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Scale Using Multi-layer Perceptron
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Abstract
Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban  Heat 

Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the 
optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, 
spatial resolution, and cloud coverage.

Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters 
rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired 
daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and 
MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. 
This paper applied machine learning methods and performed downscaling which can obtain daily based land 
surface temperature imagery of 30 meters.
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1. Introduction

 LST (Land Surface Temperature) is essential in many 
applications such as monitoring heat pattern or crop 
monitoring by analyzing the relation between vegetation 
and temperature (Park, 2001; Jee et al., 2014; Kim, 2016). 
Landsat satellites, which include sensors to measure surface 
temperatures, have a revisit frequency of 16 days, but are 
very weather dependent and prone to cloud coverage.

 On the other hand, MODIS satellite imagery, which is 
captured every day, have a spatial resolution of 1 kilometer, 
which makes it difficult to determine the temperature of 
dense urban region. Downscaling technique is performed in 
such situation to complement the problems and increase both 
the temporal and spatial resolution.

 In meteorology, downscaling refers to the method of 

increasing the spatial resolution and interpolating the pixel 
values by referring to other related image values. GCM 
(General Circulation Model) is a mathematical downscaling 
technique used in meteorology, which is frequently used 
for expressing the global range of seasonal and annual 
weather change. However, this technique has the limitation 
that it is applicable for only low spatial resolution imagery 
(Wilby and Wigley, 1997). To overcome this limitation of 
GCM, dynamical calculation and statistical calculation 
method of downscaling were introduced in the following 
years (Stathopoulou and Cartalis, 2009; Zakšek and Oštir, 
2012; Bonafoni, 2016). Although dynamical downscaling 
method can obtain a higher spatial resolution than GCM, the 
computation process is complicated and requires vast amount 
of data, and the interpretation of the results is only possible 
with a high level of expertise. In contrast to dynamical 
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downscaling, statistical downscaling is easy to interpret and 
to compute. However, downscaling is performed only with 
previous weather data, so this method is not reliable if input 
data is insufficient (Trzaska and Schnarr, 2014).

Attempts were also made to incorporate machine learning 
methods to downscaling. Most of them used single layer 
perceptron as the unique hidden layer (Yang et al., 2010; 
Kolios et al., 2013; Bonafoni and Tosi, 2017). These early 
attempts did not produce satisfactory results because these 
models could not generalize the phenomenon, and there was 
not sufficient number of neurons to grasp the close relationship 
between the input data and the independent variables. Other 
attempts in machine learning included the random forest 
technique, which besides being computationally simple, does 
not require much hardware resources, and also produced good 
results (Hutengs and Vohland, 2016). They performed the 
downscaling of 1 kilometer resolution of MODIS imagery to 
240 meters using the random forest method. This resolution 
is insufficient for detecting abnormal climate or monitoring 
temperature for UHI. Likewise, downscaling has also been 
performed using support vector regression, another machine 
learning method, but the output resolution was 1 kilometer 
(Keramitsoglou et al., 2013).

In this study, downscaling to high spatial resolution 
of 30 meters was performed using MLP (Multi-layer 
Perceptron) using multiple hidden layers. Downscaling with 
MLP produced results of less than 3℃ at 30 meter ground 
resolution. This is of higher spatial resolution than reported 
results by GCM or random forest method, and once a model 
is generated, it is easier to predict and to calculate than the 
forementioned dynamical downscaling method. In the feature 
design process of the hidden layers, features were classified 
into temporal periods of daily data, seasonal data, and fixed 
data (unchanging data such as digital elevation model). Since 
the features were selected separately, there is an advantage 
that the fixed data can be used repeatedly.

2. Experiment Data and Methodology

2.1 Experiment data 

For accurate prediction of LST, data acquired at different 
days of the season were used during the modeling process. 

Five Landsat 8 cloudless images from September, 2013 to 
May, 2016 were selected as the label data for the machine 
learning computation. Other feature data of the same dates 
were also collected and went through the preprocessing 
procedure. The preprocessing procedure is a very tedious job 
of carefully preparing the data by clipping and resampling 
the images to the same size, coordinates, cell size, and 
data type. They must also be standardized and checked for 
outliers, which must be imputed.

