DOI QR코드

DOI QR Code

Studies on the physicochemical and biochemical characteristics in sesame seed juice under different roasting conditions

참깨의 볶음 조건이 참깨 착즙액의 이화학적 및 생화학적 특성에 미치는 영향

  • 박혜정 ((주)엔젤 식품연구소) ;
  • 김지윤 ((주)엔젤 식품연구소) ;
  • 박성환 ((주)엔젤 식품연구소) ;
  • 이상현 (신라대학교 바이오산업학부 제약공학전공) ;
  • 장정수 ((주)엔젤 식품연구소) ;
  • 이문현 ((주)엔젤 식품연구소)
  • Received : 2017.02.23
  • Accepted : 2017.04.28
  • Published : 2017.08.31

Abstract

In this study, we investigated the effect of roasting temperature on nutrient content, digestive enzyme activities, and antioxidative properties of sesame seed juice. The sesame seeds were either roasted at 160, 200, and $240^{\circ}C$ or not roasted, and the juice was extracted using a low-speed juice extractor. Owing to the short duration of roasting, benzo[a]pyrene were not detected and trans fatty acids were negligible detected in all sesame seed juices. The sesame seed juice contained abundant nutrients such as minerals, vitamins, and fatty acids. The contents of minerals, vitamin B1 and B3, and sesamol increased with increase in roasting temperature; however, the levels of fatty acids, vitamin B2, sesamin, and sesamolin decreased. In addition, the antioxidant content and antioxidative activities of sesame seed juice increased with increase in roasting temperature. Therefore, these results suggest that roasted sesame seed juice possesses high antioxidative activities, which may be beneficial for preventing oxidative damage in the body.

본 연구에서는 참깨 착즙액의 볶음 온도가 영양 성분, 소화효소 활성 및 항산화 활성에 미치는 영향을 조사하였다. 참깨를 160, 200, $240^{\circ}C$에서 3분간 볶은 뒤 저속 녹즙기로 착즙하였다. 짧은 시간의 볶음 처리로 인해 모든 참깨 착즙액에서 벤조피렌 및 트랜스지방산은 검출되지 않거나 극소량만 검출되었다. 참깨 착즙액은 무기질, 비타민 및 지방산과 같은 다량의 무기질을 함유하며, 볶음 시간이 증가함에 따라 무기질, 비타민 B1, B3 및 세사몰 함량은 증가되는 것을 확인하였다; 하지만 지방산, 비타민 $B_2$, 세사민 및 세사몰린은 감소되었다. 참깨 착즙액의 항산화 성분 및 항산화 활성은 볶음 온도가 증가함에 따라 증가되었고, $240^{\circ}C$에서 가장 높은 항산화 활성을 나타냈다. 그러므로 본 결과는 항산화 활성이 높은 볶은 참깨 착즙액이 체내 산화적 손상을 예방하는데 도움이 될 것으로 제안한다.

