DOI QR코드

DOI QR Code

체심정방정 구조 Fe-Co계 합금상의 합성 및 그 자기적 특성

Synthesis and Magnetic Properties of Body-centered-tetragonal Fe-Co Alloy

  • 투고 : 2017.07.05
  • 심사 : 2017.08.08
  • 발행 : 2017.08.31

초록

합금 제조에 흔히 이용되는 기존의 용해, 응고, 열처리 등의 가공 공정으로 덩치 형태의 체심정방정 구조의 Fe-Co계 합금상을 합성하고, 그 결정학적, 자기적 특성을 조사하였다. $(Fe_{100-x}Co_x)_{1-y}C_y$ 합금에서 체심정방정 구조의 단일상(martensite)이 얻어지는 Co 및 C의 함량은 크게 제한되어, Co의 함량 x = 2.5, C의 함량 y = 0.062로 제한된 조성에서 체심정방정 구조의 단일상 합금이 얻어졌다. 합성된 조성 $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$인 체심정방정 구조의 단일상 합금의 정방성(tetragonality, c/a)은 1.05였으며, 이 합금의 결정자기 이방성 상수, $K_1$ 값은 순수 철(${\alpha}-Fe$)의 $K_1$ 값에 비하면 3.1배 정도 높은 $1.5{\times}10^5J/m^3$였다.

Bulk-type body-centered-tetragonal Fe-Co alloy was synthesised by utilising a conventional alloy preparation technologies, such as melting, solidification, and homogenising treatments, and its magnetic properties were investigated. In the $(Fe_{100-x}Co_x)_{1-y}C_y$ alloy, the composition range, from which single phase body-centered-tetragonal alloy (martensite phase) was obtained, was severely limited: Co content x = 2.5, and C content y = 0.062. Tetragonality(c/a) of the synthesised body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was 1.05. Magnetocrystalline anisotropy constant ($K_1$) of the body-centered-tetragonal $(Fe_{97.5}Co_{2.5})_{0.938}C_{0.062}$ alloy was measured to be $9.8{\times}10^5J/m^3$), which was 3.1 time as high as the pure iron (${\alpha}-Fe$).

키워드

참고문헌

  1. Y. Kota and A. Sakuma, Appl. Phys. Express. 5, 113002 (2012). https://doi.org/10.1143/APEX.5.113002
  2. T. Burkert, L. Nordstrom, O. Erikssonm, and O. Heinonen, Phys. Rev. Lett. 93, 027203 (2004). https://doi.org/10.1103/PhysRevLett.93.027203
  3. C. Neise, S. Schonecker, M. Richterm, K. Koepernik, and H. Eschrig, Phys. Status Solidi B 248, 2398 (2011). https://doi.org/10.1002/pssb.201147100
  4. G. Andersson, T. Burkert, P. Warnicke, M. Bjorck, B. Sanyal, C. Chacon, C. Zlotea, L. Nordstorm, P. Nordblad, and O. Erikccon, Phys. Rev. Lett. 96, 037205 (2006). https://doi.org/10.1103/PhysRevLett.96.037205
  5. A. Winkelmann, M. Przybylski, F. Luo, Y. Shi, and J. Barthel, Phys. Rev. Lett. 96, 257205 (2006). https://doi.org/10.1103/PhysRevLett.96.257205
  6. P. Warnicke, G. Andersson, M. Bjorck, J. Ferree, and P. Nordblad, J. Phys. Condens. Matter 19, 226218 (2007). https://doi.org/10.1088/0953-8984/19/22/226218
  7. F. Luo, X. L. Fu, A. Winkelmann, and M. Przbylski, Appl. Phys. Lett. 91, 262512 (2007). https://doi.org/10.1063/1.2821370
  8. F. Yildiz, M. Przybylski, X. D. Ma, and J. Kirschner, Phys. Rev. B 80, 064415 (2009). https://doi.org/10.1103/PhysRevB.80.064415
  9. S. Chikazumi, Physics of Ferromagnetism, Second Edition, Oxford (1997) pp. 503-508.
  10. T. Nishizawa and K. Ishida, Binary alloy phase diagrams, Second Edition, ASM International (1990) p. 1186.
  11. S. S. M. Tavares, D. Fruchart, S. Miraglia, and D. Laborie, J. Alloys. Compd. 312, 307 (2000). https://doi.org/10.1016/S0925-8388(00)01149-X
  12. U. Sari, E. Guler, T. Kirindi, and M. Dikici, J. Phys. Chem. Solids 70, 1226 (2009). https://doi.org/10.1016/j.jpcs.2009.06.013
  13. M. Umemoto, E. Yoshitake, and I. Tamura, J. Mater. Sci. 18, 2893 (1983). https://doi.org/10.1007/BF00700770
  14. S. Morito, H. Tanka, R. Konishi, and T. Furuhara, Acta Mater. 51, 1789 (2003). https://doi.org/10.1016/S1359-6454(02)00577-3
  15. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, John Wiley & Sons (2005).