DOI QR코드

DOI QR Code

Synthesis and Thermoelectric Properties of the B-Site Substituted SrTiO3 with Vanadium

  • Khan, Tamal Tahsin (Department of Materials Science and Engineering and Research Center for Sustainable Eco-Devices and Materials(ReSEM), Korea National University of Transportation) ;
  • Mahmud, Iqbal (Department of Materials Science and Engineering and Research Center for Sustainable Eco-Devices and Materials(ReSEM), Korea National University of Transportation) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering and Research Center for Sustainable Eco-Devices and Materials(ReSEM), Korea National University of Transportation)
  • Received : 2017.05.26
  • Accepted : 2017.07.24
  • Published : 2017.08.27

Abstract

V-substituted $SrTiO_3$ thermoelectric oxide materials were fabricated by the conventional solid state reaction method. From X-ray diffraction pattern analysis, it can be clearly seen that almost every vanadium atom incorporated into the $SrTiO_3$ provided charge carriers. The electrical conductivity ${\sigma}$, Seebeck coefficient S, and thermal conductivity k were investigated in a high temperature regime above 1000 K. The addition of vanadium significantly reduced the thermal conductivity and enhanced the Seebeck coefficient, as well as the electrical conductivity, thus enhancing the ZT value. A maximum ZT value of 0.084 at 673 K was observed for the sample with 1.0 mole% of vanadium substitution. In this study, the reason for the enhanced thermoelectric properties via vanadium addition was also investigated.

Keywords

References

  1. Y. Lan, B. Poudel, Y. Ma, D. Wang, M. S. Dresselhaus, G. Chen and Z. Ren, Nano Lett., 9, 1419 (2009). https://doi.org/10.1021/nl803235n
  2. N. Wang, H. C. He, Y. S. Ba, C. L. Wan and K. Koumoto, J. Ceram. Soc. Jpn., 118, 1098 (2010). https://doi.org/10.2109/jcersj2.118.1098
  3. X. Tang, W. Xie, H. Li, W. Zhao and Q. Zhang, Appl. Phys. Lett., 90, 012102 (2007). https://doi.org/10.1063/1.2425007
  4. S. R. Brown, S. M. Kauzlarich, F. Gascoin and G. J. Snyder, Chem. Mater., 18, 1873 (2006). https://doi.org/10.1021/cm060261t
  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  6. J. W. Fergus, J. Eur. Ceram. Soc., 32, 525 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.007
  7. J. He, Y. Liu and R. Funahashi, J. Mater. Res., 26, 1762 (2011). https://doi.org/10.1557/jmr.2011.108
  8. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga and R. Funahashi, Annu. Rev. Mater. Res., 40, 363 (2010). https://doi.org/10.1146/annurev-matsci-070909-104521
  9. S. Ohta, T. Nomura, H. Ohta and K. Koumoto, J. Appl. Phys., 97, 034106 (2005). https://doi.org/10.1063/1.1847723
  10. S. Lee, G. Yang, R. H. T. Wilke, S. Trolier-McKinstry and C. A. Randall, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 134110 (2009). https://doi.org/10.1103/PhysRevB.79.134110
  11. I. Terasaki, Y. Sasago and K. Uchinokura, Phys. Rev. B: Condens. Matter Mater. Phys., 56, R12685 (1997). https://doi.org/10.1103/PhysRevB.56.R12685
  12. K. van Benthem, C. Elsasser and R. H. French, J. Appl. Phys., 90, 6156 (2001). https://doi.org/10.1063/1.1415766
  13. A. M. Dehkordi, S. Bhattacharya, J. He, H. N. Alshareef and T. M. Tritt, Appl. Phys. Lett., 104, 193902 (2014). https://doi.org/10.1063/1.4875925
  14. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono and K. Koumoto, Appl. Phys. Lett., 87, 092108 (2005). https://doi.org/10.1063/1.2035889
  15. T. Okuda, K. Nakanishi, S. Miyasaka and Y. Tokura, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 113104 (2001). https://doi.org/10.1103/PhysRevB.63.113104
  16. H. Muta, K. Kurosaki and S. Yamanaka, J. Alloys Comp., 350, 292 (2003). https://doi.org/10.1016/S0925-8388(02)00972-6
  17. P. L. Bach, V. Leboran, V. Pardo, A. S. Botana, D. Baldomir and F. Rivadulla, Nature Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090
  18. H. Muta, K. Kurosaki and S. Yamanaka, J. Alloys Comp., 368, 22 (2004). https://doi.org/10.1016/j.jallcom.2003.07.016
  19. A. Verma, A. P. Kajdos, T. A. Cain, S. Stemmer and D. Jena, Phys. Rev. Lett., 112, 216601 (2014). https://doi.org/10.1103/PhysRevLett.112.216601
  20. K. Park, J. S. Son, S. I. Woo, K. Shin, M.-W. Oh, S.-D. Park and T. Hyeon, J. Mater. Chem. A, 2, 4217 (2014). https://doi.org/10.1039/c3ta14699e
  21. I. Mahmud, M.-S. Yoon, I.-H. Kim, M.-K. Choi and S.-C. Ur, J. Korean Phys. Soc., 68, 35 (2016). https://doi.org/10.3938/jkps.68.35
  22. P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li and H.-M. Zhu, J. Electron. Mater., 40, 926 (2011). https://doi.org/10.1007/s11664-010-1452-5
  23. B. R. Sudireddy and K. Agersted, Fuel Cells, 14, 961 (2014). https://doi.org/10.1002/fuce.201400017
  24. A. Kikuchi, N. Okinaka and T. Akiyama, Scr. Mater., 63, 407 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.041