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Abstract
Demographic change was considered to be the most major driver of land use change although there were 

several interacting factors involved, especially in the developing countries. This paper presents an approach to 
predict the future land use change using a hybrid model. A hybrid model consisting of logistic regression model, 
Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard 
logistic regression model. Experiment was conducted in Giao Thuy district, Nam Dinh Province, Vietnam. 
Demography and socio-economic variables dealing with urban sprawl were used to create a probability surface 
of spatio-temporal states of built-up land use for the years 2009, 2019, and 2029. The predicted land use maps 
for the years 2019 and 2029 show substantial urban development in the area, much of which are located in 
areas sensitive to source protections. It also showed that aquacultural land changes substantially in areas where 
are in the vicinity of estuary or near the sea dike. There was considerable variation between the communes; 
notably, communes with higher household density and higher proportion of people in working age have larger 
increases in aquacultural areas. The results of the analysis can provide valuable information for local planners 
and policy makers, assisting their efforts in constructing alternative sustainable urban development schemes and 
environmental management strategies.
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1. Introduction

The intensity of land use change in response to world 
population growth and its consequences for the environment 
warrant in-depth studies of these transformations (Wu et 
al., 2006). Land is an important and finite resource for most 
human activities such as settlement, agriculture, forestry, 
animal husbandry, industry, transportation and recreation. It 
has been tightly coupled with economic growth (Richards, 
1990). One of the six possible forces driving land-use and 
land-cover changes is population increase and its level of 
affluence, technology, political economy, political structure, 

and attitudes and values (Meyer and Turner, 1992). An 
increase in population arises a sequence of immediate life 
sustaining needs such as residence space, food and fiber. 
However, due to the finite amount of available land, fast 
economic development and population growth lead to 
deforestation and loss of arable land and biodiversity, and 
reduction of environmental services (Lambin et al., 2001).

In recent years, the Land use/Land cover (LULC) change 
community has produced a large set of operational models 
that can be used to predict or explore possible land use 
change trajectories (Verburg et al., 2006). The models can be 
useful tools to understand the exploration of future land use 
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dynamic under different scenario conditions. Furthermore, 
scenario analysis with land use models can also support land 
use planning and policy. Logistic regression (McCullagh and 
Nelder, 1989) analysis has been one of the most frequently 
utilised approaches during the past two decades for predictive 
land use modelling by means of variation of inductive 
modelling. Thereby, it is crucial to consider spatial effects, 
namely spatial autocorrelation and spatial heterogeneity, 
to challenge regression assumptions (Anselin, 1988; 
Fotheringham et al., 2000). However, the logistic regression 
model suffers from the quantification of change and temporal 
analysis (Hu and Lo, 2007). Thus, empirical estimation and 
dynamic simulation models have been used to simulate 
land use change. Various types of rule-based modelling, for 
instance cellular automata (CA), are most appropriate for 
incorporating spatial interaction effects and the treatment 
of temporal dynamics. CA models focus on the simulation 
of spatial patterning rather than on the interpretation of 
spatiotemporal processes of urban sprawl, there is a deficiency 
of incorporation among dynamic simulation models and 
socio-economic and demographic variables (Hu and Lo, 
2007). Due to limitations of each individual modelling 
technique (Poelmans and Van Rompaey, 2009) proposed a 
hybrid approach based on logistic regression coupled with 
CA transition rules, which results in an improved model 
quality, nevertheless, their model was not able to quantify the 
amount of land use change.

A need for spatial models of land use change was therefore 
identified (Mertens and Lambin, 1997). Arsanjani et al. (2013) 
integrated CA, logistic regression, and Markov chain (MC) 
models in order to produce temporal outputs from the logistic 
regression model in Tehran, Iran. Various environmental and 
socio-economic variables were taken into account to create a 
probability surface of spatiotemporal states of built-up land 
use for the years 2006, 2016, and 2026. However, the set of 
specific factors could be different in other areas due to the 
differences in environmental and socioeconomic conditions. 
For instance, Tehran, the capital of Iran, is the most populous 
city in Iran and Western Asia with 8.8 million in the city 
and 15 million in its larger metropolitan area (CityMayors, 
2006). While, Giao Thuy is a rural district located in coastal 
of Vietnam, a developing country, where population has 

