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HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS

DEFINED BY SKEW-SYMMETRIZABLE MATRICES

Oh-Jin Kang

Abstract. Kang and Ko introduced a skew-symmetrizable matrix to de-
scribe a structure theorem for complete intersections of grade 4. Let R =
k[w0, w1, w2, . . . , wm] be the polynomial ring over an algebraically closed
field k with indetermiantes wl and degwl = 1, and Ii a homogeneous
perfect ideal of grade 3 with type ti defined by a skew-symmetrizable
matrix Gi(1 ≤ ti ≤ 4). We show that for m = 2 the Hilbert func-
tion of the zero dimensional standard k-algebra R/Ii is determined by
CI-sequences and a Gorenstein sequence. As an application of this re-

sult we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence
h(R/Hi) = (1, 4, h2, . . . , hs) is unimodal, where Hi is the sum of ho-
mogeneous perfect ideals Ii and Ji which are geometrically linked by a
homogeneous regular sequence z in Ii ∩ Ji.

1. Introduction

Buchsbaum and Eisenbud [2] gave a structure theorem for Gorenstein ideals
of grade 3 which says that every Gorenstein ideal I0 of grade 3 in a noetherian
local ring is minimally generated by the maximal order pfaffians of an alternat-
ing matrix G0. Brown [1] gave a structure theorem for a class of perfect ideals I1
of grade 3 with type 2 and λ(I1) > 0, where λ is the numerical invariant intro-
duced by Kustin and Miller [14] to classify classes of Gorenstein ideals of grade
4 by distinguishing free resolutions of different forms. Kang and Ko [11] de-
scribed a structure theorem for some class of these ideals (This is a special case
of Theorem 4.4 [1]): Every perfect ideal I1 having an odd number of minimal
generators for I1 is generated by the quotients of the maximal order pfaffians
of the alternating matrix A(G1) induced by a skew-symmetrizable matrix G1

by an element v1 (see Example 3.2 and Theorem 3.3). Cho, Kang and Ko [3]
and Choi, Kang and Ko [4, 5] constructed some classes of perfect ideals Ii of
grade 3 with type ti defined by a skew-symmetrizable matrix Gi for i = 1, 2, 3
(see Definition 3.1 and Examples 3.2 and 3.4). An ideal in these classes is
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generated by the quotients of the maximal order pfaffians of the alternating
matrix A(Gi) induced by a skew-symmetrizable matrix Gi by an element vi
(see Theorems 3.3 and 3.5). We define a sequence h = (h0, h1, h2, . . . , hs) of
nonnegative integers with hs 6= 0 to be a PI-sequence of type ti defined by a

skew-symmetrizable matrix Gi if h is the Hilbert function of the zero dimen-
sional standard k-algebra S = R/Ii, where Ii is a homogeneous perfect ideal
of grade 3 with type ti defined by Gi, and t0 = 1, t1 = t4 = 2, t2 = 3 and
t3 = 4. For i = 0 Stanley [17] proved that PI-sequence h = (1, 3, h2, . . . , hs)
of type 1 defined by G0 is unmodal. He used the Buchsbaum and Eisenbud
structure theorem for Gorenstein ideals of grade 3 to prove this. For i = 1, 2, 3
we characterize these PI-sequences h = (1, 3, h2, . . . , hσ) of type ti defined by
Gi as follows: Let qi be the degree of the i-th generators for a Gorenstein ideal
of grade 3 corresponding to a Gorenstein sequence g stated below.

(i) h is a PI-sequence of type 2 defined by G1 if and only if there exist
a Gorenstein sequence g = (1, 3, g2, . . . , gη) and a CI-sequence c =
(c0, c1, c2, . . . , cρ1

) having the type (q1, q2, τ) with 2 ≤ c1 ≤ 3 and
σ = η + τ such that hσ = 1, and hi = ci if 0 ≤ i ≤ τ − 1, and
hi = gi−τ + ci if τ ≤ i ≤ σ (Theorem 4.3). The Hilbert function in
Example 4.4 is in this class.

(ii) If h is a PI-sequence of type 3 defined by G2, then there exist a
Gorenstein sequence g = (1, 3, g2, . . . , gη) and two CI-sequences c =
(c0, c1, c2, . . . , cρ1

) having the type (τ, q2+κ, q3) and ĉ = (ĉ0, ĉ1, ĉ2, . . .,
ĉρ̂1

) having the type (κ, q1, q3) with 2 ≤ c1, ĉ1 ≤ 3 and σ = η + τ + κ
such that hσ = 1, and hi = ci if 0 ≤ i ≤ τ − 1, hi = ci + ĉi−τ if
τ ≤ i < τ + κ and hi = gi−τ−κ + ci + ĉi−τ if τ + κ ≤ i ≤ σ (Theorem
4.6). The Hilbert function in Example 4.7 is in this class.

(iii) If h is a PI-sequence of type 4 defined by G3, then there exist a
Gorenstein sequence g = (1, 3, g2, . . . , gη) and two CI-sequences c =
(c0, c1, c2, . . . , cρ1

) having the type (τ + q1, κ + q2, ν + q3) and ĉ =
(ĉ0, ĉ1, ĉ2, . . . , ĉρ̂1

) having the type (q1, q2, q3) with 2 ≤ c1, ĉ1 ≤ 3 and
σ = η+ τ +κ+ ν such that hσ = 1, and hi = ci if 0 ≤ i ≤ τ +κ+ ν− 1
and hi = gi−τ−κ−ν + ci− ĉi−τ−κ−ν if τ +κ+ ν ≤ i ≤ σ (Theorem 4.8).
The Hilbert function in Example 4.9 is in this class.

We use Theorems 4.4 [1] or 3.3 to prove (i) and Theorems 3.6 [4] and 3.11 [5] to
show (ii) and (iii). We use these results (Theorems 4.3, 4.6 and 4.8), Proposition
5.1 and Lemmas 5.2, 5.3, 5.4 to prove that every Gorenstein sequence h(R/Hi)
mentioned in the abstract is unimodal for i = 1, 2, 3 (Theorem 5.5). Let Gp(4)
be the set of Gorenstein sequences h(R/H) = (1, 4, h2, . . . , hs), where H is the
sum of homogeneous perfect ideals I and J of grade 3 geometrically linked by
a homogeneous regular sequence z. There exist many examples of unimodal
Gorenstein sequences h(R/H) = (1, 4, . . . , hs) in Gp(4) [7, 8, 13, 15, 16]. We
use Proposition 5.10 to show that if a Gorenstein sequence h(R/H) in Gp(4)
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falls into one of the following three cases, then h(R/H) is unimodal (Corollary
5.12): Let σ = σ(R/(z)), σ∗ = σ(R/I) and σ − σ∗ = α∗.

(p) σ∗ ≤ [(σ − 1)/2]. A Gorenstein sequence h(R/H) in Example 5.13
belongs to this case.

(q) [(σ− 1)/2] < σ∗ and [(σ − 1)/2] < α∗. A Gorenstein sequence h(R/H)
in Example 5.14 belongs to this case.

(r) α∗ ≤ [(σ − 1)/2] < σ∗ and ∆H(R/I, i) −∆H(R/I, σ − i) ≥ 0 for i =
α∗, α∗ +1, . . . , [(σ− 1)/2]. A Gorenstein sequence h(R/H) in Example
5.15 belongs to this case.

In Section 2 we review the Hilbert functions of the standard k-algebras.
In Section 3 for i = 1, 2, 3 we review various properties of perfect ideals Ii
of grade 3 defined by a skew-symmetrizable matrix Gi in a noetherian local
ring. In Section 4 as we have mentioned above we show that the Hilbert
function of a zero dimensional standard k-algebra R/Ii expressed as in terms
of a Gorenstein sequence and CI-sequences for i = 1, 2, 3. We will see that
the numerical invariant λ plays a role of distinguishing between PI-sequences
h = (1, 3, h2, . . . , hs) of type 2 defined by G1 and by G4 (see Theorem 4.3
and Example 4.5). In Section 5 we give some lemmas and a proposition for
the proof of Theorem 5.5 and Corollary 5.12, and some unimodal Gorenstein
sequences in Gp(4).

2. Preliminaries

Let S = S0 + S1 + S2 + · · · be a standard k-algebra over a field k. Thus
S0 = k, S is generated by the elements of S1 and S1 is a finite dimensional
k-vector space. The Hilbert function of S is defined by H(S, t) = dimk St for
t = 0, 1, 2, . . . . Thus H(S, 0) = 1. Define the Hilbert series HS(λ) of S to be
the formal power series

HS(λ) =

∞
∑

t=0

H(S, t)λt ∈ Z[[λ]].

As a consequence of the Hilbert syzygy theorem, we can write HS(λ) in the
form

HS(λ) =
1 + h1λ+ h2λ

2 + · · ·+ hsλ
s

(1 + λ)d
,

where d is the Krull dimension of S. We call h(S) = (1, h1, h2, . . . , hs) h-
sequence. We put σ(S) = s. We say that an ideal I is homogeneous if I is
generated by homogeneous elements. We observe that if I is homogeneous,
then I inherits a grading I = I0 + I1 + · · · from S given by It = I ∩ St. We
define

H(I, t) = dimk It and HI(λ) =

∞
∑

t=0

H(I, t)λt.



1382 O.-J. KANG

Similarly, the quotient ring S/I inherits a grading from S, and H(S/I, t) is
always defined with respect to this quotient grading. We note that for any
homogeneous ideal I of S,

(2.1) HS(λ) = HI(λ) +HS/I(λ).

The following proposition gives us a characterization of the Hilbert functions
of d-dimensional standard complete intersection k-algebras.

Proposition 2.1 ([17]). Let R be the polynomial ring mentioned in the ab-

stract. Let z1, z2, . . . , zr be a homogeneous regular sequence with deg zi = fi.
Let S be the complete intersection S = R/(z1, z2, . . . , zr) with the quotient

grading. Then

HS(λ) =

∏r
j=1(1− λfj )

(1− λ)m+1
.

The following proposition gives us an information on the Hilbert functions
of standard Cohen-Macaulay k-algebras.

Proposition 2.2 ([17]). Let h = (h0, h1, h2, . . .) be an infinite sequence of

nonnegative integers. The following two conditions are equivalent.

(1) There exists a d-dimensional standard Cohen-Macaulay k-algebra S
with the Hilbert function h, where d is a positive integer and S0 = k.

(2) The power series (1−λ)d
∑∞

i=0 hiλ
i is a polynomial in λ, say p0+p1λ+

· · ·+ psλ
s. Moreover, (p0, p1, . . . , ps) is an O-sequence.

3. Perfect ideals of grade three defined by skew-symmetrizable

matrices

Kang and Ko [10] introduced a skew-symmetrizable matrix to describe a
structure theorem for complete intersections of grade 4. We review perfect
ideals of grade 3 defined by some skew-symmetrizable matrices. We begin this
section with the definition of a skew-symmetrizable matrix.

Definition 3.1. Let R be a commutative ring with identity. An n× n matrix
G over R is said to be skew-symmetrizable if there exist nonzero diagonal
matrices D′ = diag{u1, u2, . . . , un} and D = diag{v1, v2, . . . , vn} with entries
in R such that D′GD is an alternating matrix.

Let G be an n×n skew-symmetrizable matrix with entries in R. Then D′GD
is an alternating matrix for some diagonal matrices D′ and D. We set A(G)
to be an alternating matrix given by

A(G) =

{

G if G is alternating,

D′GD if G is not alternating.

We denote A(G)i by the pfaffian of the (n− 1)× (n− 1) alternating submatrix
of A(G) obtained by deleting the i-th row and column from A(G). Now we
give various homogeneous perfect ideals of grade 3 with type t (1 ≤ t ≤ 4)
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associated with some skew-symmetrizable matrices over a commutative ring R
with identity. Let G̃0 be an n× n alternating matrix for an odd integer n > 1.
Clearly G̃0 is skew-symmetrizable. So we have A(G̃0) = G̃0. Let v0 = 1 and
let x̃i be an element by

x̃i = A(G̃0)i/v0 for i = 1, 2, 3, . . . , n.

