DOI QR코드

DOI QR Code

OpenCL 기반의 상위 수준 합성 기술을 이용한 고성능 안개 제거 시스템의 소프트웨어-하드웨어 통합 설계

SW-HW Co-design of a High-performance Dehazing System Using OpenCL-based High-level Synthesis Technique

  • Park, Yongmin (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Minsang (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Byung-O (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Tae-Hwan (School of Electronics and Information Engineering, Korea Aerospace University)
  • 투고 : 2017.02.10
  • 심사 : 2017.08.02
  • 발행 : 2017.08.25

초록

본 논문은 안개 제거 처리를 위한 전용의 하드웨어 가속기를 내장하는 고성능의 소프트웨어-하드웨어 통합 안개 제거 시스템의 설계 및 구현을 제시한다. 제시된 안개 제거 시스템에서 다크 채널 프라이어 기반의 안개 제거 처리는 전용의 하드웨어 가속기를 통해 처리되며, 영상의 입출력 및 가속기의 제어는 소프트웨어에 의해서 처리된다. 이를 위해 안개 제거 알고리즘에 내재된 병렬성을 발견하여 OpenCL 커널로 기술하고, 상위 수준 합성 기술을 이용해 하드웨어 가속기를 구현하였다. 기존의 소프트웨어 기반의 안개 제거 시스템과 제안하는 시스템의 성능을 비교한 결과, 동등한 안개 제거 품질을 보이면서도 전체 시스템 수행 시간이 최대 96.3% 단축되었다.

This paper presents a high-performance software-hardware dehazing system based on a dedicated hardware accelerator for the haze removal. In the proposed system, the dedicated hardware accelerator performs the dark-channel-prior-based dehazing process, and the software performs the other control processes. For this purpose, the dehazing process is realized as an OpenCL kernel by finding the inherent parallelism in the algorithm and is synthesized into a hardware by employing a high-level-synthesis technique. The proposed system executes the dehazing process much faster than the previous software-only dehazing system: the performance improvement is up to 96.3% in terms of the execution time.

키워드

참고문헌

  1. S. G. Narasimhan and S. K. Nayar, "Chromatic framework for vision in bad weather," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 598-605, Jun. 2000.
  2. S. K. Nayar and S. G. Narasimhan, "Vision in bad weather," in Proc. IEEE Conf. Computer Vision, vol. 2, pp.820-827, Kerkyra, Greece, Sept., 1999.
  3. J. Kim and H. Shin, Algorithm & SoC Design for Automotive Vision Systems: For Smart Safe Driving Systems. Springer, Jan. 2014.
  4. G. A. Jones, N. Paragios, and C. S. Regazzoni, Video-based surveillance systems: computer vision and distributed processing. Springer, Oct. 2012.
  5. R. T. Tan, "Visibility in bad weather from a single image," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, Anchorage, USA, Jun. 2008.
  6. R. Fattal, "Single image dehazing," ACM Trans. Graphics, vol. 27, no. 3, pp. 72, Aug. 2008. https://doi.org/10.1145/1360612.1360671
  7. K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Analysis & Machine Intelligence, vol. 33, no. 12, pp. 2341-2353, Dec. 2011. https://doi.org/10.1109/TPAMI.2010.168
  8. M. Kim, Y. Park, B. O. Kim, and T. H. Kim, "Optimization of Dehazing Method for Efficient Implementation," Journal of The Institute of Electronics and Information Engineers, vol. 53, no. 10, pp. 58-65, Oct. 2016. https://doi.org/10.5573/ieie.2016.53.10.058
  9. W. T. Kim, H. W. Bae, and T. H. Kim, "Fast and High- Quality Haze Removal Method Based on Transmission Correction," Journal of The Institute of Electronics and Information Engineers, vol. 51, no. 11, pp 165-173, Nov. 2014. https://doi.org/10.5573/ieie.2014.51.11.165
  10. W. T. Kim and T. H. Kim, "High-Speed and High-Quality Haze Removal Method Using Dual Dark Channels," The summer conference of Institute of Electronics and Information Engineers, pp. 655-658, Jun. 2015.
  11. S. Lee, S. Yun, J.-H. Nam, C. S. Won, and S.-W. Jung, "A review on dark channel prior based image dehazing algorithms," EURASIP Journ. Image & Video Processing, vol. 2016, no. 4, pp. 1-23, Jan. 2016. https://doi.org/10.1186/s13640-015-0097-y
  12. P. Garg, S. Gupta, B. Bhushan, and P. C. Vashist, "An in-depth analyses of various defogging techniques," International Journ. Signal Processing, Image Processing & Pattern Recognition, vol. 8, no. 10, pp. 279-296, Oct. 2015. https://doi.org/10.14257/ijsip.2015.8.10.29
  13. D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis: Introduction to Chip and System Design. Springer Science & Business Media, Sep. 2012.
  14. K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, Jun. 2013. https://doi.org/10.1109/TPAMI.2012.213
  15. Altera SDK for OpenCL: Best Practices Guide, Altera, 2015. [Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf.
  16. Y. H. Shiau, H. Y. Hung, P. Y. Chen, and Y. Z. Chuang, "Hardware implementation of a fast and efficient haze removal method," IEEE Trans. Circuits and Systems for Video Technology, vol. 23, no.8, pp. 1369-1374, Aug. 2013. https://doi.org/10.1109/TCSVT.2013.2243650
  17. Z. Liang, H. Liu, B. Zhang, and B. Wang, "Real-time hardware accelerator for single image haze removal using dark channel prior and guided filter," IEICE Electron. Exp., vol. 11, no. 24, pp. 1-12, Dec. 2014.
  18. H. J. Kang, Y. H. Kim, and Y. H. Lee, "FPGA implementation for enhancing image using pixel-based median channel prior," International Journal of Multimedia and Ubiquitous Engineering vol. 10, no. 9, pp. 147-154, Oct. 2015. https://doi.org/10.14257/ijmue.2015.10.9.16
  19. Z. Bin and J. Zhao., "Hardware implementation for real-time haze removal," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1188-1192, Mar. 2017. https://doi.org/10.1109/TVLSI.2016.2622404