grown exponentially in the past decades. About 85% of the 
population lives in rural areas and depends on subsistence 
agriculture for their livelihoods. The average population 
density in the region is 814 persons per square km in long 
period. According to statistical data reported by Nam Dinh 
statistical Office, the main factors leading to land use change 
in Giao Thuy district, Nam Dinh province, Vietnam could 
include households density, the proportion of people in 
working age, and distance to the sea dike. Those factors were 
different from those of (Arsanjani et al., 2013). Therefore, 
this study attempted to apply the integration of CA, logistic 
regression, and MC models to simulate the landuse change in 
Giao Thuy district through the relationship with the variables 
related to population and socioeconomic conditions.

2. Study Site and Data

Giao Thuy is a rural district (belong to Balat estuary) 
(see Fig. 1) located in Nam Dinh Province in the Red River 
Delta in Vietnam. In 2003, population of the district was 
207,273. The district covers an area of 166 km² and has a 
central town named Ngo Dong. Besides, this district included 
20 communes and a small town. Giao Thuy district has the 
Xuan Thuy Natural Wetland Reserve, which is the only 
Ramsar site in Vietnam (Halls, 1997). In 1988, 120 km2 of 
mangroves were designated for inclusion for a reserve.

3. Material, Data Sources and Methodology 

3.1 Materials and data sources

The satellite images and demographical data are necessary 
for this research. In this study, the satellite images used 
for extracting land use maps includes: Landsat 5 Thematic 

Fig. 1. Red River Delta and the Giao Thuy study area, Vietnam
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Mapper (TM) images of 1989, 1999, and 2009 provided by 
United States Geological Survey (USGS). The following 
Table 1 shows the details of satellite images with acquired 
time and resolution. The demographical data reported in 
2000 and 2011 was provided by Nam Dinh statistical Office 
(see Table 2). Additionally, a topographic map (scale of 
1:25,000) established by the Vietnamese Ministry of Natural 
Resources and Environment (MONRE) in 2015 was used.

3.2 Methodology

3.2.1 LULC classification

Land use maps of Giao Thuy in 1989, 1999, and 2009 
were generated from LANDSAT 5 TM images acquired in 
the aforementioned years. Image pre-processing removed 
distortions, precision and corrected terrain data (Level 1T) 
using the Universal Transverse Mercator (UTM) projection 
and WGS 84 datum (Zone 48, North). The 1989, and 1999 
images were geo-referenced to the 2009 one. Prior to 
segmentation in eCognition Developer software, the quality 
of the images was improved using spectral enhancement.

An object-based approach was used to produce LULC map 
with 8 classes: Agricultural land, Water, Aquacultural land, 
Mangrove, Sedge-land, Open land, Built-up land, and Salt-
land. As LULC spatial data became more widely available 
(either for sale or for free), such data (e.g. LANDSAT satellite 
images) could be more extensively used in developing 
countries (Yagoub and Bizreh, 2014). This study followed 
the following steps to achieve the object based image 

Table 1. List of Landsat data with acquired time and 
resolution (Source: USGS)

Sensor Path/Row Acquired Date Local time Resolution (m)
TM 126/046 23 November 1989 9h41' 30
TM 126/046 18 October1999 9h54' 30
TM 126/046 27 September 2009 10h07' 30

Table 2. Demographical data (Source: the report of Nam 
Dinh statistical Office)

Year Population 
(persons)

Number of 
households

The proportion of people in 
working age (%)

1989 164,107 38,160 52.2
1999 194,635 47,471 54.4
2009 188,903 56,164 67.7

classification: 1. Segmentation; 2. Classification; 3. Accuracy 
assessment.