We define I0 = Ĩ0 = Pfn−1(G̃0) to be the ideal generated by n elements

x̃1, x̃2, . . . , x̃n. Then it follows from Theorem 2.1 [2] that if Ĩ0 = Pfn−1(G̃0) =

Pfn−1(G̃0) has grade 3, then Ĩ0 is a Gorenstein ideal of grade 3. The following
example gives us skew-symmetrizable matrices which define classes of perfect
ideals I of grade 3 with type 2 and λ(I) > 0 [11].

Example 3.2. Let R be a commutative ring with identity and u1 an element
of R. Let n be an odd integer with n > 3. Let Y = (yij) be an n×n alternating
matrix with y12 = 0 and entries in R. Let A be the submatrix of Y obtained
by deleting the first two columns and the last (n− 2) rows of Y . We define the
n× n skew-symmetrizable matrix G1 by

(3.1) G1 =







0 u1A

−At Y (1, 2)






,

and Y (1, 2) is the (n − 2) × (n − 2) alternating submatrix of Y obtained by
deleting the first, second rows and columns from Y . The alternating matrix
A(G1) is obtained by multiplying the first two columns of G1 by u1. We note
that A(G1)i is divisible by u1 for every i. Let v1 = u1 and let xi be an element
defined by

(3.2) xi = A(G1)i/v1 for i = 1, 2, 3, . . . , n.

We define I1=Pfn−1(G1) to be the ideal generated by n elements x1, x2, . . . , xn.

Let G̃1 = Y be an n × n alternating matrix obtained from G1. Let Ĩ1 be the
ideal generated by the maximal order pfaffians x̃1, x̃2, . . . , x̃n of G̃1. It follows
from Theorem 2.1 [2] that if I1 has grade 3, then Ĩ1 is a Gorenstein ideal of
grade 3. We can easily see from (3.2) that I1 = (x̃1, x̃2, u1x̃3 . . . , u1x̃n).

The following theorem is a special case of Theorem 4.4 [1]. It states that

I1 = Pfn−1(G1) is a perfect ideal of grade 3 satisfying the following properties:
(a) I1 has type 2, (b) the number of generators for I1 is odd, and (c) λ(I1) > 0.

Theorem 3.3 ([11]). Let R be a noetherian local ring with maximal ideal m.

Let n be an odd integer with n > 3 and u1 an element of m. Let G1 be the n×n
skew-symmetrizable matrix in (3.1) with entries in m. Let xi be an element in

(3.2) for i = 1, 2, . . . , n.

(1) If I1 is an ideal of grade 3 generated by x1, x2, . . . , xn and has λ(I1) > 0,
then I1 is a perfect ideal of type 2.
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(2) Every perfect ideal I of grade 3 with type 2 and λ(I) > 0 minimally

generated by n elements arises as in the way of (1).

Next we give two skew-symmetrizable matrices G2 and G3 [4, 5] which define
perfect ideals of grade 3 with type 3 and with type 4, respectively, linked to an
almost complete intersection of grade 3 with even type by a regular sequence.

Example 3.4. Let R be a commutative ring with identity. Let n be an even
integer with n ≥ 4. Let A = (aij) and Y = (yij) be an n × 3 matrix and an
n× n alternating matrix with entries in R, respectively. Let u1, u2 and u3 be
three elements of R. Let F be an 3× n matrix defined by

F =





a11 a21 · · · an1
−a12 −a22 · · · −an2
a13 a23 · · · an3



 .

(1) Let G2 be an (n+ 3)× (n+ 3) skew-symmetrizable matrix by
(3.3)

G2 =







0 F

−F t Y






, where F =





u2a11 u2a21 · · · u2an1
−u1a12 −u1a22 · · · −u1an2
u1u2a13 u1u2a23 · · · u1u2an3



 .

The alternating matrix A(G2) is obtained by multiplying the first column of
G2 by u2, the second column by u1, and the third column by u1u2. We note
that A(G2)i is divisible by u1u2 for every i. Let v2 = u1u2 and let xi be an
element defined by

(3.4) xi = A(G2)i/v2 for i = 1, 2, 3, . . . , n+ 3.

We define I2 = Pfn+2(G2) to be the ideal generated by (n + 3) elements,
x1, x2, x3, . . . , xn+3.

(2) Let G3 be an (n+ 3)× (n+ 3) skew-symmetrizable matrix by
(3.5)

G3 =







0 F̄

−F t Y






, where F̄ =





u2u3a11 u2u3a21 · · · u2u3an1
−u1u3a12 −u1u3a22 · · · −u1u3an2
u1u2a13 u1u2a23 · · · u1u2an3



 .

The alternating matrix A(G3) induced by G3 is obtained by multiplying the
first column of G3 by u2u3, the second column of it by u1u3, and the third
column of it by u1u2. We note that A(G3)i is divisible by u1u2u3 for every i.
Let v3 = u1u2u3 and let xi be an element defined by

(3.6) xi = A(G3)i/v3 for i = 1, 2, 3, . . . , n+ 3.

We define I3 = Pfn+2(G3) to be the ideal generated by (n + 3) elements,

x1, x2, x3, . . . , xn+3. Let G̃2 = G̃3 be an (n+ 3)× (n+ 3) alternating matrix T
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given by

(3.7) T =







0 F

−F t Y







and let Tk be the pfaffian of the (n + 2) × (n + 2) alternating submatrix of
T obtained by deleting the k-th row and column from T. Let x̃i = Ti for
i = 1, 2, 3, . . . , n+ 3. Let Ĩ2 and Ĩ3 be ideals generated by the n + 3 elements
x̃1, x̃2, . . . , x̃n+3. It is easy to show that if I2 or I3 has grade 3, then Ĩ2 and Ĩ3 are
Gorenstein ideals of grade 3. We can also see from (3.4) and (3.6) that I2 =
(u1x̃1, u2x̃2, x̃3, u1u2x̃4, . . . , u1u2x̃n+3) and I3 = (u1x̃1, u2x̃2, u3x̃3, u1u2u3x̃4,
. . . , u1u2u3x̃n+3).

The following theorem says that I2 and I3 are perfect ideals of grade 3 with
type 3 and with type 4, respectively, linked to an almost complete intersection
of grade 3 with even type by a regular sequence.

Theorem 3.5 ([4, 5]). Let R be a noetherian local ring with maximal ideal m.

Let n be an even integer with n ≥ 4. Let G2 and G3 be skew-symmetrizable

matrices in Example 3.4 with entries in m.

(1) Let xi be an element in (3.4) and I2 an ideal generated by (n + 3)
elements x1, x2, . . . , xn+3. If x = x1, x2, x3 is a regular sequence in I2,
then

(a) (x) : I2 is an almost complete intersection of grade 3 with type n,
and

(b) I2 is a perfect ideal of grade 3 with type 3.
(2) Let xi be an element in (3.6) and I3 an ideal generated by (n + 3)

elements x1, x2, . . . , xn+3. If x = x1, x2, x3 is a regular sequence in I3,
then

(a) (x) : I3 is an almost complete intersection of grade 3 with type n,
and

(b) I3 is a perfect ideal of grade 3 with type 4.

Proof. See the proof of (1) of Theorem 3.6 [4] for the proof of (1) of Theorem
3.5. The proof of (2) is similar to that of (1) [5]. �

The following example gives us a skew-symmetrizable matrix G4 which de-
fines a class of perfect ideals I of grade 3 with type 2 [3].

Example 3.6. Let R be a commutative ring with identity. Let n be an odd
integer with n > 1 and u4 a regular element of R. Let A = (aij), C = (cij)
and Y = (yij) be an n × 4 matrix, a 4 × 4 alternating matrix, and an n × n
alternating matrix, respectively. We define G4 to be an (n + 4) × (n + 4)
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skew-symmetrizable matrix as follows:

(3.8) G4 =







C u4A
t

−A Y






.

Let v4 = u2
4 and let xi be an element defined by

(3.9) xi = A(G4)i/v4 for i = 1, 2, 3, . . . , n+ 4.

We define I4 = Pfn+3(G4) to be the ideal generated by n+4 elements x1, x2, . . .,
xn+4.

Theorem 3.17 [3] says that if I4 has grade 3, then I4 is a perfect ideal of
grade 3 with type 2. The minimal free resolution of R/I4 described in [3]. I4
contains a class of perfect ideals I of grade 3 with type 2 and λ(I) = 0 (see
Example 3.18 [3]).

We close this section with the following remark.

Remark 3.7. (1) Theorems 3.3 and 3.5 are true for the polynomial ring R
mentioned in the abstract and the homogeneous perfect ideal Ii of grade 3 for
i = 1, 2, 3.

(2) A perfect ideal Ii of grade 3 mentioned in this section is algebraically
linked to an almost complete intersection of grade 3 by a regular sequence for
i = 1, 2, 3. A structure theorem for such a perfect ideal Ii appears in [9].

4. Hilbert functions of the standard k-algebras defined by

skew-symmetrizable matrices

In this section we characterize the Hilbert function of the standard k-algebra
S = R/Ii, where R is the polynomial ring mentioned in the abstract and Ii is
a homogeneous perfect ideal of grade 3 in R generated by the quotients of the
maximal order pfaffians of the alternating matrix A(Gi) by an element vi. We
say that a sequence h = (h0, h1, h2, . . . , hs) of nonnegative integers with hs 6= 0
is a Gorenstein sequence if there exists a zero dimensional standard Gorenstein
k-algebra S with the Hilbert function h. Stanley characterized a Gorenstein
sequence h = (h0, h1, h2, . . . , hs) with h1 ≤ 3.

Theorem 4.1 ([17]). Let h = (h0, h1, h2, . . . , hs) be a sequence of nonnegative

integers with h1 ≤ 3 and hs 6= 0. Then h is a Gorenstein sequence if and only

if

(1) hi = hs−i for each i(0 ≤ i ≤ s), and
(2) (h0, h1 − h0, h2 − h1, . . . , ht − ht−1) is an O-sequence for t = [ s2 ].

Here is an example.

Example 4.2. h = (1, 3, 6, 8, 6, 3, 1) is a Gorenstein sequence. To see this,
by Theorem 4.1 it is sufficient to show that (1, 2, 3, 2) is an O-sequence. Let
m = 1. Let K = (w3

0 , w
2
0w

2
1 , w

3
1) be the ideal generated by w3

0 , w
2
0w

2
1 and w3

1 .
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ThenK is a perfect ideal of grade 2 and the Hilbert series of R/K isHR/K(λ) =

1 + 2λ + 3λ2 + 2λ3. Hence it follows from Theorem 2.2 [17] that (1, 2, 3, 2) is
an O-sequence.

Next we turn to the Hilbert function of the standard k-algebra S = R/I1,
where I1 is a homogeneous perfect ideal of grade 3 with type 2 defined by a
skew-symmetrizable matrix G1 in (3.1). The minimal free resolution of R/I1
is

(4.1) G : 0 //

2
⊕

i=1

R(−s̄i)
f3

//

n+1
⊕

i=1

R(−p̄i)
f2

//

n
⊕

i=1

R(−q̄i)
f1

// R,

where for each i, fi is a homogeneous map of degree 0 given by

V =
[

−x2 x1 0 · · · 0
]t
,

f1 =
[

x1 x2 · · ·xn

]

,

f2 =
[

G1 V
]

,

f3 =

[

Y1 Y2 Y3 · · · Yn 0
0 0 Y123 · · · Y12n −u1

]t

,

and the shifted degrees are

q̄i = deg xi for i = 1, 2, . . . , n,

p̄1 = deg yl1 + q̄l for some l(3 ≤ l ≤ n),

p̄2 = deg yl2 + q̄l for some l(3 ≤ l ≤ n),

p̄i = deg u1 + deg yli + q̄l or p̄i = deg yci + q̄c for i = 3, 4, . . . , n,

l = 1 or l = 2, and c is an integer with 3 ≤ c ≤ n,

p̄i = q̄1 + q̄2 for i = n+ 1,

s̄1 = deg Yj + p̄j for some j(1 ≤ j ≤ n),

s̄2 = deg Y12j + p̄j or s̄2 = deg u1 + p̄n+1 for some j(3 ≤ j ≤ n).

