DOI QR코드

DOI QR Code

한국 여자 청소년과 성인 여성의 혈청 철 영양상태 및 식품 섭취와 혈중 중금속 농도와의 상관성 : 2010~2011 국민건강영양조사 자료를 이용하여

Association of iron status and food intake with blood heavy metal concentrations in Korean adolescent girls and women: Based on the 2010~2011 Korea National Health and Nutrition Examination Survey

  • 김지영 (동덕여자대학교 식품영양학과) ;
  • 신민서 (동덕여자대학교 식품영양학과) ;
  • 김성희 (동덕여자대학교 임상영양학과) ;
  • 서지현 (동덕여자대학교 식품영양학과) ;
  • 마혜선 (동덕여자대학교 식품영양학과) ;
  • 양윤정 (동덕여자대학교 식품영양학과)
  • Kim, Jiyoung (Department of Food and Nutrition, Dongduk Women's University) ;
  • Shin, Minseo (Department of Food and Nutrition, Dongduk Women's University) ;
  • Kim, Sunghee (Department of Clinical Nutrition, Dongduk Women's University) ;
  • Seo, Jihyun (Department of Food and Nutrition, Dongduk Women's University) ;
  • Ma, Hyesun (Department of Food and Nutrition, Dongduk Women's University) ;
  • Yang, Yoon Jung (Department of Food and Nutrition, Dongduk Women's University)
  • 투고 : 2017.03.30
  • 심사 : 2017.07.31
  • 발행 : 2017.08.31

초록

본 연구는 제5기 (2010~2011) 국민건강영양조사를 이용하여, 초경 후 여자 청소년, 폐경 전 여성과 폐경 후 여성을 대상으로 철 영양상태 및 식품 섭취 빈도와 혈중 중금속 농도와의 상관성을 규명하고자 수행되었고, 그 결과는 다음과 같다. 1) 폐경 후 여성, 폐경 전 여성, 여자 청소년 순으로 혈중 납, 수은, 카드뮴 농도가 높았다. 수은 중독 비율은 폐경 후 여성에서 가장 높았다. 2) 철 영양 상태와 결핍은 초경 후 청소년의 경우, 혈청 페리틴 농도의 평균값이 가장 낮았고, 폐경 전 여성의 경우 헤모글로빈, 헤마토크릿 농도의 평균값이 가장 낮았고, 헤모글로빈, 헤마토크릿, 혈청 페리틴, 철 결핍비율이 가장 높았다. 3) 철 영양상태와 혈중 중금속 농도 관계에서 초경 후 청소년은 철 영양 상태가 나쁠수록 혈중 카드뮴 농도가 높았다. 폐경 전 여성도 철 영양 상태가 나쁠수록 혈중 카드뮴 농도가 높았으나, 혈중 납 농도, 혈중 수은 농도는 낮아 양의 상관관계를 보였다. 폐경 후 여성은 철 영양 상태가 좋을수록 혈중 납 농도는 낮았고, 혈중 수은 농도, 혈중 카드뮴 농도는 높았다. 4) 혈중 중금속 농도와 식품군별 섭취빈도의 상관성은 초경 후 청소년의 경우, 혈중 납 농도는 우유 및 유제품 섭취 빈도와 음의 상관관계를 보였고, 혈중 수은 농도는 생선 및 어패류 섭취 빈도와 양의 상관관계를 보였다. 혈중 카드뮴 농도는 곡류, 우유 및 유제품 섭취 빈도와 음의 상관관계를 보였다. 폐경 전 여성의 경우, 혈중 납 농도와 서류, 육류 및 난류, 과일 섭취 빈도와 음의 상관관계를 보였고, 혈중 수은 농도는 생선 및 어패류 섭취 빈도와 양의 상관관계를 보였고, 곡류, 서류 섭취 빈도와 음의 상관관계를 보였다. 혈중 카드뮴 농도는 서류, 육류 및 난류 섭취 빈도와 음의 상관관계를 보였다. 폐경 후 여성의 경우, 혈중 납 농도는 패스트푸드 및 튀긴 음식 섭취 빈도와 음의 상관관계를 보였고, 혈중 수은 농도는 서류 섭취 빈도와 음의 상관관계를 보였고, 과일섭취 빈도와 양의 상관관계를 보였다. 이상의 결과로 볼 때, 폐경 후 여성의 혈중 중금속 농도와 중독비율이 다른 여성에 비해 더 높았고, 폐경 전 여성의 철 영양상태가 초경 후 청소년과 폐경 후 여성에 비해 좋지 않았다. 초경 후 청소년은 철 영양상태가 나쁠수록 혈중 카드뮴 농도는 높았으며, 우유 및 유제품의 섭취 빈도는 혈중 납 농도, 혈중 카드뮴 농도와 음의 상관관계에 있었다. 폐경 전 여성의 경우, 철 영양상태가 나쁠수록 혈중 카드뮴 농도는 높았으며, 생선 및 어패류 섭취 빈도가 많을수록 혈중 수은 농도가 높아졌다. 결론적으로 여성의 연령, 월경여부 등으로 인해 철 영양상태가 상이함에 따라 혈중 중금속 종류에 따른 농도와의 상관성이 달랐으며, 식품군 섭취빈도와의 상관관계도 다르게 나타남을 확인하였다.