Keywords

References

  1. Abou-Gharbia HA, Shehata AAY, Shahidi F. Effect of processing on oxidative stability and lipid classes of sesame oil. Food Res. Int. 33: 331-340 (2000) https://doi.org/10.1016/S0963-9969(00)00052-1
  2. Jeong SM, Kim SY, Kim DR, Nam KC, Ahn DU, Lee SC. Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. J. Food Sci. 69: C377-C381 (2004)
  3. Namiki M. The chemistry and physiological functions of sesame. Food Rev. Int. 11: 281-329 (1995) https://doi.org/10.1080/87559129509541043
  4. Park SJ, Kang MH. Functional properties of sesame seed. Food Ind. Nutr. 9: 31-40 (2004)
  5. Voutsa D, Terzi H, Muller L, Samara C, Kouimtzis TH. Profile analysis of organic micropollutants in the environment of a coal burning area, NW Greece. Chemosphere 55: 595-604 (2004) https://doi.org/10.1016/j.chemosphere.2003.11.023
  6. Tilgner DJ, Daun H. Polycyclic aromatic hydrocarbons (polynuclears) in smoked foods. Residue Rev. 27: 19-41 (1969)
  7. Liu WH, Inbaraj BS, Chen BH. Analysis and formation of trans fatty acids in hydrogenated soybean oil during heating. Food Chem. 104: 1740-1749 (2007) https://doi.org/10.1016/j.foodchem.2006.10.069
  8. Korean Ministry of Food and Drug Safety (MFDS). Korean Food Standards Codex. Available from: http://www.foodsafetykorea.go.kr/foodcode/01_02.jsp?idx=263. Accessed Nov. 11, 2016.
  9. Martins-Junior HA, Wang AY, Alabourda J, Pires MA, Vega OB, Lebre DT. A validated method to quantify folic acid in wheat flour samples using liquid chromatography: tandem mass spectrometry. J. Braz. Chem. Soc. 19: 971-977 (2008) https://doi.org/10.1590/S0103-50532008000500024
  10. Kikugawa K, Arai M, Kurechi T. Participation of sesamol in stability of sesame oil. J. Am. Oil Chem. Soc. 60: 1528-1533 (1983) https://doi.org/10.1007/BF02666577
  11. Folin O, Denis W. On phosphotungastic-phosphomolybdic compounds as color reagent. J. Biol. Chem. 12: 239-243 (1912)
  12. Davis WB. Determination of flavanones in citrus fruits. Anal. Chem. 19: 476-478 (1947) https://doi.org/10.1021/ac60007a016
  13. Doehlert DC, Duke SH. Specific determination of ${\alpha}$-amylase activity in crude plant extracts containing ${\beta}$-amylase. Plant Physiol. 71: 229-234 (1983) https://doi.org/10.1104/pp.71.2.229
  14. Korean Ministry of Food and Drug Safety (MFDS). Korean Food Additives Codex. Available from:http://www.mfds.go.kr/fa/index.do?page_gubun=2&serialno=166&gongjeoncategory=2&page=3& nMenuCode=8. Accessed Nov. 22, 2016.
  15. Egito AS, Girardet JM, Laguna LE, Poirson C, Molle D, Miclo L, Humbert G, Gaillard JL. Milk-clotting activity of enzyme extracts from sunflower and albizia seeds and specific hydrolysis of bovine e-casein. Int. Dairy J. 17: 816-825 (2007) https://doi.org/10.1016/j.idairyj.2006.09.012
  16. Re R, Pellegrini N, Proteggente A, Pannala A,Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200 (1958)
  18. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert M. Antioxidant action of Ginkgo biloba extract EGb 761. Meth. Enzymol. 234: 462-475 (1994)
  19. Gray JI, Dugan LR. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40: 981-984 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  20. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  21. Oyaizu M. Studies on products of browning reaction-antioxidant activities of products of browning reaction prepared from glucosamine. Japanese J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  22. Iwe MO. Handbook of sensory methods and analysis. Rojoint Communication Services Ltd., Enugu, Nigeria. pp. 7-12 (2002)
  23. Park WP, Shin YM, Choi JS. Physicochemical properties of some seed oil extracted by pressure method. J. Agr. Life Sci. 49: 221-231 (2015) https://doi.org/10.14397/jals.2015.49.4.221
  24. Youssef MKE, Eshak NS, Hana RS. Physicochemical characteristics, nutrient content and fatty acid composition of Nigella sativa oil and sesame oil. Food and Public Health. 3: 309-314 (2013)
  25. Park CH, Choi KJ, Shim KB, Ha TJ, Lee MH, Hwang JD, Pae SB, Park KY, Baek IY. Studies on the improvement of roasting condition of sesame seeds for producing seed season and oil. Korean J. Crop Sci. 56: 205-211 (2011) https://doi.org/10.7740/kjcs.2011.56.3.205
  26. Elvehjem. CA. A study of the heat stability of the vitamin B factors required by the chick. J. Biol. Chem. 99: 309-319 (1932)
  27. Yamashita K, Nohara Y, Katayama K, Namiki M. Sesame seed lignans and gamma-tocopherol act synergistically to produce vitamin E activity in rats. J. Nutr. 122: 2440-2446 (1992) https://doi.org/10.1093/jn/122.12.2440
  28. Yen GC. Influence of seed roasting process on the changes in composition and quality of sesame (Sesamum indicum) oil. J. Sci. Food Agric. 50: 563-569 (1990) https://doi.org/10.1002/jsfa.2740500413
  29. Kim SU, Oh KW, Lee MH, Lee BK, Pae SB, Hwang CD, Kin MS, Baek IY, Lee JD. Variation of lignan content for sesame seed across origin and growing environments. Korean J. Crop Sci. 59: 151-161 (2014) https://doi.org/10.7740/kjcs.2014.59.2.151
  30. Fukuda Y, Nagata M, Osawa T, Namiki M. Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. Agric. Biol. Chem. 50: 812-821 (1986)
  31. Cheng W, Liu G, Wang X, Liu X, Liu B. Formation of benzo[a]pyrene in sesame seeds during the roasting process for production of sesame seed oil. J. Am. Oil Chem. Soc. 92: 1725-1733 (2015) https://doi.org/10.1007/s11746-015-2734-0
  32. Tsuzuki W. Study of the formation of trans fatty acids in model oils (triacylglycerols) and edible oils during the heating process. Jpn. Agric. Res. Q. 46: 215-220 (2012) https://doi.org/10.6090/jarq.46.215
  33. Park SH, Park HJ, Kim JY, Lee SH, Jang JS, Lee MH. Mixed seeds juice with high antioxidant capacity and digestive enzyme activity and its application. Food Sci. Biotechnol. 26: 237-244 (2017) https://doi.org/10.1007/s10068-017-0032-3
  34. Kim EJ, Hwang SY, Son JY. Physiological activities of sesame, black sesame, perilla and olive oil extracts. J. Korean Soc. Food Sci. Nutr. 38: 280-286 (2009) https://doi.org/10.3746/jkfn.2009.38.3.280
  35. Kim HK, Choi YJ, Kim KH. Functional activities of microwave-assisted extracts from Flammulina velutipes. Korean J. Food Sci. Technol. 34: 1013-1017 (2002)