DOI QR코드

DOI QR Code

Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars

품종별 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성

  • Lee, Jungu (Department of Food and Nutrition, Kyung Hee University) ;
  • Choi, Moonkyeung (Department of Food and Nutrition, Kyung Hee University) ;
  • Kang, Jinsoo (Department of Food Science and Nutrition, Dankook University) ;
  • Chung, Yehji (Department of Food Science and Nutrition, Dankook University) ;
  • Jin, Yong-Ik (Highland Agriculture Research Institute, RDA) ;
  • Kim, Misook (Department of Food Science and Nutrition, Dankook University) ;
  • Lee, Youngseung (Department of Food Science and Nutrition, Dankook University) ;
  • Chang, Yoon Hyuk (Department of Food and Nutrition, Kyung Hee University)
  • 이준구 (경희대학교 식품영양학과) ;
  • 최문경 (경희대학교 식품영양학과) ;
  • 강진수 (단국대학교 식품영양학과) ;
  • 정예지 (단국대학교 식품영양학과) ;
  • 진용익 (농촌진흥청 고령지농업연구소) ;
  • 김미숙 (단국대학교 식품영양학과) ;
  • 이영승 (단국대학교 식품영양학과) ;
  • 장윤혁 (경희대학교 식품영양학과)
  • Received : 2017.02.23
  • Accepted : 2017.05.01
  • Published : 2017.08.31

Abstract

The objective of this research was to elucidate the physicochemical, structural, pasting and rheological properties of potato starch isolated from a foreign potato cultivar ('Atlantic') and new domestic potato cultivars ('Goun', 'Sebong', and 'Jinsun'). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and one-dimensional nuclear magnetic resonance (1D NMR) showed that the structural properties of potato starch did not vary significantly with cultivars. RVA analysis demonstrated that the 'Atlantic' starch had the highest breakdown viscosity among all potato starches. In steady shear rheological analysis, all potato starch dispersions showed shear-thinning behaviors (n =0.63-0.72) at $25^{\circ}C$. The highest apparent viscosity (${\eta}_{a,5}$), consistency index (K), and yield stress (${\sigma}_{oc}$) were observed in the 'Goun' starch dispersion. In dynamic shear rheological analysis, storage modulus (G') and loss modulus (G") values of new domestic potato starch dispersions were higher than those of the 'Atlantic' starch dispersion.

본 연구는 '대서' 품종과 국산 신품종 감자('고운', '새봉', '진선')로 추출한 감자전분의 이화학적, 구조적, 페이스팅 및 유변학적 특성에 대하여 평가하였다. 인 함량은 전분 포도당 잔기의 C-6에서의 인산화 정도에 따라 '대서' 전분이 유의적으로 높았고 '고운' 전분이 유의적으로 낮게 나타났다. 인 함량은 전분의 peak viscosity에 영향을 미쳐 인 함량이 높은 '대서' 전분이 peak viscosity 또한 가장 높게 나타났다. Breakdown viscosity는 국산 신품종 감자전분이 '대서' 전분에 비해 유의적으로 낮게 나타남으로써 '대서' 전분보다 열과 전단에 의한 구조의 파괴가 적어 식품 가공에 이용하기 적합함을 확인하였다. 주사전자현미경, X-선 회절도, FT-IR 스펙트럼, 1D NMR 분석 결과 '대서' 전분과 국산 품종 감자전분의 구조적인 차이는 뚜렷하게 나타나지 않았다. 정상유동 특성에서는 모든 전분에서 shear-thinning 현상이 나타났으며 그중에서도 특히 '고운' 전분이 가장 강한 shear-thinning 현상과 가장 높은 ${\eta}_{a,5}$, K, ${\sigma}_{oc}$값을 나타냈다. 동적 점탄특성에서는 본 연구에 사용한 모든 국산 신품종 감자전분의 G'과 G"이 '대서' 전분보다 높아 점탄성이 우수함을 입증하였다. 따라서 본 연구에서 페이스팅 특성과 동적 점탄특성 결과를 통해 국산 신품종의 감자전분의 열과 전단에 대한 저항성이 '대서' 전분보다 높아 가공 시 구조의 파괴가 적으며 점탄성 또한 '대서' 전분보다 높아 가공시장에서 더 유용하게 쓰일 수 있음을 확인하였다. 즉 본 연구에 사용된 국산 신품종 감자 품종이 가공용으로서 '대서' 품종을 대체해 국내 감자 가공시장의 점유율을 높일 수 있을 것이라고 판단된다.