Purpose: This study examined and compared the associations of the iron status and food intake with the blood lead, mercury, and cadmium concentrations among Korean adolescent girls, premenopausal women, and postmenopausal women. Methods: The data from the 2010~2011 Korea National Health and Nutrition Examination Survey (KNHANES) was used. The subjects were classified into three groups: adolescent girls (n = 268), premenopausal women (n = 1,157), and postmenopausal women (n = 446). The iron status was assessed by hemoglobin, hematocrit, serum ferritin, and iron concentrations, as well as the total iron binding capacity (TIBC). The food intake was estimated by a food frequency questionnaire. Results: The blood heavy metal concentrations and poisoning rate in postmenopausal women were higher than in the other groups. The iron status in the adolescent girls and postmenopausal women was higher than that in the premenopausal women. In the adolescent girls, the iron status was inversely associated with the blood cadmium concentration. The dairy food intake was inversely related to the blood lead and cadmium concentrations. In premenopausal women, the iron status was inversely associated with the cadmium concentrations. The fish and shellfish food intakes were positively associated with the mercury concentrations. In postmenopausal women, the iron status was positively associated with the mercury and cadmium concentrations. Fast foods and fried foods were inversely associated with the lead concentration. Conclusion: The premenopausal women showed a lower iron status than the adolescent girls and postmenopausal women. The associations of the iron status with the blood heavy metal concentrations were different among the adolescent girls, premenopausal women, and postmenopausal women. In addition, the relationships of the food intakes with the blood heavy metal concentrations differed among adolescent girls, premenopausal women, and postmenopausal women. Further studies will be needed to confirm these findings.

