cooling Media," Int. J. Sci. Eng. Res., Vol. 5, No. 10, ISSN 2229-5518.
  15. Kim, N. H., 2016, Personal Communication with Kukil Paper Co.
  16. ASHRAE Standard 41.1, 1986, Standard Method for Temperature Measurement, ASHRAE.
  17. ASHRAE Standard 41.2, 1986, Standard Method for Laboratory Air-Flow Measurement, ASHRAE.
  18. KARSE Standard SPS-KARSE B 0050-6335, 2015, Indoor Humidifier, KARSE.
  19. ASHRAE Standard 41.5, 1986, Standard Measurement Guide, Engineering Analysis of Experimental Data, ASHRAE.
  20. Holman, J. P., 2010, Heat Transfer, 10th Ed., McGraw-Hill Pub.
  21. Shah, R. K. and London, A. L., 1978, Laminar Flow Forced Convection in a Duct, Academic Pub.
  22. Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat Transfer, Taylor and Francis Pub.