We say that a sequence c = (c0, c1, c2, . . . , cρ) of nonnegative integers with cρ 6=
0 is a CI-sequence having the type (d0, d1, d2, . . . , dm) if c is the Hilbert function
of a zero dimensional standard complete intersection k-algebra S = R/I, where
I is a homogeneous complete intersection generated by a homogeneous regular
sequence z = z0, z1, z2, . . . , zm with deg zi = di. It follows from Proposition
2.1 that ρ =

∑m
i=0(di − 1). We define a sequence h = (h0, h1, h2, . . . , hσ) of

nonnegative integers with hσ 6= 0 to be a Brown sequence if there exists a zero
dimensional standard k-algebra S = R/I with the Hilbert function h, where I
is a homogeneous perfect ideal of type 2 with λ(I) > 0. Now we characterize
a class of Brown sequences h with h1 = 3 by using Theorems 3.3 or 4.4 [1].
We say that h = (h0, h1, h2, . . . , hσ) is a Brown sequence with h1 = 3 defined
by a skew-symmetrizable matrix G1 in (3.1) if h is the Hilbert function of the
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zero dimensional standard k-algebra S = R/I1, where I1 = Pfn−1(G1) is a
homogeneous perfect ideal of grade 3 with type 2 and λ(I1) > 0.

Theorem 4.3. With the notation above, h = (h0, h1, h2, . . . , hσ) is a Brown

sequence with h1 = 3 defined by a skew-symmetrizable matrix G1 in (3.1) if

and only if there exist a Gorenstein sequence g = (g0, g1, g2, . . . , gη) and a CI-

sequence c = (c0, c1, c2, . . . , cρ1
) with g1 = 3 and 2 ≤ c1 ≤ 3 satisfying three

following properties:

(1) c has the type (q1, q2, τ), where qi is the degree of the i-th gener-

ator for the Gorenstein ideal Ĩ1 of grade 3 corresponding to g for

i = 1, 2, 3, . . . , n,
(2) σ = η + τ,
(3) hσ = 1 and

hi =

{

ci if 0 ≤ i ≤ τ − 1

gi−τ + ci if τ ≤ i ≤ σ,

where we set gi = 0 if η < i ≤ σ and ci = 0 if ρ1 < i ≤ σ.

Proof. Let h = (h0, h1, h2, . . . , hσ) be a Brown sequence with h1 = 3 defined
by a skew-symmetrizable matrix G1 in (3.1). Then there exists a homogeneous
perfect ideal I1 of grade 3 with type 2 and λ(I1) > 0 in the polynomial ring
R = k[w0, w1, w2] over the algebraically closed field k with degwi = 1 such
that h is the Hilbert function of S = R/I1. First we show the existence of a
Gorenstein sequence g. By Theorems 3.3 or 4.4 [1] there exists an n× n skew-

symmetrizable matrix G1 in (3.1) such that I1 = Pfn−1(G1). Let Y = (yij) be

an n×n alternating matrix and let Ĩ1 = Pfn−1(Y ) be the ideal in Example 3.2.

Then the grade of Ĩ1 is less than or equal to 3. Since I1 ⊆ Ĩ1 and I1 has grade
3, Ĩ1 has grade 3. Hence by Theorem 2.1 [2] S = R/Ĩ1 is a zero dimensional

standard Gorenstein k-algebra. The minimal free resolution of R/Ĩ1 is given
in [2]. Hence there exists a Gorenstein sequence g = (g0, g1, g2, . . . , gη), where

gi = H(R/Ĩ1, i) for i = 0, 1, 2, . . . , η.

Now we prove (1). The minimal free resolution of R/I1 is given in (4.1). We
note that

hi = H(R/I1, i) for i = 0, 1, 2, . . . , σ.

Let τ = deg u1. Since R/I1 and R/Ĩ1 are zero dimensional, it follows from the
consequence of the Hilbert syzygy theorem that

(4.2)

η
∑

i=0

H(R/Ĩ1, i)λ
i =

g̃(λ)

(1− λ)3
and

σ
∑

i=0

H(R/I1, i)λ
i =

h̃(λ)

(1− λ)3
,

where

(4.3) g̃(λ) = 1−

n
∑

i=1

λ
1

2
(s−ri) +

n
∑

i=1

λ
1

2
(s+ri) − λs,
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h̃(λ) = 1−
2
∑

i=1

λ
1

2
(s−ri) −

n
∑

i=3

λ
1

2
(s−ri+2τ) +

n
∑

i=1

λ
1

2
(s+ri+2τ)

+ λs− 1

2
(r1+r2) − λs+τ − λs+τ− 1

2
(r1+r2),

(4.4)

and ri and s are integers given in [2] (see 466 page). Let

σ
∑

i=0

eiλ
i = h̃(λ)− g̃(λ)

be the difference of two polynomials h̃(λ) and g̃(λ). Then we have

σ
∑

i=0

eiλ
i = −

n
∑

i=3

λ
1

2
(s−ri+2τ) +

n
∑

i=1

λ
1

2
(s+ri+2τ) + λs− 1

2
(r1+r2) − λs+τ

− λs+τ− 1

2
(r1+r2) +

n
∑

i=3

λ
1

2
(s−ri) −

n
∑

i=1

λ
1

2
(s+ri) + λs

= (1− λτ )

(

n
∑

i=3

λ
1

2
(s−ri) −

n
∑

i=1

λ
1

2
(s+ri) + λs + λs− 1

2
(r1+r2)

)

= (1− λτ )

(

−g̃(λ) + 1−
2
∑

i=1

λ
1

2
(s−ri) + λs− 1

2
(r1+r2)

)

= (1− λτ )
(

−g̃(λ) + (1 − λ
1

2
(s−r1))(1− λ

1

2
(s−r2))

)

.

(4.5)

Hence

σ
∑

i=0

eiλ
i = − (1 − λτ )g̃(λ) + (1− λ)3

2
∏

j=1

(1 + λ+ λ2 + · · ·+ λqj−1)

× (1 + λ+ λ2 + · · ·+ λτ−1),

where qi = 1
2 (s − ri) for i = 1, 2. Let ρ1 = q1 + q2 + τ − 3. Let c(λ) be the

polynomial defined by

c(λ) =

ρ1
∑

i=0

ciλ
i =

2
∏

i=1

(1 + λ+ λ2 + · · ·+ λqi−1)(1 + λ+ λ2 + · · ·+ λτ−1).

Then c(λ) is the Hilbert series of the zero dimensional standard complete inter-
section k-algebra R/(wq1

0 , wq2
1 , wτ

2 ). Hence (1) is proved. It follows from (4.2),

(4.3) and (4.4) that the degrees of two polynomials g̃(λ) and h̃(λ) are

s = η + 3 and σ + 3 = s+ τ,

respectively. This proves (2). Finally we prove (3). We set

gi = 0 for i = η + 1, η + 2, . . . , σ.
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It follows from (4.2) and (4.5) that

(4.6)

σ
∑

i=0

(hi − gi)λ
i =

σ
∑

i=0

eiλ
i

(1− λ)3
= −(1− λτ )

η
∑

i=0

giλ
i + c(λ).

Hence

hi =

{

ci if 0 ≤ i ≤ τ − 1

gi−τ + ci if τ ≤ i ≤ σ.

Since ρ1 = s− 1
2 (r1+r2)+τ−3 and σ = s+τ−3, it follows that ρ1 < σ = η+τ.

Hence it follows from (4.6) that hσ = gη = 1. This proves (3). Conversely, we
assume that the three properties (1), (2) and (3) are true. Since h1 = 3 and
g is a Gorenstein sequence, by Theorem 2.1 [2], there exists a homogeneous
Gorenstein ideal K of grade 3 such that

(4.7)

η
∑

i=0

giλ
i =

η
∑

i=0

H(R/K, i)λi =
g̃(λ)

(1− λ)3
,

where g̃(λ) is the polynomial in (4.3). Furthermore, we can see from [2] (see
page 466) that qi =

1
2 (s− ri) for i = 1, 2. Then ρ1 = q1 + q2 + τ − 3. By (1) we

have

c(λ) =

ρ1
∑

i=0

ciλ
i =

∏2
i=1(1 − λqi)(1 − λτ )

(1− λ)3
.

Since σ = η + τ, (3) implies that

σ
∑

i=0

hiλ
i =

η+τ
∑

i=0

hiλ
i =

τ−1
∑

i=0

ciλ
i +

η+τ
∑

i=τ

gi−τλ
i +

ρ1
∑

i=τ

ciλ
i.

We want to show that
σ
∑

i=0

hiλ
i =

h̃(λ)

(1− λ)3
,

where h̃(λ) is the polynomial in (4.4). Since gi = 0 for η < i ≤ σ, it follows
from (4.7) that

η+τ
∑

i=τ

gi−τλ
i = λτ

η
∑

i=0

giλ
i =

λτ g̃(λ)

(1− λ)3
.

A direct computation shows that

σ
∑

i=0

hiλ
i =

ρ1
∑

i=0

ciλ
i +

η+τ
∑

t=τ

gi−τλ
i =

λτ g̃(λ)

(1− λ)3
+

∏2
i=1(1− λqi)(1 − λτ )

(1− λ)3

=
h̃(λ)

(1− λ)3
.

The last identity follows from (4.5). It follows from (4.2) and Theorems 3.3 or
4.4 [1] that there exists a zero dimensional standard k-algebra S = R/I1 with
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the Hilbert function h = (h0, h1, h2, . . . , hσ), where I1 is a homogeneous perfect
ideal of grade 3 with type 2 and λ(I1) > 0 defined by a skew-symmetrizable
matrix G1 in (3.1). This completes the proof. �

We give an example which demonstrates Theorem 4.3.

Example 4.4. h = (1, 3, 6, 8, 4, 1) is a Brown sequence defined by a skew-
symmetrizable matrix G1 in (3.1) given as follows

G1 =





















0 0 w1w2 w2
2 −w0w2 0 0

0 0 w0w2 0 0 −w0w2 w2
2

−w1 −w0 0 w1 w0 w2 0
−w2 0 −w1 0 w0 w1 0
w0 0 −w0 −w0 0 w2 w1

0 w0 −w2 −w1 −w2 0 w0

0 −w2 0 0 −w1 −w0 0





















,

where v1 = u1 = w2. So τ = deg u1 = degw2 = 1. Let m = 2. Let I1 =
(x1, x2, . . . , x7) be the ideal in Example 3.2. Then a direct computation by
CoCoA 4.7.5, Algebra system shows that I1 is a perfect ideal of grade 3 with
type 2. Since x = x1, x2, x3 is a regular sequence such that (x) : I1 is an almost
complete intersection of grade 3, Proposition 2.5 [1] gives us that λ(I) > 0.
h = (h0, h1, h2, h3, h4, h5) = (1, 3, 6, 8, 4, 1) is the Hilbert function of R/I1.
Hence σ = 5. Let Y be an 7 × 7 alternating matrix in Example 3.2. We can
get Y from G1. Let Ĩ1 be the ideal generated by the maximal order pfaffians
of Y. Since I1 has grade 3 and I1 ⊂ Ĩ1, Ĩ1 is a Gorenstein ideal of grade 3.
The Hilbert function of R/Ĩ1 is g = (g0, g1, g2, g3, g4) = (1, 3, 6, 3, 1). Hence
η = 4 and σ = 5 = 4 + 1 = η + τ. We know that q1 = 3 and q2 = 3. Since
c = (c0, c1, c2, c3, c4) = (1, 2, 3, 2, 1) is a CI-sequence having type (3, 3, 1), it
follows that

hi = ci for i = 0, and hi = gi−1 + ci for i = 1, 2, 3, 4, 5,

where we set gi = 0 and ci = 0 for i = 5.