키워드

참고문헌

  1. Jarup L. Hazards of heavy metal contamination. Br Med Bull 2003; 68(1): 167-182. https://doi.org/10.1093/bmb/ldg032
  2. Korea Food & Drug Administration. Dietary intake and risk assessment of contaminants in Korean foods. Seoul: Korea Food & Drug Administration; 2004.
  3. Korea Centers for Disease Control and Prevention. Survey . research of heavy metal concentration in blood [Internet]. Seoul: Ministry of Environment; 2005 [cited 2017 Feb 12]. Available from: http://webbook.me.go.kr/DLi-File/F005/000/151341.pdf.
  4. Shin HR, Kim JY. A study on the normal values of lead exposure indices. Korean J Prev Med 1986; 19(2): 167-176.
  5. Ministry of Environment (KR). Development of management of the products containing mercury. Seoul: Ministry of Environment; 2005.
  6. Agency for Toxic Substances and Disease Registry (US). Toxicological profile for cadmium. Washington, D.C.:U.S. Department of Health and Human Services, Public Health Service; 2008.
  7. Kim Y, Lobdell DT, Wright CW, Gocheva VV, Hudgens E, Bowler RM. Blood metal concentrations of manganese, lead, and cadmium in relation to serum ferritin levels in Ohio residents. Biol Trace Elem Res 2015; 165(1): 1-9. https://doi.org/10.1007/s12011-014-0223-1
  8. Lee BK, Kim Y. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data. Environ Res 2012; 112: 155-163. https://doi.org/10.1016/j.envres.2011.10.013
  9. Suh YJ, Lee JE, Lee DH, Yi HG, Lee MH, Kim CS, Nah JW, Kim SK. Prevalence and relationships of iron deficiency anemia with blood cadmium and vitamin D levels in Korean women. J Korean Med Sci 2016; 31(1): 25-32. https://doi.org/10.3346/jkms.2016.31.1.25
  10. Agency for Toxic Substances and Disease Registry (US). Public health statement mercury, CAS # : 7439-97-6. Washington, D.C.:Department of Health and Human Services, Public Health Service; 1999.
  11. Vupputuri S, Longnecker MP, Daniels JL, Guo X, Sandler DP. Blood mercury level and blood pressure among US women: results from the National Health and Nutrition Examination Survey 1999- 2000. Environ Res 2005; 97(2): 195-200. https://doi.org/10.1016/j.envres.2004.05.001
  12. Watanabe T, Zhang ZW, Moon CS, ShimboS, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M. Cadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981. Int Arch Occup Environ Health 2000; 73(1): 26-34. https://doi.org/10.1007/PL00007934
  13. Ilich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, Goel P, Matkovic V. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr 1998; 68(4): 880-887. https://doi.org/10.1093/ajcn/68.4.880
  14. The Korean Nutrition Society. Dietary reference intakes for Koreans. 1st revision. Seoul: The Korean Nutrition Society; 2010.
  15. World Health Organization; Centers for Disease Control and Prevention (US). Assesing the ironstatus of populations. second edition [Internet]. Geneva: World Health Organization; 2004 [cited 2017 Mar 12]. Available from: http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107.pdf.
  16. Sim CS, Kim Y, Lee H, Park CY, Ham JO, Lee BK. Iron deficiency increases blood lead levels in boys and pre-menarche girls surveyed in KNHANES 2010-2011. Environ Res 2014; 130: 1-6. https://doi.org/10.1016/j.envres.2014.01.004
  17. Nagata C, Konishi K, Goto Y, Tamura T, Wada K, Hayashi M, Takeda N, Yasuda K. Associations of urinary cadmium with circulating sex hormone levels in pre- and postmenopausal Japanese women. Environ Res 2016; 150: 82-87. https://doi.org/10.1016/j.envres.2016.05.031
  18. Centers for Disease Control and Prevention (US). Fourth national report on human exposure to environmental chemicals. Atlanta (GA): Centers for Disease Control and Prevention; 2009.
  19. Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M. Reprint of "Update of the reference and HBM values derived by the German Human Biomonitoring Commission". Int J Hyg Environ Health 2012; 215(2): 150-158. https://doi.org/10.1016/j.ijheh.2012.01.003
  20. UNICEF; United Nations University; World Health Organization. Iron deficiency anaemia:assessment, prevention and control: a guide for programme managers. Geneva: World Health Organization; 2011.
  21. Gibson RS. Principles of nutritional assessment.2nd edition. Oxford: Oxford University Press; 2005.
  22. Yeo E. Menopause, aging and obesity. J Korean Soc Study Obes 2002; 11(3): 289-298.
  23. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2013: Korea National Health and Nutrition Examination Survey (KNHANES VI-1). Cheongju: Korea Centers for Disease Control and Prevention; 2014.
