DOI QR코드

DOI QR Code

Antibacterial activity of ethanol extracts from marine micro-algae

해양미세조류 에탄올 추출물의 항균활성에 관한 연구

  • Kim, Yun-Jung (Food Research center, Hanwha Hotel and Resort) ;
  • Ha, Sang-Chul (Department of Hotel Culinary Arts, Daegu Future College) ;
  • Kim, Dae Uk (Research Planning and Management Division, Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Shin, Il-Shik (Department of Marine Food Science and Technology, Gangneung-Wonju National University)
  • 김윤정 (한화호텔앤드리조트 식품연구센터) ;
  • 하상철 (대구미래대학교 호텔외식조리과) ;
  • 김대욱 (식품의약품안전처 연구기획조정과) ;
  • 신일식 (강릉원주대학교 해양식품공학과)
  • Received : 2017.04.17
  • Accepted : 2017.05.22
  • Published : 2017.08.31

Abstract

The antibacterial activity of ethanol (99.9%) extracts from marine micro-algae, namely, Mixed A (Pavlova sp., Thalassiosira weissflogii, Tetraselmis suecica and Isochrysis galbana were mixed with 1:1:1:1 ratio), Chlorella vulgaris, Nannochloropsis oculata and Chaetoceros calcitrans were estimated against food-borne bacteria, namely, Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and Bacillus cereus. The extracts from these marine micro-algae showed potent antibacterial activity against all tested bacteria by the paper disk method. The extracts from C. vulgaris showed the strongest antibacterial activity against E. coli with minimum inhibitory concentration (MIC) of 0.62 mg/mL, and minimum bactericidal concentration (MBC) of 2.50 mg/mL. The extract from C. vulgaris contained 2 active compounds, 38.8% linoelaidic acid and 30.0% phytol. These results indicated that the ethanol extract from C. vulgaris may be a putative natural antibacterial agent against food-borne bacteria.

Mixed A, Chlorella vulgaris, Nannochloropsis oculata, Chaetoceros calcitrans 등 4종류의 미세조류로부터 99.9% 에탄올로 추출한 성분의 항균활성을 검증하기 위해 그람음성세균 2종(E. coli, S. Typhimurium)과 그람양성세균 2종(S. aureus, B. cereus)에 대하여 paper disk diffusion assay, MIC, MBC를 측정하였다. 4종류의 미세조류 추출물은 공시균주에 대하여 0.62-1.66 mg/mL의 MIC를 나타내었으며, C. vulgaris 추출물이 4종의 공시균주에 대한 MIC가 0.62 mg/mL로 가장 강한 항균활성을 나타내었으며, MBC 또한 C. vulgaris 에탄올 추출물이 E. coli에 대해 2.50 mg/mL, S. aureus, B. cereus와 S. Typhimurium에 대해서는 4.16-5.00 mg/mL로 가장 강한 항균활성을 나타내었다. 항균활성이 가장 강한 C. vulgaris 에탄올 추출물의 성분을 분석한 결과, 함량이 가장 많은 성분은 9,12-octadecadienoic acid (linoelaidic acid, peak 5, 7)로 38.8%이었으며, 그 다음이 2-Hexadecen-1-o1, 3,7,11,15-tetramethyl (phytol, peak 2,6)로 30.0%이었다. Octadecadienoic acid는 일명 linoelaidic acid로 탄소수 18개의 고도불포화지방산이며, 두 번째로 함량이 많은 Phytol은 클로로필을 구성하는 불포화 제1급 알코올의 일종으로서(엽록소의 구성 성분) 병원성 대장균 및 황색포도상구균에 항균활성을 나타낸다는 보고로 볼 때, 이 2가지 성분이 항균활성의 주성분인 것으로 사료된다.