For i = 0, 1, 2, 3, 4 we let Gi be a skew-symmetrizable matrix in Section 3
(for i = 0 we set G0 = G̃0). We say that a sequence h = (h0, h1, h2, . . . , hσ) of
nonnegative integers with hs 6= 0 is a PI-sequence of type ti defined by a skew-

symmetrizable matrix Gi if h is the Hilbert function of the zero dimensional
standard k-algebra S = R/Ii, where Ii is a homogeneous perfect ideal of grade
3 with type ti defined by Gi. For example, Theorems 2.1 [2] and 4.2 [17] say
that every Gorenstein sequence h with h1 = 3 is a PI-sequence of type 1 defined
by G0. Moreover, Theorems 3.3 and 3.5 say that there exist many PI-sequences
of type ti defined by Gi, where ti = 2, 3, 4 for i = 1, 2, 3. The following example
gives us a PI-sequence h of type 2 with h1 = 3 which does not belong to a class
of Brown sequences with h1 = 3 defined by G1 in (3.1).

Example 4.5. Let h = (1, 3, 6, 10, 8, 4, 1) be a sequence of positive integers.
Let m = 2. First we show that h is not the Hilbert function of R/I1, where I1
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is a homogeneous perfect ideal of grade 3 mentioned in Theorem 3.3. Suppose
that h is the Hilbert function of R/I1. Let g be a Gorenstein sequence in

Theorem 4.3 and let Ĩ1 be a Gorenstein ideal of grade 3 corresponding to g.
Let q1 and q2 be the integers mentioned in (1) of Theorem 4.3. Since h3 = 10
is equal to the number of monomials of degree 3 in R, it follows from (2.1) that
the degrees of generators for I1 are greater than or equal to 4. Hence q1 and
q2 are greater than or equal to 4. Let σ and ρ1 be the integers mentioned in
Theorem 4.3. Then σ = 6 and ρ1 < σ = 6. However, this is contrary to the
fact that ρ1 = q1 + q2 + τ − 3, q1 + q2 − 2 ≥ 6 and τ − 1 ≥ 0. Hence h is
not the Hilbert function of R/I1. Now we show that h is the Hilbert function

of the zero dimensional standard k-algebra R/I4, where I4 = Pf6(G4) is a
homogeneous perfect ideal of grade 3 defined as follows: Let G4 be an 7 × 7
skew-symmetrizable matrix in (3.8) given by

G4 =





















0 0 0 w1 w2
2 0 0

0 0 w0 w2 0 w0w2 0
0 −w0 0 0 0 w1w2 0

−w1 −w2 0 0 0 0 w0w2

−w2 0 0 0 0 w2
0 w2

1

0 −w0 −w1 0 −w2
0 0 w2

2

0 0 0 −w0 −w2
1 −w2

2 0





















.

Then I4 = (x1, x2, . . . , x7) is a perfect ideal of grade 3 with type 2, where
v4 = w2

2 and xi = A(G4)/v4 for i = 1, 2, . . . , 7 (see (3.9)). Theorem 3.17 [3]
says that I4 has type 2. The Hilbert function of R/I4 is h = (1, 3, 6, 10, 8, 4, 1).
Hence h is a PI-sequence of type 2 defined by G4. Since L = (x) : I4 is a perfect
ideal of grade 3 minimally generated by five elements for any regular sequence
x = xi, xj , xk in I4, Proposition 2.5 [1] says that λ(I4) = 0.

Now we characterize the Hilbert function of a zero dimensional standard
k-algebra R/I2, where I2 is a homogeneous perfect ideal of grade 3 with type 3
defined by a skew-symmetrizable matrix G2 in (3.3). (1) of Theorem 3.5 says
that I2 is a perfect ideal of grade 3 with type 3 linked to a homogeneous almost
complete intersection of grade 3 with even type by a regular sequence.

Theorem 4.6. Let h = (h0, h1, h2, . . . , hσ) be a sequence of nonnegative inte-

gers with h1 = 3 and hσ 6= 0. If h is the Hilbert function of the zero dimensional

standard k-algebra R/I2, where I2 is a homogeneous perfect ideal of grade 3 with

type 3 defined by a skew-symmetizable matrix G2 in (3.3), then there exist a

Gorenstein sequence g = (g0, g1, g2, . . . , gη) with g1 = 3 and two CI-sequences

c = (c0, c1, c2, . . . , cρ1
) and ĉ = (ĉ0, ĉ1, ĉ2, . . . , ĉρ̂1

) with 2 ≤ c1, ĉ1 ≤ 3 satisfying

the following three properties:

(1) c and ĉ have the types (τ, q2 + κ, q3) and (κ, q1, q3), respectively, where

qi is the degree of the i-th generator for the Gorenstein ideal Ĩ2 of grade

3 corresponding to g for i = 1, 2, 3, . . . , n+ 3, respectively,
(2) σ = η + τ + κ,
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(3) hσ = 1 and

hi =











ci if 0 ≤ i ≤ τ − 1

ci + ĉi−τ if τ ≤ i < τ + κ

gi−τ−κ + ci + ĉi−τ if τ + κ ≤ i < σ,

where we set gi = 0 if η < i ≤ σ, ci = 0 if ρ1 < i ≤ σ and ĉi = 0 if

ρ̂1 < i ≤ σ.

Proof. The proof is similar to that of if part of Theorem 4.3. Let Ĩ2 =
(x̃1, x̃2, . . . , x̃n+3) be a homogeneous Gorenstein ideal of grade 3 in Example 3.4
and g the Hilbert function of a zero dimensional standard Gorenstein k-algebra
R/Ĩ2. The Hilbert series of R/Ĩ2 is

HR/Ĩ2
(λ) =

η
∑

i=0

giλ
i =

g̃(λ)

(1 − λ)3
,

where g̃(λ) is mentioned in (4.3) and we replace n with n+3. Let I2 be a homo-
geneous perfect ideal of grade 3 with type 3 defined by a skew-symmetrizable
matrix G2 in (3.3). The minimal free resolution of R/I2 described in [4] as
follows:
(4.9)

Fhom : 0 //

3
⊕

i=1

R(−s̄i)
f3

//

n+5
⊕

i=1

R(−p̄i)
f2

//

n+3
⊕

i=1

R(−q̄i)
f1

// R,

where

f1 =
[

x1 x2 x3 · · · xn+3

]

, f2 =

[

0 F̄ B
−F t Y 0

]

, f3 =





C
Q
N



 ,

B =





0 x3

x3 0
−x2 −x1



 , C =





0 −Pf(Y ) T1

Pf(Y ) 0 T2

0 0 T3



 , Q =











−q21 q11 T4

−q22 q12 T5

...
...

...
−q2n q1n Tn+3











,

N =

[

0 u1 0
u2 0 0

]

, qij = (−1)i+1
∑

1≤k≤r

Yjkaki for i = 1, 2,

and the shifted degrees are

q̄i = deg xi for i = 1, 2, . . . , n+ 3,

p̄i = deg aji + q̄j+3 for i = 1, 2, 3, and for some j(1 ≤ j ≤ n),

p̄i = d+ deg ai−3,l + q̄l for i = 4, 5, . . . , n+ 3 and for some l(1 ≤ l ≤ 3), or

p̄i = deg am,i−3 + q̄m+3 for i = 4, 5, . . . , n+ 3 and for some m(1 ≤ m ≤ n),

p̄i = q̄3 + q̄2 for i = n+ 4 and p̄i = q̄1 + q̄3 for i = n+ 5,
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s̄1 = deg Pf(Y ) + p̄2 or s̄1 = deg q2l + p̄l+3 for some l(1 ≤ l ≤ n) or

s̄1 = deg u2 + p̄n+5,

s̄2 = deg Pf(Y ) + p̄1 or s̄2 = deg q1l + p̄l+3 for some l(1 ≤ l ≤ n) or

s̄2 = deg u1 + p̄n+4,

s̄3 = deg Tm + p̄m for some m(1 ≤ m ≤ n+ 3),

d =











deg u2 if l = 1

deg u1 if l = 2

deg u1 + deg u2 if l = 3.

Let τ = deg u1 and κ = deg u2. Since R/I2 is zero dimensional, the Hilbert
series of R/I2 is

σ
∑

i=0

H(R/I2, i)λ
i =

σ
∑

i=0

hiλ
i =

h̃(λ)

(1− λ)3
,

where

h̃(λ) = 1− λ
1

2
(s−r1)+τ − λ

1

2
(s−r2)+κ − λ

1

2
(s−r3)

−

n+3
∑

i=4

λ
1

2
(s−ri)+τ+κ +

n+3
∑

i=1

λ
1

2
(s+ri)+τ+κ + λs− 1

2
(r2+r3)+κ

+ λs− 1

2
(r1+r3)+τ − λs− 1

2
(r2+r3)+τ+κ − λs− 1

2
(r1+r3)+τ+κ − λs+τ+κ.

The difference of two polynomials h̃(λ) and g̃(λ) is

h̃(λ)− g̃(λ)

= − (1− λτ+κ)g̃(λ) − λτ+κ +

3
∑

i=1

λ
1

2
(s−ri)+τ+κ

+ (1− λ
1

2
(s−r3))(1− λ

1

2
(s−r1)+τ

− λ
1

2
(s−r2)+κ)− λ

1

2
(s−r3)+τ+κ(λ

1

2
(s−r1) + λ

1

2
(s−r2))

= − (1− λτ+κ)g̃(λ) + (1− λ
1

2
(s−r3))(1− λ

1

2
(s−r1)+τ − λ

1

2
(s−r2)+κ

− λτ+κ + λ
1

2
(s−r1)+τ+κ + λ

1

2
(s−r2)+τ+κ)

= − (1− λτ+κ)g̃(λ)

+ (1− λ
1

2
(s−r3)){(1− λτ )(1− λ

1

2
(s−r2)+κ) + λτ (1− λκ)(1 − λ

1

2
(s−r1))}.

Let d1 = τ , d2 = 1
2 (s − r2) + κ, d3 = 1

2 (s − r3) and d̂1 = κ, d̂2 = 1
2 (s − r1),

d̂3 = 1
2 (s− r3). Let

ρ1 =

3
∑

i=1

(di − 1) = s−
1

2
(r2 + r3) + τ + κ− 3 and
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ρ̂1 =

3
∑

i=1

(d̂i − 1) = s−
1

2
(r1 + r3) + κ− 3.

Then

c(λ) =

ρ1
∑

t=0

ctλ
t =

3
∏

i=1

(1 + λ+ λ2 + · · ·+ λdi−1)

and

ĉ(λ) =

ρ̂1
∑

t=0

ĉtλ
t =

3
∏

i=1

(1 + λ+ λ2 + · · ·+ λd̂i−1)

are the Hilbert series of the standard complete intersection k-algebras

R/(wd1

0 , wd2

1 , wd3

2 ) and R/(wd̂1

0 , wd̂2

1 , wd̂3

2 ), respectively. This proves (1). In
the similar way of the proof of Theorem 4.3, σ + 3 = s+ τ + κ and η + 3 = s.
This implies that σ = η + τ + κ. This proves (2). We note that

(4.10)
σ
∑

i=0

hiλ
i = λτ+κ

η
∑

i=0

giλ
i + c(λ) + λτ ĉ(λ).

(3) follows from (4.10). �

The following example illustrates Theorem 4.6.