Firstly, the multi-resolution (MR) segmentation algorithm 
available in eCognition Developer 8.7 software (Trimble, 
2011) was carried out. Parameters for the segmentation 
include scale, shape ratio, and compactness/smoothness 
ratio was examined at different values. “Scale” is one of 
the important criteria in segmentation process. Scale value 
directly affects the size of the segmentation objects. Shape 
ratio value refers to the form and the structure of individual 
objects. The change in the shape ratio optimizes the spectral 
or spatial homogeneity of the resulting segmentation. While, 
“smoothness” is defined as the ratio of an object’s perimeter 
to the perimeter of this object’s boundaries that run parallel 
to the image borders; “compactness” is the ratio of an object’s 
perimeter to the square root of the number of pixels within 
that image object. We hereby chose this segmentation as the 
most appropriate for the purpose of our work. In segmenting 
these images, the spatial and spectral characteristics of the 
image pixels were considered. The segmentations of this 
study were conducted at a scale of 10, color/shape ratio 
(0.8/0.2), and compactness/smoothness ratio (0.5/0.5). 

The second step in the object-oriented method was to 
classify image objects. The classification stage was done 
using the segmented image in association with the training 
data (class signatures) to achieve a good classification of 
the land cover pattern of the study area. The water in these 
categories is the most different in spectral with others, 
especially in near infrared channel. Therefore, water was 
extracted based on band #3 and #5 of Landsat TM. After 
that, the Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Built-up Index (NDBI) were used to 
establish a high quality rule-set for mangrove and built up 
land. Information on image bands, image reflectance, and 
the relationships between neighbouring objects is required to 
develop a highly accurate rule-set. To improve the accuracy 
of the classification, manual editing was carried out.

Finally, to assess the accuracy of the classified maps, the 
ground truth data was used. The classification accuracy is 
achieved by comparing the ground truth data points with the 
classified images, points were sampled along roads, focusing 
on typical land-cover types in the region. The degree of 
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agreement of the classified image position and the ground 
truth data points provides the classification accuracy of the 
image classification process. The accuracy of the resulting 
maps is based on 98 ground control points taken from high-
resolution Google Earth images and fieldwork. The Kappa 
coefficient, which is calculated according to the Congalton 
formula (Congalton, 1991), deals with the experiment 
between the remote sensing data and the in-situ observation.

3.2.2 LULC change prediction

The overall method used for change prediction in this 
study was illustrated in Fig. 2. The method integrated CA, 
logistic regression, and MC models to predict changes. The 
details of the processing phases were as follows:

Logistic regression model is a regression model which 
covers the case of binary dependent variables (i.e. it can only 
take value of “0” and “1”) (McCullagh and Nelder, 1989). 
Logistic regression model was used to associate the urban 
growth with demographic, econometric and biophysical 
driving forces and to generate an urban expansion probability 
map. In a raster GIS modelling environment, the data layers 
are tessellated to form a grid of cells. The nature of the 
LULC of a cell is dichotomous: either the presence of urban 
growth or absence of urban growth. The dependent variable 
predicted by a logistic regression model is a function of 
the probability that a particular theme will be in one of the 
categories (Huang et al., 2009).

Markov chain model: The MC model is a stochastic process 
that satisfies the Markov property (Rozanov, 1982), this can 
predict how likely one state is to change to another state. Its 
key-descriptive tool is the transition probability matrix (Jamal, 
2012). A transition probability matrix (P) of LULC during 
interested period indicates the transition probability (pij) that 
each pixel of LULC transformed from class i to j. The transition 
probability then is used for projecting LULC in the future: the 
distribution of each LULC class at time t + 1 was projected 
forward using the LULC distribution at the beginning time t 
and the transition probability matrix P, as follows:

where ni is the total number of pixels of class i transformed 
during interested period; nij is the number of pixels 
transformed from class i to j; k is the number of LULC classes; 
P is transition probability matrix; Mt is the distribution of 
each LULC class at time t.

The Markov transition matrix is used to determine the 
relevant years for the assessment process (in this study they 
are 2019 and 2029). The LULC map of existing land use in 
2009 was produced by calculating data recorded between 
1989 and 1999. The predicted land use map for 2019 and 2029 
are based on measured data of the 1989, 1999 to 2009 period. 
However, MC is not a spatially explicit model; therefore, it is 
not an appropriate model to estimate the location of change, 
which needs to be integrated with other spatial models.