Keywords

References

  1. Davidson PM, Post LS, Branen AL, Mccurdy AR. Naturally occurring and miscellaneous food antimicrobials. pp. 371419. In: Antimicrobials in Food. Branen AL, Davison PM (eds). Marcel Dekker, New York, NY, USA (1983)
  2. Lewis RJ. Food additives. pp. 3-27. In: Food additives Handbook. Dean RW (ed). Nostrand Reinhold, New York, NY, USA (1989)
  3. Cherry JP. Improving the safety of fresh produce whit antimicrobials. Food Technol. 53: 54-59 (1999)
  4. Cho SH, Lee SY, Kim JW, Ko GH, Seo IW. Development and application of natural antimicrobial agent isolated from grapefruit seed extract-Antimicrobial activities of grapefruit seed extract. J. Food Hyg. Saf. 10: 33-39 (1995)
  5. Lee SH, Lim YS. Antimicrobial effects of Schizandra chinensis extract on pathogenic microorganism. J. Korean Soc. Food Sci. Nutr. 27: 239-243 (1998)
  6. Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barro JG, Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flav. Frag. J. 13: 235-244 (1998) https://doi.org/10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T
  7. Kong YJ, Oh DH. Effect of ethanol extract of Quercus mongolica leaf as natural food preservative. J. Korean Soc. Food Sci. Nutr. 30: 243-963 (2001)
  8. Jung JH, Cho SH. Effect of steeping treatment in the natural antimicrobial agent solution on the quality control of processed tofu. Korean J. Food Preserv. 10: 41-46 (2003)
  9. Murakami M, Makabe K, Okada S, Yamaguch K, Konosu S. Screening of biologically active compounds in microalgae. Nippon Suisan Gakkaishi. 54: 1035-1042 (1988) https://doi.org/10.2331/suisan.54.1035
  10. Aaronson S, Dhawale SW, Patni J, DeAngelis B, Frank O, Baker H. The cell content and secretion of water soluble vitamins in several freshwater algae. Arch. Microbiol. 112: 57-59 (1977) https://doi.org/10.1007/BF00446654
  11. Percival EP, Foyle RAJ. The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohyd. Res. 72: 165-176 (1979) https://doi.org/10.1016/S0008-6215(00)83932-4
  12. Ben-Amotz A, Avron, M. Glycerol, ${\beta}$-carotene and dry algal meal production in commercial cultivation of Dunaliella. pp. 603-610. In: Algae Biomass. Shelef G, Soeder CJ (eds). Elsevier, Amsterdam, Netherlands (1980)
  13. Antia NJ, Desai ID, Romily MJ. The tocopherol, vitamin K, and related isoprenoid quinone composition of unicellular red algae. J. Phycol. 6: 305-312 (1970)
  14. Kenyon CN, Rippka R, Stanier RY. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Microbiol. 83: 216-236 (1972)
  15. Ben-Amotz A, Katz A, Avron M. Accumulation of beta-carotene in halotolerant algae: purification and characterization of beta-carotene rich globlues from Dunaliella bardawil (Chlorophycea). J. Phycol. 18: 529-537 (1982) https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  16. Moor RE. Constituents of blue-green algae. pp. 1-49. In: Marine Natural Products. Scheuer PJ (ed). Academic Press, New York, NY, USA (1981)
  17. Hoppe HA. Marine algae and their products and constituents in pharmacy. pp. 25-119. In: Marine Algae in Pharmaceutical Science. Hoppe HA, Levring T, Tanaka Y (eds). Walter de Gruyter, Berlin, Germany (1979)
  18. Nagai H, Murata M, Torigoe K, Satake M, Yasumoto T. Gambieric acids: New potent antifungal substances with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus. J. Org. Chem. 57: 54485453 (1992)
  19. Hasegawa T, Kimura Y, Hiromatsu K, Kobayashi N, Yamada A, Makino M, Sano T, Nomoto K, Yoshiko Y. Effect of hot water extract of Chlorella vulgaris on cytokine expresstion patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes. Immunopharmacology 35: 272-282 (1997)