2.1.1 Daily data

The daily data are MODIS LST images. For training, 
MODIS data of the same day as Landsat 8 LST images 
are used, and the resulting model is then used with other 
MODIS data for prediction. The MODIS LST images were 
resampled to 30 meters to match the LST image of Landsat 
images. Landsat LST were obtained by substituting thermal 
infrared bands into equations provided by the USGS (United 
States Geological Survey). Experiments later showed that the 
MODIS independent variable contributes significantly to the 
prediction of daily 30 meter downscaling.

2.1.2 Seasonal data

Three seasonal independent variables were added to 
determine the temperature of each area. First, NDVI 
(Normalized Difference Vegetation Index) was selected to be 
an independent variable that can grasp the characteristics of 
vegetation, park, and mountain in the study area. In addition, 
the NDVI has been reported to have been a major factor 
which determines the LST (Bhang and Lee, 2017). NDWI 
(Normalized Difference Water Index) also was used to 
estimate water in the study area, that is, river and lake values. 
Seasonal data is useful for efficient experimentation because 
a representative data can be reused without having to collect 
it for each day.

2.1.3 Fixed data

For paved surface which increases the urban temperature, 
NDBI (Normalized Difference Built-up Index) was 
used to determine the distribution and characteristics of 
buildings and artificial structure. DEM was also used as 
the fixed data and since the energy released according to 
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surface characteristics is different, it was considered as an 
independent variable affecting temperature. Table 1 shows 
the resolution and source of datasets. Daily data was obtained 
from NASA Earth Data, and seasonal data and NDBI of fixed 
data were obtained by band combination of landsat images 
obtained from Landsat images. DEM was acquired from the 
Ministry of Land, Transport and Maritime Affairs with a 
spatial resolution of 5 meters. Table 2 shows statistics of one 
sample dataset, May 19, 2016. The temperatures of MODIS 
and Landsat are almost similar but show a large difference 
at maximum temperature. This is because higher spatial 
representation of the temperature is possible with Landsat 
imagery. NDBI, NDVI, and NDWI are represented by values   
between -1 and 1.

2.2 MLP design and experiment

2.2.1 MLP design

The operations of a typical ANN (Artificial Neural 
Network) is shown in Fig. 1. The ANN consists of an input 
layer, a hidden layer and an output layer, and is called a 
single layer perceptron when there is one hidden layer and a 
multi-layer perceptron when the number is two or more. The 
independent variables of the input layer   are transformed to 
hidden layer values by weights in the forward propagation 
stage. The differences between the prediction and the true 
target are obtained through the loss function. In regression of 
machine learning, the loss function mainly uses RMSE (Root 
Mean Square Error). After the loss is computed, weights are 
updated again using the optimizer in the back propagation 
stage. This loops continue until the loss converged to a 
minimum value. The final weight values are then used to 
compute unknown target values with new sets of input layers 
(Chollet, 2017).  

MLP is more efficient than conventional ANN of single 
layer, because with multiple layers it can extract more 
detailed characteristics between independent and dependent 
variables. The structure of MLP in this study is shown in Fig. 
2. MODIS LST, NDVI, NDWI, NDBI, and DEM were used 
as the features in the input layer. The number of hidden layers 
is 4, and the number of neuron is set to 15, 10, 8, and 5 for 
each layer respectively. Experiments showed that the number 
of neurons did not significantly affect the results. 

Generally, as the model gets more complex, the bias 

Spatial 
Resolution

Temporal 
Resolution Source

Daily
MODIS 1kilometer 1 day

NASA
Earth
Data

LANDSAT 30m 16 days

Seasonal
NDVI

30m 16 days
NDWI

Fixed

NDBI 30m 16 days
NASA
Earth
Data

DEM 5m Non- 
changing

Ministry 
of Land, 

Infrastructure 
and Transport

Table 1. Resolutions and sources of datasets used in this study 

MODIS
[℃]

NDBI NDVI NDWI DEM
[m]

Landsat
[℃]

Mean value 28.09 0.67 0.06 0.08 47.68 27.47

Standard
Deviation 1.01 0.09 0.31 0.27 40.8 2.71

Minimum 
value 25.33 0.13 -1 -0.54 10 20.58

Maximum 
value 30.65 1.0 0.77 1.0 340 41.92

Table 2. Statistics of dataset_May 19, 2016 Fig. 1. Operation of artificial neural network
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continues to decrease whereas the variance increases. During 
training phase, the accuracy will increase as the model gets 
more complex. But at some point, increasing the model 
complexity will result in the decrease of accuracy in the 
testing phase, because the model has been overfitted to the 
training data. The model design should consider selecting the 
optimal model complexity which will satisfy both training 
accuracy and testing accuracy as shown in Fig. 3 (Trevor et 
al., 2008).