Example 4.7. Let m = 2. h = (1, 3, 6, 9, 10, 5, 1) is a PI-sequence of type 3
defined by a skew-symmetrizable matrix G2 in (3.3) given as follows

G2 =





















0 0 0 w2
1 w0w1 0 w1w2

0 0 0 −w2
0 0 −w0w2 0

0 0 0 0 w2
0w1 0 w0w

2
1

−w1 w0 0 0 w2 0 0
−w0 0 −w0 −w2 0 w1 0
0 w2 0 0 −w1 0 w0

−w2 0 −w1 0 0 −w0 0





















,

where v2 = w0w1. I2 = (x1, x2, . . . , x7) is a perfect ideal of grade 3 with
type 3, where xi = A(G2)i/v2 for i = 1, 2, 3, . . . , 7 (see (3.4)). So τ =
deg u1 = degw0 = 1 and κ = deg u2 = degw1 = 1. The Hilbert function
of R/I2 is h = (h0, h1, h2, h3, h4, h5, h6) = (1, 3, 6, 9, 10, 5, 1). Hence σ = 6.

We can get an 7 × 7 alternating matrix T in (3.7) from G2. Let Ĩ2 be the
ideal generated by the maximal order pfaffians of T . Since I2 has grade
3 and I2 ⊂ Ĩ2, Ĩ2 is a Gorenstein ideal of grade 3. The Hilbert function
of R/Ĩ2 is g = (g0, g1, g2, g3, g4) = (1, 3, 6, 3, 1). Hence η = 4. Thus σ =
6 = 4 + 1 + 1 = η + τ + κ. We know that d1 = 1, d2 = 4, d3 = 3 and

d̂1 = 1, d̂2 = 3, d̂3 = 3. Since c = (c0, c1, c2, c3, c4, c5) = (1, 2, 3, 3, 2, 1) and
ĉ = (ĉ0, ĉ1, ĉ2, ĉ3, ĉ4) = (1, 2, 3, 2, 1) are CI-sequences having the type (1, 4, 3)
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and (1, 3, 3), respectively, ρ1 = 3+ 2 = 5 and ρ̂1 = 2+2 = 4. So it follows that

6
∑

i=0

hiλ
i = λτ+κ

4
∑

i=0

giλ
i +

ρ1
∑

i=0

ciλ
i + λτ

ρ̂1
∑

i=0

ĉiλ
i.

Finally we characterize the Hilbert function of a zero dimensional standard
k-algebra R/I3, where I3 is a homogeneous perfect ideal of grade 3 with type 4
defined by a skew-symmetrizable matrix G3 in (3.5). (2) of Theorem 3.5 says
that I3 is a perfect ideal of grade 3 with type 4 linked to a homogeneous almost
complete intersection of grade 3 with even type by a regular sequence.

Theorem 4.8. Let h = (h0, h1, h2, . . . , hσ) be a sequence of nonnegative inte-

gers with h1 = 3 and hσ 6= 0. If h is the Hilbert function of the zero dimensional

standard k-algebra R/I3, where I3 is a homogeneous perfect ideal of grade 3 with

type 4 defined by a skew-symmetizable matrix G3 in (3.5), then there exist a

Gorenstein sequence g = (g0, g1, g2, . . . , gη) with g1 = 3 and two CI-sequences

c = (c0, c1, c2, . . . , cρ1
), and ĉ = (ĉ0, ĉ1, ĉ2, . . . , ĉρ̂1

) with 2 ≤ c1, ĉ1 ≤ 3 satisfy-

ing the following three properties:

(1) c and ĉ have the types (τ+q1, κ+q2, ν+q3) and (q1, q2, q3), respectively,

where qi is the degree of the i-th generator for the Gorenstein ideal Ĩ3
of grade 3 corresponding to g for i = 1, 2, 3, . . . , n+ 3,

(2) σ = η + τ + κ+ ν,
(3) hσ = 1 and

hi =

{

ci if 0 ≤ i ≤ τ + κ+ ν − 1

gi−τ−κ−ν + ci − ĉi−τ−κ−ν if τ + κ+ ν ≤ i < σ,

where we set gi = 0 if η < i ≤ σ, ci = 0 if ρ1 < i ≤ σ and ĉi = 0 if

ρ̂1 < i ≤ σ.

Proof. The proof is similar to that of Theorem 4.6. �

The following example illustrates Theorem 4.8.

Example 4.9. Let m = 2. h = (1, 3, 6, 10, 12, 12, 6, 1) be a PI sequence of type
4 defined by a skew-symmetrizable matrix G3 in (3.5) given by

G3 =





















0 0 0 w0w1w2 0 w1w
2
2 w2

1w2

0 0 0 −w0w
2
2 −w2

0w2 −w0w
2
2 0

0 0 0 0 w0w
2
1 w2

0w1 w0w
2
1

−w0 w2 0 0 0 w1 w0

0 w0 −w1 0 0 0 w2

−w2 w2 −w0 −w1 0 0 0
−w1 0 −w1 −w0 −w2 0 0





















,

where v3 = w0w1w2. I3 = (x1, x2, . . . , x7) is a perfect ideal of grade 3 with
type 4, where xi = A(G3)i/v3 for i = 1, 2, 3, . . . , 7 (see (3.6)). So τ = degw0 =
1, κ = degw1 = 1 and ν = degw2 = 1. The minimal free resolution of R/I3
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is described in [5]. The Hilbert function of R/I3 is h = (h0, h1, h2, . . . , h7) =
(1, 3, 6, 10, 12, 12, 6, 1).Hence σ = 7. The same argument mentioned in Example

4.7 gives us a Gorenstein ideal Ĩ3 of grade 3 and the Hilbert function of R/Ĩ3
is g = (g0, g1, g2, g3, g4) = (1, 3, 6, 3, 1). Hence η = 4 and σ = 7 = 4 + 1 +

1 + 1 = η + τ + κ + ν. We know that d̂1 = 3, d̂2 = 3 and d̂3 = 3. Since c =
(1, 3, 6, 10, 12, 12, 10, 6, 3, 1) and ĉ = (1, 3, 6, 7, 6, 3, 1) are CI-sequences having
types (4, 4, 4) and (3, 3, 3), respectively, ρ1 = 9 and ρ̂1 = 6. So it follows that

7
∑

i=0

htλ
i = λτ+κ+ν

4
∑

i=0

giλ
i +

ρ1
∑

i=0

ciλ
i − λτ+κ+ν

ρ̂1
∑

i=0

ĉiλ
i.

5. Unimodality of Gorenstein sequence defined by

skew-symmetrizable matrix Gi

In this section we let R = k[w0, w1, w2, w3] be the polynomial ring mentioned
in the abstract (m = 3) and we assume that every perfect ideal P in R and
every regular sequence in P are homogeneous. Let Ii be a perfect ideal of
grade 3 defined by Gi in Section 3 for i = 0, 1, 2, 3 and let a = a1, a2, a3 be
a regular sequence in Ii. Let Hi be the sum of two perfect ideals Ii and Ji
which are geometrically linked by a. We define a sequence h = (1, 4, h2, . . . , hs)
of nonnegative integers with hs 6= 0 to be a Gorenstein sequence defined by

a skew-symmetrizable matrix Gi if h is the Hilbert function of R/Hi for an
integer i(0 ≤ i ≤ 3). In this section we use the results described in Section 3,
Proposition 5.1 and Lemmas 5.2, 5.3, 5.4 below to prove that for i = 1, 2, 3
Gorenstein sequence defined by a skew-symmetrizable matrix Gi is unimodal.
For i = 0 it follows from Theorem 4.1 that Gorenstein sequence h defined by a
skew-symmetrizable matrix G0 is unimodal.

Proposition 5.1. Let I0 and J0 be a Gorenstein ideal of grade 3 and an

almost complete intersection of grade 3 with type t in R, respectively, which

are geometrically linked by a regular sequence a = a1, a2, a3 in I0 ∩ J0. Then if

H0 = I0 + J0, then h(R/H0) = (1, 4, h2, . . . , hσ0
) is unimodal.

Proof. Since I0 is a Gorenstein ideal of grade 3, by Theorem 2.1 [2] I0 =
(Y1, Y2, . . . , Yn) for some n× n alternating matrix Y, where Yi is the maximal
order pfaffians of Y for every i. Since I0 and J0 are geometrically linked, H0 =
(Y1, Y2, . . . , Yn, w) for some homogeneous element w in R. Hence we have H0 =
(I0, w). Let degw = e and let g = (g0, g1, g2, . . . , gη, gη+1, . . .) be the Hilbert
function of R/I0 with σ(R/I0) = η. Since w is regular on R/I0, it follows from
Theorems 2.1 [7] and 3.1 [17] that σ(R/(a)) = η + e and σ(R/H0) = σ0 =
η + e− 1. Since H0 = (I0, w) and degw = e, we have

(5.1) hi =

{

gi if 0 ≤ i ≤ e− 1

gi − gi−e if e ≤ i ≤ σ0.
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We want to show that hi − hi−1 ≥ 0 for an integer i with 1 ≤ i ≤ [σ0/2]. We
have two cases: either e ≤ [σ0/2] or e > [σ0/2].

Case (a) e > [σ0/2].
In this case if 1 ≤ i ≤ [σ0/2], then i < e. Hence hi − hi−1 = gi − gi−1 ≥ 0.
The inequality follows from Proposition 2.2 since R/I0 is a one dimensional
standard Gorenstein k-algebra. So we get the desired result.

Case (b) e ≤ [σ0/2].
If i is an integer with 1 ≤ i ≤ e− 1, then hi − hi−1 = gi − gi−1 ≥ 0. The same
argument of case (a) gives us the desired result. If i = e, then hi − hi−1 =
gi − gi−1 − 1 ≥ 0. The inequality also follows from the same argument. Now
we assume that e < i ≤ [σ0/2]. Since HR/I0(λ) =

∑∞

i=0 giλ
i is the Hilbert

series of a one dimensional standard Gorenstein k-algebra, (1 − λ)HR/I0 (λ) is
the Hilbert series of a zero dimensional standard Gorenstein k-algebra. Hence
(g0, g1 − g0, g2 − g1, . . . , gη − gη−1) is a Gorenstein sequence with g1 − g0 ≤ 3.
It follows from Theorem 4.1 that for each k with 1 ≤ k ≤ [η/2]

gk − gk−1 − (gk−1 − gk−2) ≥ 0, where gl = 0 for l < 0.

Thus for each i with e < i ≤ [σ0/2] it follows from (5.1) that

hi − hi−1 = gi − gi−e − (gi−1 − gi−1−e) = gi − gi−1 − (gi−e − gi−1−e)

= gi − gi−1 − (gi−1 − gi−2) + (gi−1 − gi−2)− (gi−2 − gi−3)

+ (gi−2 − gi−3)− (gi−3 − gi−4) + · · ·+ (gi−e+1 − gi−e)

− (gi−e − gi−1−e) ≥ 0.

This completes the proof. �

Now we prove that a Gorenstein sequence defined by a skew-symmetrizable
matrix Gi in (3.1) or (3.3) or (3.5) is unimodal for i = 1, 2, 3. For this purpose
we need some lemmas. We can get a Gorenstein ideal of grade 3 from Gi. Let
G̃i be an alternating matrix obtained from Gi for i = 1, 2, 3 (see Examples 3.2

and 3.4) and Ĩi = (x̃1, x̃2, . . . , x̃m) a Gorenstein ideal of grade 3 generated by

the maximal order pfaffians of G̃i. Let ã = ã1, ã2, ã3 be a regular sequence in
Ĩi defined as follows for i = 1, 2, 3: Let k be an integer with 3 ≤ k ≤ m, where
m = n or m = n+ 3.

ã =











x̃1, x̃2, x̃k if i = 1

x̃1, x̃2, x̃3 if i = 2

x̃1, x̃2, x̃3 if i = 3.

Let J̃i = (ã) : Ĩi. Then J̃i is an almost complete intersection of grade 3 for

i = 1, 2, 3. We assume that entries of G̃i and all uj are homogeneous in the
ideal m = (w0, w1, w2, w3) of R.

Lemma 5.2. With the notation above, we assume that

(1) Ii and Ji are linked by a, and
(2) Ii has grade 3.
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If Ĩi and J̃i are geometrically linked by ã, then Ii and Ji are geometrically linked

by a.