Cellular Automata uses proximity concept to triggers 
LULC dynamics: a cell closers to present land cover of the 
same class have a higher probability to change to a different 
class. Four CA components are cell, states, neighborhoods, 
and rules (Verburg et al., 2004). Rules define cell states in 
the future step. The transition of a cell from a land cover to 
another depends on the neighborhood cell states.   

In this study, the Logistic-Markov–CA model was 
performed using IDRISI Selva® software, version 17.0. 
This software allows simulating suitability maps for the 
predicted land use and requires land use maps and transition 
probability matrices (Schneider and Pontius, 2001). We 
used cross tabulation of two images of different time to 
produce transition probability matrix. IDIRISI CA-Markov 
module then operates 5x5 contiguity filter to estimate the 
neighborhood pixels predicting LULCC from time period 
two to a later time period (Fig. 2). Variables of the logistic 
regression-Markov-CA model were shown in Table 3.

A suite of six potential explanatory variables denoted by 
Xi (i = 1, 2, …, 6) (see Table 3) were selected a priori based 
on existing theories of land use causes, fieldwork experience, 
data availability and literature review on relationship between 
land use change and natural and anthropogenic factors (Ivan 
and Kabrda, 2007; Lambin et al., 2001; Geist and Lambin, 
2002; Huang and Hsiech, 2012). The binary output values 
(i.e. value of “0” and “1”) represent the state of no change (0) 
or change (1) of the LULC for three period 1989-1999, 1999-
2009 and 1989-2009 were denoted by Yi (i = 1, 2, 3).

(1)

(2)

(3)
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   =1        (2) 

                       (3) 
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Fig. 2. Flowchart of the experimental method

Variable Meaning Nature of variable

Dependent
Y1 (1989-1999)
Y2 (1999-2009)
Y3 (1989-2009)

0 – no change; 1 – change Dichotomous

Independent

X1 Population density (person/km2) Continuous

X2 Households density (Number of households /km2) Continuous

X3 The proportion of people in working age (% person/km2) Continuous

X4 Distance to active economic centers (km) Continuous

X5 Distance to the nearest major road (km) Continuous

X6 Distance to the sea dike (km) Continuous

Table 3. List of variables included in the Logistic regression-Markov-CA model
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4. Results

4.1 Land use/ Land cover change

Using the method described in Section 3.2.1 LULC 
classification, the LULC maps were obtained as shown in 
Fig. 3. The Kappa coefficient for quality assessment of LULC 
classification for the years 1989, 1999, and 2009 are 71,88%, 
78,54% and 80%, respectively, these show a high accuracy 
in LULC classification. The LULC maps can provide further 
insights about land use change trends and rates. The results 
revealed land use change history and quantity of change in 
each LULC class. The main land use in the area (represented 
in the 1989, 1999, and 2009 maps) was agriculture followed 
by water, and built-up areas with total 86,6%. Areas of land 
used for agriculture decreased more than 3% and water 
decreased more than 7% of its original level at the first stage. 

Meanwhile, built-up areas increased about 2.5% from 1989 
to 2009.

According to the Table 4, aquacultural land increased 
dramatically from 0.95% in 1989 to 12.6% in 2009. The built-
up area also rose significantly. The reason could be due to 
the booming of tourism and recreation business in the area 
due to acceleration in the rate of summer resort establishment 
at the coast provided more job opportunities for the local 
inhabitants. The sources of income from new jobs enhanced 
the standards of living of the local communities.

4.2 Quantification of future changes

Fig. 4 showed the output product of the logistic regression 
model, which is a probability surface maps indicating 
development of aquacultural and urban area. The probability 
surface shows level of development of a cell by a particular 
amount of probability (1 = high probability, 0 = low 
probability). In fact, there were total of 32 probability maps 
obtained from the logistic regression model for period 1989-
1999 and 1999-2009. Fig. 4 only illustrated some examples, 
which show high probability of change from some classes to 
built-up or aquacultural land.