  24. Walker BL, Tiong JW, Jefferies WA. Iron metabolism in mammalian cells. Int Rev Cytol 2001; 211: 241-278.
  25. Choi YJ, Kim SY, Jung KA, Chang YK. The analysis of the factors related to diet quality in the postmenopausal women. Korean J Nutr 2002; 35(1): 102-114.
  26. Muntner P, Menke A, DeSalvo KB, RabitoFA, Batuman V. Continued decline in blood lead levels among adults in the United States: the National Health and Nutrition Examination Surveys. Arch Intern Med 2005; 165(18): 2155-2161. https://doi.org/10.1001/archinte.165.18.2155
  27. Environmental Protection Agency (US). EPA's report on the environment (ROE): blood lead level [Internet]. Washington, D.C.: Environmental Protection Agency; 2014 [cited 2017 Feb 12]. Available from: https://cfpub.epa.gov/roe/indicator.cfm?i=63.
  28. Kurihara I, Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishiz M, Kido T, Nakagawa H, Nogawa K. Association between exposure to cadmium and blood pressure in Japanese peoples. Arch Environ Health 2004; 59(12): 711-716. https://doi.org/10.1080/00039890409602957
  29. Centers for Disease Control and Prevention (US). National Health and Nutrition Examination Survey (2009-2010). Atlanta (GA): Centers for Disease Control and Prevention; 2010.
  30. Beaton GH, Corey PN, SteeleC. Conceptual and methodological issues regarding the epidemiology of iron deficiency and their implications for studies of the functional consequences of iron deficiency. Am J Clin Nutr 1989; 50(3 Suppl): 575-585. https://doi.org/10.1093/ajcn/50.3.575
  31. Cook JD, SkikneBS. Serum ferritin: a possible model for the assessment of nutrient stores. Am J Clin Nutr 1982; 35(5 Suppl): 1180-1185. https://doi.org/10.1093/ajcn/35.5.1180
  32. Morck TA, Lynch SR, Cook JD. Inhibition of food iron absorption by coffee. Am J Clin Nutr 1983; 37 (3): 416-420. https://doi.org/10.1093/ajcn/37.3.416
  33. Bothwell TH. Overview and mechanisms of iron regulation. Nutr Rev 1995; 53(9): 237-245. https://doi.org/10.1111/j.1753-4887.1995.tb05480.x
  34. Hercberg S, Galan P. Nutritional anaemias. Baillieres Clin Haematol 1992; 5(1): 143-168. https://doi.org/10.1016/S0950-3536(11)80039-9
  35. Kim SJ. Relationship between the blood cadmium concentration and urinary N-acetyl-beta-D-glucosaminidase activity [dissertation]. Cheongju: Chungbuk National Uniersity; 2008.
  36. Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 2004; 152(1): 19-25. https://doi.org/10.1016/j.toxlet.2004.03.015
  37. Choi B, Yeum KJ, Park SJ, Kim KN, Joo NS. Elevated serum ferritin and mercury concentrations are associated with hypertension; analysis of the fourth and fifth Korea national health and nutrition examination survey (KNHANES IV-2, 3, 2008-2009 and V-1, 2010). Environ Toxicol 2015; 30(1): 101-108. https://doi.org/10.1002/tox.21899
  38. Pounds JG, Long GJ, Rosen JF. Cellular and molecular toxicity of lead in bone. Environ Health Perspect1991; 91: 17-32.
  39. Kang MH, Park SM, Oh DN, Kim MH, Choi MK. Dietary nutrient and food intake and their relations with serum heavy metals in osteopenic and osteoporotic patients. Clin Nutr Res 2013; 2(1): 26-33. https://doi.org/10.7762/cnr.2013.2.1.26
  40. Korea Centers for Disease Control and Prevention. Major food sources of Na and Ca in Korea: Korea National Health and Nutrition Examination Survey[Internet]. Cheongwon: Korea Centers for Disease Control and Prevention; 2010 [cited 2017 Feb 12]. Available from: http://cdc.go.kr/CDC/cms/cmsFileDownload.jsp?fid=31&cid=12407&fieldName=attach1&index=1.
  41. Reeves PG, ChaneyRL. Bioavailability as an issue in risk assessment and management of food cadmium: a review. Sci Total Environ 2008; 398(1-3): 13-19. https://doi.org/10.1016/j.scitotenv.2008.03.009

피인용 문헌

  1. Convergent association between socioeconomic status and the blood concentrations of mercury, lead, and cadmium in the Korean adult population: based on the sixth Korea National Health and Nutritional vol.10, pp.5, 2019, https://doi.org/10.15207/jkcs.2019.10.5.051
  2. Dietary Patterns Are Not Consistently Associated with Variability in Blood Lead Concentrations in Pregnant British Women vol.149, pp.6, 2019, https://doi.org/10.1093/jn/nxz023
  3. Relationships of Lead, Mercury and Cadmium Levels with the Timing of Menarche among Korean Girls vol.26, pp.1, 2017, https://doi.org/10.4094/chnr.2020.26.1.98
  4. Heavy Metals Concentrations in Breast Milk and Related Factors among Early Postpartum Women vol.24, pp.2, 2017, https://doi.org/10.21896/jksmch.2020.24.2.85
  5. 카드뮴과 납의 다경로 노출량 추정 및 통합 위해성 평가 vol.35, pp.6, 2017, https://doi.org/10.13103/jfhs.2020.35.6.587