Keywords

References

  1. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu HG. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J. Food Sci. Technol. 40: 382-388 (2008)
  2. Chung HJ, Li XQ, Kalinga D, Lim ST, Yada R, Liu Q. Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Res. Int. 57: 89-94 (2014) https://doi.org/10.1016/j.foodres.2014.01.034
  3. Simkova D, Lachman J, Hamouz K, Vokal B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 14: 3872-3880 (2013)
  4. Chung IM, Kim JK, Jin YI, Oh YT, Prabakaran M, Youn KJ, Kim SH. Discriminative study of a potato (Solanum tuberosum L.) cultivation region by measuring the stable isotope ratios of bio-elements. Food Chem. 212: 48-57 (2016) https://doi.org/10.1016/j.foodchem.2016.05.161
  5. Lee JS, Choi MK, Moon EY, Kang MH. Physico-chemical properties of starches from Atlantic and Bora Valley potato cultivars with different colors. J. Korean Soc. Food Sci. Nutr. 39: 542-547 (2010) https://doi.org/10.3746/jkfn.2010.39.4.542
  6. Kim EJ, Kim HS. Influence of pectinase treatment of the physicochemical properties of potato flours. Food Chem. 167: 425-432 (2015) https://doi.org/10.1016/j.foodchem.2014.07.014
  7. Alavani K, Qi X, Tester RF, Snape CE. Physico-chemical properties of potato starches. Food Chem. 125: 958-965 (2011) https://doi.org/10.1016/j.foodchem.2010.09.088
  8. Kaul A, Singh N, Ezekiel R, Sodhi NS. Properties of starches separated from potatoes stored under different conditions. Food Chem. 114: 1396-1404 (2009) https://doi.org/10.1016/j.foodchem.2008.11.025
  9. Nada T, Tsuda S, Mori M, Takigawa S, Chie ME, Saito K, Mangalika WHA, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86: 119-125 (2004) https://doi.org/10.1016/j.foodchem.2003.09.035
  10. Kwon OY, Kim MY, Son CW, Liu XW, Kim HC, Yoon WK, Kim HM, Kim MR. Protein and amino acid composition of domestic potato cultivars. J. Korean Soc. Food Sci. Nutr. 37: 117-123 (2008) https://doi.org/10.3746/jkfn.2008.37.1.117
  11. Lee YJ, Jeong JC, Yoon YH, Hong SY, Kim SJ, Jin YI, Nam JH, Kwon OK. Evaluation of qulaity characteristics and definition of utilization category in Korean potato (Solanum tuberosum L.) cultivars. Korean J. Crop Sci. 57: 271-279 (2012) https://doi.org/10.7740/kjcs.2012.57.3.271
  12. Djabali D, Belhanache N, Nadjemi B, Dulong V, Picton L. Relationship between potato starch isolation methods and kinetic parameters of hydrolysis by free and immobilised ${\alpha}$-amylase on alginate (from laminaria digitata algae). J. Food Comp. Anal. 22: 563-570 (2009) https://doi.org/10.1016/j.jfca.2008.11.001
  13. Huang T, Zhou D, Jin Z, Xu X, Chen H. Effect of debranching and heat moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chem. 187: 218-224 (2015) https://doi.org/10.1016/j.foodchem.2015.04.050
  14. AACC. Approved Method of the AACC. 10th ed. Method 44-15A, 46-12, 30-10, 08-01, and 76-13. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  15. Williams PC, Kuzine FD, Hylnka I. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 47: 411-419 (1970)
  16. Fajardo D, Jayanty SS, Jansky SH. Rapid high throughput amylose determination in freeze dried potato tuber samples. J. Vis. Exp. 80: 50407 (2013)
  17. Kahraman K, Koksel H, Ng PKW. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chem. 174: 173-179 (2015) https://doi.org/10.1016/j.foodchem.2014.11.032