  20. Richmond A. Microalgal biotechnology at the turn of the century. J. Appl. Phycol. 12: 441-451 (2005)
  21. Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hudstedt, and Detonula converfacea (Cleve) Gran. Can. J. Microbiol. 8, 229?239 (1962) https://doi.org/10.1139/m62-029
  22. Bauer AW, Kibby MM, Sherria JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496 (1966) https://doi.org/10.1093/ajcp/45.4_ts.493
  23. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25). Clinical Laboratory Standards Institute, Wayne, PA, USA (2015)
  24. Bamba H, Kondo Y, Wong RM, Sekine S, Matsuzaki F. Evaluation of assay method of the susceptibility of antimicrobial agents using a 96-well flat-bottom microlpate and a microplate reader. Am. J. Gastroenterol. 92: 659-662 (1997)
  25. Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, Garcia-Blairsy Reina G, Senoran FJ, Ibanez E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extraction from Chlorella vulgaris. LWTFood Sci. Tech. 46: 245-253 (2012)
  26. Plaza M, Santoyo S, Jaime L, Garcia-Blairsy Reina G, Herrero M, Senoran FJ, Ibanez E. Screening for bioactive compounds from algae. J. Pharmaceut. Biomed. 51: 450-455 (2010) https://doi.org/10.1016/j.jpba.2009.03.016
  27. Santoyo S, Rodriguez-Meizoso I, Cifuentes A, Jaime L, Garcia-Blairsy Reina G, Senoran FJ, Ibanez E. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT-Food Sci. Tech. 42: 1213-1218 (2009) https://doi.org/10.1016/j.lwt.2009.01.012
  28. Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J. Evolution of pigment composition in Chlorella vulgaris. Bioresource Technol. 57: 157-163 (1996) https://doi.org/10.1016/0960-8524(96)00058-2
  29. Joo DS, Lee EH. Searching of antimicrobial active compounds from microalgae. Kor. J. Life Sci. 8: 173-180 (1998)
  30. Eguchi K, Nagase H, Qzawa M, Endoh Y, Goto K, Hirata K, Miyamoto K, Yoshimura H. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57: 1733-1738 (2004) https://doi.org/10.1016/j.chemosphere.2004.07.017
  31. Dantas DC, Kaneno R, Queiroz ML. The effects of Chlorella vulgaris in the protection of mice infected with Listeria monocytogenes. Role of natural killer cells. Immunopharm. Immunot. 21: 609-619 (1999) https://doi.org/10.3109/08923979909007129
  32. Pratt R, Daniels TC, Eiler JB, Gunnison JB, Kumler WD. Chlorellin, an antibacterial substance from Chlorella. Science 99: 351-352 (1944) https://doi.org/10.1126/science.99.2574.351
  33. Ghasemi Y, Yazdi MT, Shafiee A, Amini M, Shokravi S, Zarrini G. Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharm. Biol. 42: 318-322 (2004) https://doi.org/10.1080/13880200490511918
  34. Desbois AP, Mearns-Spragg A, Smith VJ. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11: 45-52 (2009) https://doi.org/10.1007/s10126-008-9118-5
  35. Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 8: 1213-1262 (2010) https://doi.org/10.3390/md8041213
  36. Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 8: 1213-1262 (2010) https://doi.org/10.3390/md8041213
  37. Santoyo S, Rodrguez-Meizoso I, Cifuentes A, Jaime L, Garca-Blairsy Reina G, Seorans FJ, Ibanez E. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWTFood Sci. Tech. 42: 1213-1218 (2009)
  38. Amaro HM, Guedes C, Malcata FX. Antimicrobial activities of microalgae: an invited review. pp 1272-1280. In: Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Mndez-Vilas A (ed). Formatex Research Center, Badajoz, Spain (2011)
  39. Couladis M, Chinou IB, Tzakou O, Loukis A. Composition and antimicrobial activity of the essential oil of Ballota pseudodictamnus L. Bentham. Phytother. Res. 16: 723-726 (2002) https://doi.org/10.1002/ptr.1043