The learning rate is selected as 0.001, which is relatively 
slow, but this is compensated by parallel processing using 
GPU. As a result of experimenting various hyper-parameters 
with our model, it was confirmed that the cost stabilize after 
about 500 epochs. The optimization function uses Adam 
Gradient Descent method, which is commonly used in the 
neural network regression problem. ReLU (Rectified Linear 
Unit) function was chosen as the nonlinear function to deal 

with the gradient vanishing problem. MSE (Mean Square 
Error) was used as the cost function, as it is commonly used 
in regression.

2.2.2 Validation

In order to verify the accuracy of the MLP model, 5 fold 
validation set was planned. One image was excluded from the 
5 images, and the 4 selected images were used as the training 
set and the excluded image was used the test set. This was 
repeated to get 5 RMSE of the differences between the actual 
image temperature and the predicted image temperature. 
Also, results from random forest method was computed 
and is compared as shown in Table 3. Overall, MLP showed 
less RMSE than random forest and less standard deviation 
between errors. Both methods were well predicted for the 
September 16, 2013 sample and the October 5, 2014 sample 
was the worst. 

Fig. 4 is the scatter plot of the best result (Sept. 16th) and 
the worst (Oct. 5th). The random forest method predicts the 
trend of temperature well, but its dispersion of prediction and 
the MSE are shown to be large. Although the MLP method 
did not do well predicting at high temperature, the dispersion 
of prediction and the MSE are shown to be better.

Fig. 2. Architecture of multi-layer perceptron

Fig. 3. Test and training error as a function of model complexity

(a) Sep 16, 2013 (MLP) (b) Sep 16, 2013 (RF) 

MLP
(RMSE, [℃]) 

random forest
(RMSE [℃])

Sept 16, 2013 0.965 3.974

May 14, 2014 1.407 4.842

May 30, 2014 2.201 5.247

Oct 5, 2014 2.956 11.532

May 19, 2016 2.405 6.255

Table 3. Cross validation comparison for the MLP and 
random forest experiment results 
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3. Results and Discussion

MLP method showed less error than the random forest 
method. In general, MLP performs better than random 
forest because the relationship of independent variables are 
better represented through hidden layers. The RMSE of the 
MLP is about 1 to 3℃, while the random forest is about 4 
to 11℃. Random forest predicted the trend well but showed 
wide variation. Both random forest and MLP predicted lower 
temperatures for data with higher temperatures. As shown 
in Figs. 4(a), (b) and (d), prediction values in the range of 30 
to 40℃ are more scattered than in the lower the temperature 
range. This can be explained by the fact that the average 
temperature for the training dataset were 27.49℃. This 
results in the model to be more accurate in the 25 to 30℃ 
temperature range. Varied training data, encompassing all 
months of the year, should produce a more robust model. 

4. Conclusions

 
This paper applied MLP to downscaling to improve 

the spatial resolution of 1 kilometer to 30 meters spatial 
resolution and temporal resolution from 16 days or more to 
1 day resolution, depending of the availability of cloudless 
MODIS imagery. The presented MLP structure using the 
daily, seasonal and fixed feature data design, resulted in 
downscaling average error of 1-2℃. The data was divided into 
three categories in the design process, making it easier to add 
data later. The MLP method with the proposed five feature 
layers, showed better results than random forest method, and 
the predicted images were superior in visual context. The 

mean RMSE of the validation was 1.92 ℃ and with more 
varied training data, better results can be anticipated. It was 
shown in the study, that downscaling with MLP method is 
feasible for temperature monitoring, urban heat island study, 
and abnormal temperature detection analysis of urban dense 
areas. The proposed downscaling method which can predict 
temporal resolution up to maximum 1 day will enable time 
series analysis for agriculture, public health, and urban 
planning applications.
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