  18. Lu ZH, Donner E, Yada RY, Liu Q. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel. Food Chem. 133: 1214-1221 (2012) https://doi.org/10.1016/j.foodchem.2011.07.029
  19. Muhrbeck P, Tellier C. Determination of the posphorylation of starch from native potato varieties by $^{31}P$ NMR. Starch/Starke 43: 25-27 (1991) https://doi.org/10.1002/star.19910430109
  20. Han SK, Song YS, Lee HU, Ahn SH, Yang JW, Lee JS, Chung MN, Suh SJ, Park KH. Difference of starch characteristics of sweetpotato (Ipomoea batatas (L.) Lam) by cultivated regions. Korean J. Food Sci. Technol. 45: 682-692 (2013) https://doi.org/10.9721/KJFST.2013.45.6.682
  21. French D. Fine structure of starch and its relationship to the organization of starch granules. J. Jpn. Soc. Starch Sci. 19: 8-25 (1972) https://doi.org/10.5458/jag1972.19.8
  22. Hong J, Zeng XA, Buckow R, Han Z, Wang MS. Nanostructure, morphology and functionality of cassava starch after pulsed electric fields assisted acetylation. Food Hydrocolloid. 54: 139-150 (2016) https://doi.org/10.1016/j.foodhyd.2015.09.025
  23. Hui R, Qi-he H, Ming-liang F, Qiong Xu, Guo-qing H. Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chem. 114: 81-86 (2009) https://doi.org/10.1016/j.foodchem.2008.09.019
  24. Nilsson GS, Bergquist KE, Nilsson U, Gorton L. Determination of the degree of branching in normal and amylopectin type potato starch with $^1H$-NMR spectroscopy improved resolution and twodimensional spectroscopy. Starch/Starke 48: 352-357 (1996) https://doi.org/10.1002/star.19960481003
  25. Mclntyre DD, Ho C, Vogel HJ. One-dimensional Nuclear Magnetic Resonance studies of starch and starch products. Starch/Starke 42: 260-267 (1990) https://doi.org/10.1002/star.19900420705
  26. Gong Q, Wang LQ, Tu K. In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization. Carbohyd. Polym. 64: 501-509 (2006) https://doi.org/10.1016/j.carbpol.2005.09.005
  27. Noda T, Tsuda S, Mori M, Takigawa S, Chie ME, Kim SJ, Hashimoto N, Yamauchi H. Determination of the phosphorus content in potato starch using an energy-dispersive X-ray fluorescence method. Food Chem. 95: 632-637 (2006) https://doi.org/10.1016/j.foodchem.2005.02.002
  28. Lu ZH, Yada RY, Liu Q, Bizimungu B, Murphy A, Koeyer DD, Li XQ, Pinhero RG. Correlation of physicochemical and nutritional properties of dry matter and starch in poatoes grown in different locations. Food Chem. 126: 1246-1253 (2011) https://doi.org/10.1016/j.foodchem.2010.12.037
  29. Kesarwani A, Chiang PY, Chen SS. Rapid Visco Analyzer measurements of japonica rice cultivars to study interrelationship between pasting properties and farming system. Int. J. Agro. Article ID 3595326 (2016)
  30. Kim YS, Park JY, Lee JH. Quality characteristics of bread dough added with immature chalssalbori flour. Korean J. Food Cook. Sci. 30: 385-393 (2014) https://doi.org/10.9724/kfcs.2014.30.4.385
  31. Burrell GL, Dunlop NF, Separovic F. Non-Newtonian viscous shear thinning in ionic liquids. Soft Matter 6: 2080-2086 (2010) https://doi.org/10.1039/b916049n
  32. Yoo D, Kim C, Yoo B. Steady and dynamic shear rheology of rice starch-galactomannan mixtures. Starch/Starke 57: 310-318 (2005) https://doi.org/10.1002/star.200400390