Proof. Since Ĩi is an ideal generated by the maximal order pfaffians of G̃i, the
grade of Ĩi is less than or equal to 3. Since Ii has grade 3 and Ii is properly
contained in Ĩi, Ĩi has grade 3. Theorem 2.1 [2] implies that Ĩi is Gorenstein.

Hence J̃i = (ã) : Ĩi = (ã1, ã2, ã3, w), where w is an element defined in (3.5) [9].

It follows from the definitions of Gi and G̃i that if i = 1, then a1 = x̃1, a2 = x̃2

and a3 = u1x̃k (see Example 3.2), if i = 2, then a1 = u1x̃1, a2 = u2x̃2 and
a3 = x̃3, and if i = 3, then a1 = u1x̃1, a2 = u2x̃2 and a3 = u3x̃3 (see Example

3.4). Let Ji = (a) : Ii. It is easy to show that J̃i = Ji for i = 1, 2, 3. Since Ĩi and

J̃i are geometrically linked, Ĩi ∩ J̃i = (ã). We want to show that Ii ∩ Ji = (a).

Since Ĩi ∩ J̃i = (ã), w is not contained in Ĩi. Since Ii ⊆ Ĩi, w is not contained

in Ii. Since J̃i = Ji, Ii ∩ Ji = (a). Thus Ii and Ji are geometrically linked by
a. �

Let H be a Gorenstein ideal of grade 4 expressed as the sum of two perfect
ideals of grade 3 geometrically linked by a regular sequence z. Then the Hilbert
function of R/H is characterized as follows.

Lemma 5.3. Let R be the polynomial ring mentioned in this section. Let I
and J be perfect ideals of grade 3 algebraically linked by a regular sequence z
and H = I + J. Then

(5.2) HR/H(λ) = HR/I(λ) +HR/J (λ)−HR/(z)(λ)

if and only if I and J are geometrically linked.

Proof. Let us consider a short exact sequence

(5.3) 0 // R/I ∩ J // R/I ⊕R/J // R/(I + J) // 0.

Suppose that I and J are not geometrically linked. Then I ∩ J 6= (z). Since
(z) ⊆ I and (z) ⊆ J, (z) $ I∩J. Let H(z)(λ) and HI∩J(λ) be the Hilbert series
of (z) and I ∩ J, respectively. Then

H(z)(λ) 6= HI∩J(λ).

On the other hand, we get the following from (5.2) and (5.3)

(5.4) HR/I∩J (λ) = HR/(z)(λ).

We also obtain the following from (2.1) and (5.4)

H(z)(λ) = HI∩J(λ).

This is a contradiction. Conversely, we assume that I and J are geometrically
linked by the regular sequence z. Then I ∩ J = (z) and

HR/I(λ) +HR/J(λ) = HR/I⊕R/J (λ) = HR/(z)(λ) +HR/H (λ).

Hence we have the desired result. �
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We remark that Lemma 5.3 is true for a Gorenstein ideal H of grade m+ 1
in the polynomial ring R mentioned in the abstract such that H is the sum of
perfect ideals I and J of grade m geometrically linked by a regular sequence z.

Let c = (c0, c1, c2, . . .) and ĉ = (ĉ0, ĉ1, ĉ2, . . .) be the Hilbert functions of

one dimensional standard complete intersection k-algebras R/(wd1

1 , wd2

2 , wd3

3 )

and R/(wd̂1

1 , wd̂2

2 , wd̂3

3 ), where d = (d1, d2, d3) and d̂ = (d̂1, d̂2, d̂3) are types of
CI-sequences mentioned in Theorems 4.3 or 4.6 or 4.8. Let a = (x̌0, x̌1, x̌2, . . .)
and ã = (x̂0, x̂1, x̂2, . . .) be the Hilbert functions of one dimensional standard
complete intersection k-algebrasR/(a) and R/(ã), where a and ã are the regular

sequences mentioned above. Let ďi = deg xi and d̃i = deg x̃i for i = 1, 2, 3. Let
ρ1 and ρ̂1 be the integers mentioned in Theorems 4.3 or 4.6 or 4.8.

Lemma 5.4. With the notation above we let ρ̌1 and ρ̃1 be positive integers

defined as follows

ρ̌1 =

3
∑

i=1

(ďi − 1) and ρ̃1 =

3
∑

i=1

(d̃i − 1).

Then

(1) ki = ci − (x̌i − x̌i−1) ≥ 0 for 0 ≤ i ≤ [(ρ̌1 − 1)/2].
(2) ki = (ci− ci−1)− (x̌i − x̌i−1)+ (x̂i − x̂i−1) ≥ 0 for 1 ≤ i ≤ [(ρ̌1 − 1)/2].

Proof. (1) Let d = (d1, d2, d3) be the type of a CI-sequence mentioned in Theo-
rem 4.3. The proof for the case that d = (d1, d2, d3) is the type of a CI-sequence
mentioned in Theorems 4.6 or 4.8 is similar to that of this case. We prove only
this case. So a and ã are regular sequences in I1 and Ĩ1 in Example 3.2, respec-
tively. Hence di = qi for i = 1, 2 and d3 = τ, ďi = qi for i = 1, 2 and ď3 = qk+τ,
and d̃i = qi for i = 1, 2 and d̃3 = qk for some integer k (3 ≤ k ≤ n). It follows
from Corollary 3.3 [17] that the Hilbert series of R/(c), R/(a) and R/(ã) are

HR/(c)(λ)=

∞
∑

i=0

ciλ
i =

∏3
i=1(1− λdi)

(1− λ)4
, HR/(a)(λ) =

∞
∑

i=0

x̌iλ
i =

∏3
i=1(1 − λďi)

(1− λ)4
,

HR/(ã)(λ)=

∞
∑

i=0

x̂iλ
i =

∏3
i=1(1 − λd̃i)

(1− λ)4
.

(5.5)

Let

c(λ) =

3
∏

i=1

(1 + λ+ · · ·+ λdi−1), x̃(λ) =

3
∏

i=1

(1 + λ+ · · ·+ λd̃i−1) and

x(λ) =

3
∏

i=1

(1 + λ+ · · ·+ λďi−1)

be the polynomials in λ. Then c(λ) =
∑ρ1

l=0(cl− cl−1)λ
l and x(λ) =

∑ρ̌1

l=0(x̌l−

x̌l−1)λ
l. Since di = ďi = qi for i = 1, 2, c(λ) and x(λ) have a common factor
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f(λ) =
∏2

i=1(1+λ+λ2+ · · ·+λqi−1). Let f(λ) = f0+ f1λ+ f2λ
2+ · · ·+ fγλ

γ ,
where γ = q1 + q2 − 2. Then f(λ) is symmetric, that is, fi = fγ−i. Let c(λ) =
m0 +m1λ+m2λ

2 + · · ·+mρ1
λρ1 and x(λ) = n0 + n1λ+ n2λ

2 + · · ·+ nρ̌1
λρ̌1 .

Since R/(c) is one dimensional and σ(R/(c)) = ρ1,

ci = ci−1 +mi = ci−2 +mi−1 +mi = · · · =

i
∑

l=0

ml for i = 0, 1, 2, . . . , ρ1,

and ci = cρ1
for i = ρ1 + 1, ρ1 + 2, . . . , where cl = 0 and ml = 0 if l < 0.

It is sufficient to show that ki = ci − (x̌i − x̌i−1) =
∑i

l=0 ml − ni ≥ 0 for
i = 0, 1, 2, . . . , [(ρ̌1 − 1)/2]. Let i be an integer with 0 ≤ i ≤ [(ρ̌1 − 1)/2] and
let p = min{γ, i} be an integer. If i ≤ τ − 1, then mi = ni =

∑p
l=0 fl. Hence

ki =
∑i

l=0 ml −ni ≥ 0 for i = 0, 1, 2, . . . , τ − 1. For i = τ, τ +1, . . . , ρ1 we have

mi =

p
∑

l=i−τ+1

fl.

If i ≤ qk + τ − 1, then ni =
∑p

l=0 fl. For i = qk + τ, qk + τ + 1, . . . , [ρ̌1/2] we
have

ni =

p
∑

l=i−qk−τ+1

fl.

Hence it is easy to show that ki =
∑i

l=0 ml −ni ≥ 0 for i = τ, τ +1, . . . , ρ1 − 1
and ki =

∑ρ1

l=0 ml − ni ≥ 0 for i = ρ1, ρ1 + 1, . . . , [ρ̌1/2].
(2) We notice that c(λ), x̃(λ) and x(λ) have a common factor f(λ) given in

the proof of (1). So we have

c(λ)− x(λ) + x̃(λ)

=

ρ1
∑

l=0

(cl − cl−1)λ
l −

ρ̌1
∑

l=0

(x̌l − x̌l−1)λ
l +

ρ̃1
∑

l=0

(x̂l − x̂l−1)λ
l

= f(λ){(1 + λ+ λ2 + · · ·+ λτ−1)− (1 + λ+ λ2 + · · ·+ λqk+τ−1)

+ (1 + λ+ λ2 + · · ·+ λqk−1)}.

If τ ≤ qk, then [(ρ̌1 − 1)/2] ≤ ρ̃1 and if τ > qk, then [(ρ̌1 − 1)/2] ≤ ρ1. This
implies that

(cl − cl−1)−(x̌l − x̌l−1)+(x̂l − x̂l−1) ≥ 0 for l = 0, 1, 2, . . . , [(ρ̌1 − 1)/2]. �

Now we use the results mentioned in Section 3, Proposition 5.1 and Lemma
5.4 to prove that if Ii and Ji are geometrically linked by a regular sequence
a = a1, a2, a3, then a Gorenstein sequence h(R/Hi) is unimodal for i = 1, 2, 3,
where Hi = Ii + Ji.

Theorem 5.5. With the notation above, we let Ii be a perfect ideal of grade

3 for i = 1, 2, 3. If Ĩi and Ji are geometrically linked by a regular sequence ã,
then a Gorenstein sequence h(R/Hi) = (1, 4, h2, . . . , hs) is unimodal.
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Proof. Let H0 = Ĩi + J̃i. Since Ĩi and J̃i are geometrically linked by ã for
i = 1, 2, 3, by Proposition 5.1 h(R/H0) is unimodal. The assumption and
Lemma 5.2 implies that Ii and Ji are geometrically linked by a regular sequence
a. We note that J̃i = Ji for i = 1, 2, 3. We prove that a Gorenstein sequence
h(R/Hi) is unimodal for only i = 1. For the case of i = 2, 3 the proof is
similar to that of the case of i = 1. As shown in the proof of Theorem 4.3,
σ(R/I1) = η+ τ, where τ = deg u1. Let e be the integer mentioned in the proof
of Proposition 5.1. Since σ(R/(ã)) = η + e, we have σ(R/(a)) = η + e + τ. It
follows from Theorem 2.1 [7] that σ(R/H1) = η+ e+ τ − 1 = ρ̌1 − 1, where ρ̌1
is an integer in Lemma 5.4. Now we set

HR/Ĩ1
(λ) =

∞
∑

i=0

giλ
i, HR/(ã)(λ) =

∞
∑

i=0

x̂iλ
i, HR/H0

(λ) =

η+e−1
∑

i=0

hiλ
i,

HR/I1(λ) =

∞
∑

i=0

piλ
i, HR/(a)(λ) =

∞
∑

i=0

x̌iλ
i, HR/H1

(λ) =

η+e+τ−1
∑

i=0

liλ
i.