The results (i.e. transition probability surface maps, 
matrices) were used for further change analysis and 
determining the estimated quantity of change that is assumed 
to be an input for the CA model. In this investigation, logistic 
regression and CA models were chosen to spatialize the 
estimated change quantity. The final simulated land use map 
for 2019 and 2029 was demonstrated in Table 5 and Fig. 5. 
The area differences between the simulated land use map of Fig. 3. Extracted land use maps of 1989 (upper left), 1999 

(upper right), and 2009 (lower)

Land use map of 2009

Land use map of 1989 Land use map of 1999

Table 4. Quantity of land use change over time in terms of hectare and percentage of each category

Year
Category

1989 1999 2009 1989-1999 1999-2009 1989-2009
Ha % Ha % Ha % Ha Ha Ha

Built-up 4525 16.2 4792 17.1 5239 18.7 +267 +447 +714
Agricultural 9415 33.7 9200 32.9 8578 30.6 -215 -622 -837

Water 10256 36.7 8188 29.3 8491 30.4 -2048 +303 -1745
Mangrove 1304 4.7 1039 3.7 1174 4.2 -265 +135 -130

Aquacultural 248 0.9 3208 11.6 3528 12.6 +2960 +320 +3280
Salt-land 728 2.6 682 2.4 648 2.3 -46 -34 -80

Open land 884 3.2 764 2.7 314 1.2 -120 -450 -570
Sedge-land 600 2.1 87 0.3 8 0.0 -513 +79 -434



Predicting Land Use Change Affected by Population Growth by Integrating Logistic Regression, Markov Chain and Cellular Automata Models

227  

2019 and 2029 by classes were computed and illustrated in 
Fig. 6. According to Fig. 6, from 2019 to 2029, build-up and 
aquacultural land will increase significantly, whereas area 
of water and agriculture will reduce. This is suitable to the 
development planning of the local government. 

Fig. 4. Predicted transition probability of change for 
period 1989-1999 (left) and 1999-2009 (right): 

(a) from agricultural land to built-up land, 
(b) from agricultural land to aquacultural land, 

(c) from mangrove land to aquacultural land

(b)

Table 5. Quantity of land use through the Markov chain 
model for 2019 and 2029 in hectare

Category
Year

Built-up
(ha)

Agricultural
(ha)

Water
(ha)

Mangrove
(ha)

Aquacultural
(ha)

Salt-land
(ha)

Open 
land
(ha)

Sedge-
land
(ha)

2019 6105 7731 7930 1207 4508 302 177 0

2029 6834 7146 6118 1301 5843 211 107 0

Fig. 5. Simulated land use maps of 2019 (left) and 2029 (right) 
through the Logistic-Markov-CA approach
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Fig. 6. The area difference between simulated land use 
classes of 2019 and 2029

4.3 Model validation

In order to validate the obtained model, the probability 
map of change for 1999 was utilised to allocate the attained 
quantity of change through the customised CA function. 
Then the land use map of 2009 was simulated and compared 
with the actual map of 2009. Comparison of the 2009 LULC 
map to the predicted one obtained from Logistic-Markov-
CA method (Table 6) revealed a good agreement between 
the two maps with an overall accuracy above 79% and 
overall kappa exceeding 0.78. The results indicated that the 
Logistic-Markov-CA model was successful in predicting the 
LULC in 2009. This indicates that the model can be reliably 
used to predict future land use change in the area given the 
assumption of stable rates of change.

5. Discussion and conclusions

As shown in Table 4 and 5, after 2009, the land use change 
trend is agricultural, open land, sedge-land and water land 
area decreased significantly. The maximum rate of reduction 

(a)

(c)

BU AGR WT AQ OP MAG SA SEG

Producer's accuracy 0.69 0.89  0.82 0.80 0.73 0.74 0.87 1.00

User's accuracy 0.78 0.81 0.85 0.86 0.76 0.77 0.84 0.65

Overall Kappa 0.7812    

Overall accuracy 0.7915

Table 6. Assessment of the agreement between 
predicted and actual LULC in 2009   

(BU = Built-up, AGR = Agricultural, 
WT = Water, AQ = Aquacultural, OP = Open land,

MAG = Mangrove, SA = Salt land, SEG = Sedge land)
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approach is capable of predicting the most probable sites for 
development, estimating the likely amount of change as well 
as allocating the estimated quantity within the study area.
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