DOI QR코드

DOI QR Code

Synthesis and characterization of thermoelectric Zn1-xAgxSb compounds

열전재료 Zn1-xAgxSb의 제조와 특성

  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University) ;
  • Oh, Han-Jun (Department of Materials Science and Engineering, Hanseo University) ;
  • Jang, Kyung-Wook (Department of Materials Science and Engineering, Hanseo University)
  • 김인기 (한서대학교 신소재공학과) ;
  • 오한준 (한서대학교 신소재공학과) ;
  • 장경욱 (한서대학교 신소재공학과)
  • Received : 2017.07.17
  • Accepted : 2017.08.04
  • Published : 2017.08.31

Abstract

Thermoelectric compounds of $Zn_{1-x}Ag_xSb$ with x = 0~0.2 were prepared by vacuum melting and quenching process and their crystal phases and thermoelectric properties were examined. It was found that free metallic Sb phases were formed in the compound with x = 0.05, leading to increasing the electrical conductivities. The power factors were significantly affected by the electrical conductivity rather than Seebeck coefficient. When x > 0.05, the peak intensities of $Ag_3Sb$ phases in XRD patterns were increased and those of free Sb phases were weakened. These changes of second phases resulted in decreasing the electrical conductivities and the power factors and became more obvious in the compound with x = 0.2.

$Zn_{1-x}Ag_xSb$에서 Ag의 함량이 0~0.2인 열전화합물을 진공용해법으로 제조하여 결정상과 열전물성을 조사하였다. x = 0.05에서는 금속성 free Sb 상이 많이 생성되었고 이로 인해 전기전도도와 power factor가 크게 증가하였고 power factor는 제벡계수보다는 전기전도도에 의해 더 큰 영향을 받았다. x = 0.1 이상에서는 $Ag_3Sb$ 상이 현저하게 늘어났고 free Sb 피크는 약화되었다. 이에 따라 전기전도도와 power factor는 감소하기 시작하였고 이러한 경향은 더 많은 Ag가 첨가되면서 더욱 뚜렷하게 나타났다.

Keywords

References

  1. M.I. Fedorov, L.V. Prokof'eva, D.A. Pshenay-Severin, A.A. Shabaldin and P.P. Konstantinov, "New interest in intermetallic compound ZnSb", J. Electronic Mater. 43 (2014) 2314. https://doi.org/10.1007/s11664-014-3053-1
  2. E. Justi, W. Rasch and G. Schneider, "Untersuchungen an zonengeschmolzenen ZnSb-einkristallen", Advanced Energy Conversion 4 (1964) 27. https://doi.org/10.1016/0365-1789(64)90034-7
  3. P.H.M. Bottger, K. Valset, S. Deledda and T.G. Finstad, "Influence of ball-milling, nanostructuring, and Ag inclusions on thermoelectric properties of ZnSb", J. Electronic Mater. 39 (2010) 1583. https://doi.org/10.1007/s11664-010-1269-2
  4. C. Okamura, T. Ueda and K. Hasezaki, "Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process", Mater. Trans. 51 (2010) 860. https://doi.org/10.2320/matertrans.MH200902
  5. T. Ueda, C. Okamura, Y. Noda and K. Hasezaki, "Effect of tellurium doping on the thermoelectric properties of ZnSb", Mater. Trans. 50 (2009) 2473 https://doi.org/10.2320/matertrans.M2009201
  6. D.B. Xiong, N.L. Okamoto and H. Inui, "Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with $Ag_3Sb$", Scripta Materialia 69 (2013) 397. https://doi.org/10.1016/j.scriptamat.2013.05.029
  7. M.I. Fedorov, L.V. Prokofieva, Y.I. Ravich, P.P. Konstantinov, D.A. Pshenay-Severin and A.A. Shabaldin, "Thermoelectric efficiency of intermetallic compound ZnSb", Semiconductors 48 (2014) 432. https://doi.org/10.1134/S1063782614040095
  8. J.L. Cui, H. Fu, D.Y. Chen, L.D. Mao, X.L. Liu and W. Yang, "Thermoelectric properties of Cu-added Zn-Sb based alloys with multi-phase equilibrium", Mater. Charact. 60 (2009) 824. https://doi.org/10.1016/j.matchar.2009.01.013
  9. K. Valset, P.H.M. Bottger, J. Tafto and T.G. Finstad, "Thermoelectric properties of Cu doped ZnSb containing $Zn_3P_2$ particles", J. Appl. Phys. 111 (2012) 023703. https://doi.org/10.1063/1.3675505
  10. E. Clementi and D.L. Raimondi, "Atomic screening constants from SCF functions", J. Chem. Phys. 38 (1963) 2686. https://doi.org/10.1063/1.1733573
  11. B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, "Covalent radii revisited", Dalton Trans. (2008) 2832.
  12. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, "Introduction to Ceramics", 2nd ed., John Wiley & Sons, New York (1976) 134.