We note that
(5.6)

HR/Ĩ1
(λ) =

∞
∑

i=0

giλ
i =

g̃(λ)

(1− λ)4
and HR/I1(λ) =

∞
∑

i=0

piλ
i =

h̃(λ)

(1 − λ)4
,

where g̃(λ) and h̃(λ) are polynomials in (4.3) and (4.4), respectively. (p0, p1 −
p0, p2−p1, . . . , pη+τ−pη+τ−1) is a Brown sequence defined by a skew-symmetri-
zable matrix G1 in (3.1) with p1−p0 = 3 and (g0, g1−g0, g2−g1, . . . , gη−gη−1)
is a Gorenstein sequence with g1 − g0 = 3. As shown in the proof of Theorem
4.3, there exists a CI-sequence c = (c0, c1, . . . , cρ1

) such that

(5.7) pi − pi−1 =

{

ci if 0 ≤ i ≤ τ − 1

gi−τ − gi−τ−1 + ci if τ ≤ i ≤ η + τ.

Then it follows from Lemma 5.3 that

HR/H0
(λ) = HR/Ĩ1

(λ) +HR/J̃1
(λ) −HR/(ã)(λ),

HR/H1
(λ) = HR/I1(λ) +HR/J1

(λ) − FR/(a)(λ).

This implies that

HR/H1
(λ)−HR/H0

(λ) = HR/I1(λ) −HR/Ĩ1
(λ) −HR/(a)(λ) +HR/(ã)(λ).

Hence we want to show that for an integer i with 1 ≤ i ≤ [(ρ̌1 − 1)/2] we have

li− li−1 = (hi−hi−1)+ (pi−pi−1)− (gi− gi−1)− (x̌i− x̌i−1)+ (x̂i− x̂i−1) ≥ 0.

We have two cases: either τ ≤ e− 1 or τ > e− 1.
Case (a) τ ≤ e−1. We have three parts: (i) 1 ≤ i ≤ τ−1 or (ii) τ ≤ i ≤ e−1

or (iii) e ≤ i ≤ [(ρ̌1 − 1)/2].
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(i) 0 ≤ i ≤ τ − 1. Then it follows from (5.1), (5.7), Proposition 5.1, and (1)
of Lemma 5.4 that

li − li−1 = ci − (x̌i − x̌i−1) + (x̂i − x̂i−1) ≥ 0,

where we set lk = 0, x̂k = 0 and x̌k = 0 if k < 0.
(ii) τ ≤ i ≤ e− 1. Then in the similar way of (i) we have

li − li−1 = (gi−τ − gi−τ−1) + ci − (x̌i − x̌i−1) + (x̂i − x̂i−1) ≥ 0.

The inequality follows from (2) of Proposition 2.2 and (1) of Lemma 5.4.
(iii) e < i ≤ [(ρ̌1 − 1)/2]. In this case we have

li− li−1 = (gi−τ −gi−τ−1)− (gi−e−gi−e−1)+ ci− (x̌i− x̌i−1)+(x̂i− x̂i−1) ≥ 0.

Since τ < e and (g0, g1−g0, g2−g1, . . . , gη−gη−1) is a Gorenstein sequence with
g1−g0 = 3, it follows from Theorem 4.1 that (gi−τ−gi−τ−1)−(gi−e−gi−e−1) ≥
0. Hence (1) of Lemma 5.4 gives us that li − li−1 ≥ 0.

Case (b) τ > e−1. We have three parts: (i) 1 ≤ i ≤ e−1 or (ii) e ≤ i ≤ τ−1
or (iii) τ ≤ i ≤ [(ρ̌1 − 1)/2]. The proof of (i) is similar to that of (i) of case (a).
To prove (ii) and (iii) we need to show the following statement:

(5.8) x̂i−e − x̂i−e−1 − (gi−e − gi−e−1) ≥ 0 for i = e, e+ 1, . . . , [(ρ̌1 − 1)/2].

Since R/Ĩ1 is a one dimensional standard Gorenstein k-algebra with the Hilbert
function g, it follows from (5.6) that ḡ = (g0, g1 − g0, g2 − g1, . . . , gη − gη−1) is
a Gorenstein sequence with g1 − g0 = 3. Hence there is a Gorenstein ideal K
of grade 3 in the polynomial ring R̄ = k[p, q, r] with indeterminates p, q, r and
deg p = deg q = deg r = 1 such that

HR̄/K(λ) =
g̃(λ)

(1 − λ)3
=

η
∑

i=0

(gi − gi−1)λ
i, where gk = 0 if k < 0.

Similarly, ¯̃a = (x̂0, x̂1 − x̂0, x̂2 − x̂1, . . . , x̂ρ̃1
− x̂ρ̃1−1) is a CI-sequence with

x̂1−x̂0 = 3 which has type (q1, q2, qk). Since (ã) ⊆ Ĩ1, without loss of generality,
by (4.3), (5.5) and Proposition 2.1 we may assume that there is a complete
intersection L of grade 3 in K such that

HR̄/L(λ) =

∏3
i=1(1− λd̃i)

(1 − λ)3
=

ρ̃1
∑

i=0

(x̂i − x̂i−1)λ
i, where x̂k = 0 if k < 0.

Since L is a complete intersection which is properly contained in K, it follows
from (2.1) that x̂i−e−x̂i−e−1−(gi−e−gi−e−1) ≥ 0 for i = e, e+1, . . . , [(ρ̌1−1)/2].
(ii) e ≤ i ≤ τ − 1. In this case we have

li − li−1 = − (gi−e − gi−e−1) + ci − (x̌i − x̌i−1) + (x̂i − x̂i−1)

= (x̂i−e − x̂i−e−1)− (gi−e − gi−e−1) + ci − (x̌i − x̌i−1)

+ (x̂i − x̂i−1)− (x̂i−e − x̂i−e−1) ≥ 0.



1404 O.-J. KANG

It follows from Theorem 4.1 that (x̂i − x̂i−1) − (x̂i−e − x̂i−e−1) ≥ 0 for i =
e, e + 1, . . . , [(ρ̌1 − 1)/2]. Hence the inequality follows from (5.8) and (1) of
Lemma 5.4.

(iii) τ ≤ i ≤ [(ρ̌1 − 1)/2]. Since (x̌0, x̌1 − x̌0, . . . , x̌ρ̌1
− x̌ρ̌1−1) and (x̂0, x̂1 −

x̂0, . . . , x̂ρ̃1
− x̂ρ̃1−1) are CI-sequences with x̌1 − x̌0 = 3 and x̂1 − x̂0 = 3 which

have type (q1, q2, qk + τ) and (q1, q2, qk), respectively, we have

x̌i−e − x̌i−e−1 − (x̂i−e − x̂i−e−1) ≥ 0 for i = τ, τ + 1, . . . , [(ρ̌1 − 1)/2].

Hence it follows from (5.8) that

x̌i−e − x̌i−e−1 − (gi−e − gi−e−1) ≥ 0 for i = τ, τ + 1, . . . , [(ρ̌1 − 1)/2].

Since i − 1 ≥ i − e, it follows from Theorem 4.1 and (1) of Lemma 5.4 that
ci−1 − (x̌i−e − x̌i−e−1) ≥ 0 for i = τ, τ + 1, . . . , [(ρ̌1 − 1)/2]. Hence we have

li − li−1 = − (gi−e − gi−e−1)+(gi−τ − gi−τ−1)+ ci − (x̌i − x̌i−1)+(x̂i − x̂i−1)

= (x̌i−e − x̌i−e−1)− (gi−e − gi−e−1) + ci−1 − (x̌i−e − x̌i−e−1)

+ (gi−τ − gi−τ−1) + (ci − ci−1)− (x̌i − x̌i−1) + (x̂i − x̂i−1) ≥ 0.

The last inequality follows from (2) of Lemma 5.4. This completes our proof.
�

The following three examples demonstrate Theorem 5.5. In the first example
we construct a unimodal Gorenstein sequence defined by skew-symmetrizable
matrix G1 in (3.1).

Example 5.6. h = (1, 4, 10, 20, 34, 52, 71, 84, 84, 71, 52, 34, 20, 10, 4, 1) is a uni-
modal Gorenstein sequence defined by a 7 × 7 skew-symmetrizable matrix G1

in (3.1) given as follows

G1 =





















0 0 0 w3
2 w2w

2
3 w2

1w2 0
0 0 w2w

2
3 0 w2

1w2 w3
2 w2

0w2

0 −w2
3 0 w2

3 w2
1 w2

0 0
−w2

2 0 −w2
3 0 w2

0 0 w2
1

−w2
3 −w2

1 −w2
1 −w2

0 0 0 w2
2

−w2
1 −w2

2 −w2
0 0 0 0 w2

3

0 −w2
0 0 −w2

1 −w2
2 −w2

3 0





















,

where v1 = w2. Then I1 = (x1, x2, . . . , x7) is a perfect ideal of grade 3 with type

2, where xi = A(G1)i/v1 for i = 1, 2, . . . , 7. Let G̃1 = Y be a 7× 7 alternating

matrix obtained from G1. Then Ĩ1 = (Y1, Y2, . . . , Y7) is a Gorenstein ideal of
grade 3. An easy computation by CoCoA 4.7.5 shows that a = x1, x2, x3 is a
regular sequence. J1 = (a) : I1 is an almost complete intersection of grade 3
with type 4. Since I1 ∩J1 = (a), I1 and J1 are geometrically linked by a. Then
H1 = I1+J1 is a Gorenstein ideal of grade 4 and the Hilbert function of R/H1

is h. It is easy to show that h unimodal.

In the second example we construct a unimodal Gorenstein sequence defined
by a skew-symmetrizable matrix G2 in (3.3).
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Example 5.7. h = (1, 4, 10, 20, 34, 52, 71, 88, 100, 100, 88, 71, 52, 34, 20, 10, 4, 1)
is a unimodal Gorenstein sequence defined by a 7×7 skew-symmetrizable matrix
G2 in (3.3) given as follows

G2 =





















0 0 0 w2
0w

2
2 w4

2 w2
2w

2
3 0

0 0 0 −w1w
2
2 −w2

0w1 −w3
1 −w1w

2
3

0 0 0 0 w1w
2
2w

2
3 w1w

4
2 w3

1w
2
2

−w2
0 w2

2 0 0 w2
1 w2

3 w2
2

−w2
2 w2

0 w2
3 −w2

1 0 w2
2 0

−w2
3 w2

1 w2
2 −w2

3 −w2
2 0 w2

0

0 w2
3 w2

1 −w2
2 0 −w2

0 0





















,

where v2 = w1w
2
2 . Then I2 = (x1, x2, . . . , x7) is a perfect ideal of grade 3 with

type 3, where xi = A(G2)i/v2 for i = 1, 2, . . . , 7. We can get a 7×7 alternating

matrix T in (3.7) from G2. Ĩ2 = (T1, T2, . . . , T7) is a Gorenstein ideal of grade
3. An easy computation by CoCoA 4.7.5 shows that a = x1, x2, x3 is a regular
sequence. J2 = (a) : I2 is an almost complete intersection of grade 3 with
type 4. Since I2 ∩ J2 = (a), I2 and J2 are geometrically linked by a. Then
H2 = I2+J2 is a Gorenstein ideal of grade 4 and the Hilbert function of R/H2

is h. We can easily check that h is unimodal.

In final example we construct a unimodal Gorenstein sequence defined by a
skew-symmetrizable matrix G3 in (3.5).

Example 5.8. h = (1, 4, 10, 20, 34, 52, 71, 88, 100, 104, 104, 100, 88, 71, 52, 34,
20, 10, 4, 1) is a unimodal Gorenstein sequence defined by a 7×7 skew-symmetri-
zable matrix G3 in (3.5) defined by

G3 =





















0 0 0 0 w1w2w
2
3 w3

1w2 w1w
3
2

0 0 0 −w5
0w2 −w3

0w
3
2 −w3

0w2w
2
3 0

0 0 0 w3
0w1w

2
3 w5

0w1 0 w3
0w

3
1

0 w2
0 −w2

3 0 w2
1 w2

2 w2
3

−w2
3 w2

2 −w2
0 −w2

1 0 w2
3 0

−w2
1 w2

3 0 −w2
2 −w2

3 0 w2
0

−w2
2 0 −w2

1 −w2
3 0 −w2

0 0





















,

where v3 = w2
0w1w2. Then I3 = (x1, x2, . . . , x7) is a perfect ideal of grade 3

with type 4, where xi = A(G3)i/v3 for i = 1, 2, . . . , 7. The same argument

mentioned above gives us that Ĩ3 = (T1, T2, . . . , T7) is a Gorenstein ideal of
grade 3. An easy computation by CoCoA 4.7.5 shows that a = x1, x2, x3 is a
regular sequence. J3 = (a) : I3 is an almost complete intersection of grade 3
with type 4. Since I3 ∩J3 = (a), I3 and J3 are geometrically linked by a. Then
H3 = I3+J3 is a Gorenstein ideal of grade 4 and the Hilbert function of R/H3

is h. We can easily check that h is unimodal.

The following lemma gives us the relation between the Hilbert functions of
perfect ideals of grade 3 linked by a regular sequence.
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Lemma 5.9 ([6]). Let R be the polynomial ring mentioned above. Let I and

J be perfect ideals of grade 3 linked by a regular sequence z. Let σ = σ(R/(z)).
Then we have

h(R/(z), i) = h(R/J, i) + h(R/I, σ − i) for i = 0, 1, 2, . . . , σ.

We remark that Lemma 5.9 is true for perfect ideals I and J of grade m in
the polynomial ring R mentioned in the abstract.

For a perfect idealK in R we defineH(R/K, i) = 0 for i < 0 and ∆H(R/K, i)
= H(R/K, i) − H(R/K, i − 1) for i = 0, 1, 2, . . . . By combining Theorem 5.5
with Lemmas 5.3 and 5.9 we get following proposition.

Proposition 5.10. Let I and J be perfect ideals of grade 3 geometrically linked

by a regular sequence z = z1, z2, z3. Let Ii and Ji be the perfect ideals of grade 3
geometrically linked by a regular sequence a = a1, a2, a3 mentioned above for i =
0, 1, 2, 3. Let H = I+J and σ = h(R/(z)). We assume that deg ak = deg zk for

k = 1, 2, 3. If ∆H(R/Ii, j)−∆H(R/Ii, σ− j) ≤ ∆H(R/I, j)−∆H(R/I, σ− j)
for j = 0, 1, 2, . . . , [(σ − 1)/2], then h(R/H) = (1, 4, h2, . . . , hs) is unimodal.

Proof. The proof follows from Theorem 5.5 and Lemmas 5.3 and 5.9. �

Let Gp(4) be the set of Gorenstein sequences h(R/H) = (1, 4, h2, . . . , hs),
where H is the sum of perfect ideals of grade 3 geometrically linked by a
regular sequence z. First we give an example which shows that h1 = (1, 4, 1)
and h2 = (1, 4, 4, 1) belong to Gp(4).

Example 5.11. (1) Let X = (xij) be an 2× 4 matrix defined as follows

X =

[

wp
0 wp

1 wp
2 wp

3

wq
1 wq

2 wq
3 wq

0

]

.

Let p = q = 1. Then I = I2(X) is a perfect ideal of grade 3 with type 3 and the
minimal free resolution of R/I described in [12]. Let Xij be the determinant of
a 2× 2 submatrix of X formed by columns i and j. Then an easy computation
by CoCoA 4.5.7 shows that z = X12, X13, X34 is a regular sequence and that
J = (z) : I is a perfect ideal of grade 3. Furthermore, I and J are geometrically
linked by z. ThusH = I+J is a Gorenstein ideal of grade 4 such that h(R/H) =
(1, 4, 1).

(2) Let T = (tij) be an 5× 5 alternating matrix defined as follows

T =













0 0 −w1 −w0 w2

0 0 −w3 −w1 w0

w1 w3 0 w2 0
w0 w1 −w2 0 w3

−w2 −w0 0 −w3 0













.

Then I0 = Pf4(T ) is a Gorenstein ideal of grade 3. Let Ti be the pfaffian of
4× 4 alternating submatrix of T obtained by deleting the i-th column and row
from T. It is easy to shows that a = (w0 + w3)T1, T2, T5 is a regular sequence.
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Since I0 is Gorenstein, J0 = (a) : I0 = (a, w2(w0 + w3)) is an almost complete
intersection of grade 3. Since w2(w0+w3) is not contained in I0, I0∩J0 = (a). So
I0 and J0 are geometrically linked by (a) and H0 = I0+J0 = (I0, w2(w0+w3))
is a Gorenstein ideal of grade 4 such that h(R/H0) = (1, 4, 4, 1).

As a result of Proposition 5.10, we show that a Gorenstein sequence h(R/H)
in Gp(4) which falls into one of the following three cases is unmodal.

Corollary 5.12. With notation in Proposition 5.10 we let σ∗ = σ(R/I) and

σ − σ∗ = α∗. We assume that (p) σ∗ ≤ [(σ − 1)/2] or (q) [(σ − 1)/2] < σ∗

and [(σ− 1)/2] < α∗ or (r) α∗ ≤ [(σ− 1)/2] < σ∗ and ∆H(R/I, i)−∆H(R/I,
σ − i) ≥ 0 for i = α∗, α∗ + 1, . . . , [(σ − 1)/2]. Then h(R/H) = (1, 4, h2, . . . , hs)
is unimodal.

Proof. Let z = z1, z2, z3 be a regular sequence in I ∩ J and ei the degree
of zi for i = 1, 2, 3. Then σ =

∑3
i=1 ei − 3. It follows from Theorem 2.1 [7]

that σ(R/H) = σ − 1. So s = σ − 1. Since h1 = 4, we may assume that
ei ≥ 2 for i = 1, 2, 3. If σ = 3, then h(R/H) = (1, 4, 1) and if σ = 4, then
h(R/H) = (1, 4, 4, 1). If σ = 5 and if h(R/H) = (1, 4, n, 4, 1) belongs to Gp(4),
then 4 ≤ n ≤ 10 (see [7]). We have nothing to prove. Hence we assume that
σ ≥ 6. First we show that h(R/H) = (1, 4, h2, . . . , hs) is unimodal for case (p).
Since σ∗ = σ(R/I), we have ∆H(R/I, k) = 0 for k > σ∗. Let i be an integer
with 0 ≤ i ≤ [(σ − 1)/2]. Since σ∗ ≤ [(σ − 1)/2], we have

σ∗ ≤ [(σ − 1)/2] < σ − [(σ − 1)/2] ≤ σ − i.

This implies that ∆H(R/I, σ − i) = 0 for i = 0, 1, 2, . . . , [(σ − 1)/2]. Hence

∆H(R/I, i)−∆H(R/I, σ − i) ≥ 1 if i = 0, 1, 2, . . . , σ∗,

∆H(R/I, i)−∆H(R/I, σ − i) = 0 if i = σ∗ + 1, . . . , [(σ − 1)/2].

The inequality follows from the fact that R/I is a one dimensional standard
k-algebra. Let T = (tij) be an 5 × 5 alternating matrix in (2) of Example
5.11. Then I0 = Pf4(T ) is a Gorenstein ideal of grade 3 and the Hilbert series
HR/I0(λ) of R/I0 is

HR/I0 (λ) = 1 + 4λ+

∞
∑

k=2

5λk.

Hence σ0 = σ(R/I0) = 2. We note that ui = ei−2 is an nonnegative integer for
i = 1, 2, 3. Let Ti be the pfaffian of 4 × 4 alternating submatrix of T obtained
by deleting the i-th row and column from T. A simple computation by CoCoA
4.7.5 shows that a = (w0 + w3)

u1T1, (w1 +w2)
u2T2, (w0 +w1)

u3T5 is a regular
sequence. Then J0 = (a) : I0 = (a, w) is an almost complete intersection for
some element w ∈ R. A direct computation from (3.5) [9] says that w is not
contained in I0. Hence I0 ∩ J0 = (a). So I0 and J0 are geometrically linked
by (a) and H0 = I0 + J0 = (I0, w) is a Gorenstein ideal of grade 4. Hence if



1408 O.-J. KANG

∆(R/I0, i) = ∆H(R/I0, i)−∆H(R/I0, σ − i), then we have

∆(R/I0, i) =



















1 if i = 0

3 if i = 1

1 if i = 2

0 if i = 3, 4, . . . , [(σ − 1)/2].

Since σ∗ > σ0 = 2, Proposition 5.10 implies that h(R/H) is unimodal. This
completes the proof for case (p). Now we show the two cases (q) and (r).
For case (q) we have ∆H(R/I, σ − i) = 0 for i = 0, 1, 2, . . . , α∗ − 1. Since
[(σ − 1)/2] < α∗, the same argument mentioned in the case (p) completes the
proof. For case (r) the proof is similar to that of case (q). �

A Gorenstein sequence h(R/H) = (1, 4, 10, 20, 35, 56, 56, 56, 56, 56, 35, 20, 10,
4, 1) in the following example belongs to case (p) of Corollary 5.12.

Example 5.13. h = (1, 4, 10, 20, 35, 56, 56, 56, 56, 56, 35, 20, 10, 4, 1) is a uni-
modal Gorenstein sequence in (p) of Corollary 5.12. Let X = (xij) be the 6×8
matrix defined as follows

X =

















w0 w1 w2 w3 0 w0 w1 w2

0 w0 w1 w2 w3 0 w0 w1

w2 0 w0 w1 w2 w3 0 w0

w1 w2 0 w0 w1 w2 w3 0
w0 w1 w2 0 w0 w1 w2 w3

w3 w0 w1 w2 0 w0 w1 w2

















.

A direct computation by CoCoA 4.7.5, Algebra system shows that I = I6(X)
is a perfect ideal of grade 3. The Hilbert series HR/I(λ) of R/I is

HR/I(λ) = 1 + 4λ+ 10λ2 + 20λ3 + 35λ4 +

∞
∑

k=5

56λk.

This shows that σ∗ = σ(R/I) = 5. Let Xij be the determinant of the 6 × 6
submatrix of X obtained by deleting two columns i, j from X. Then z =
X12, X68, X78 is a regular sequence. It is well-known that J = (z) : I is
a perfect ideal of grade 3. A simple computation by CoCoA 4.7.5 shows
that I and J are geometrically linked by z. Hence H = I + J is a Goren-
stein ideal of grade 4. Since the degrees of Xij are all 6, it follows from
Proposition 2.1 that σ = σ(R/(z)) = 15. So we have [(σ − 1)/2] = 7 and
σ∗ ≤ [(σ−1)/2]. Thus it follows from case (p) of Corollary 5.12 that h(R/H) =
(1, 4, 10, 20, 35, 56, 56, 56, 56, 56, 35, 20, 10, 4, 1) is a unimodal Gorenstein sequ-
ence.

A Gorenstein sequence h(R/H) = (1, 4, 10, 20, 35, 46, 46, 35, 20, 10, 4, 1) in
the following example belongs to case (q) of Corollary 5.12.
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Example 5.14. h = (1, 4, 10, 20, 35, 46, 46, 35, 20, 10, 4, 1) is a unimodal Goren-
stein sequence in (q) of Corollary 5.12. LetX = (xij) be the 3×5 matrix defined
as follows

X =





w2
0 w2

1 w2
2 w2

3 0
0 w2

0 w2
1 w2

2 w2
3

w3 0 w0 w1 w2



 .

A direct computation by CoCoA 4.7.5 shows that I = I3(X) is a perfect ideal
of grade 3. The Hilbert series HR/I(λ) of R/I is

HR/I(λ) = 1 + 4λ+ 10λ2 + 20λ3 + 35λ4 + 46λ4 +

∞
∑

k=6

49λk.

This shows that σ∗ = σ(R/I) = 6. Let Xij be the determinant of the 3 ×
3 submatrix of X obtained by deleting two columns i, j from X. Then z =
X12, X13, X34 is a regular sequence. It is well-known that J = (z) : I is a
perfect ideal of grade 3. A simple computation by CoCoA 4.7.5 shows that I
and J are geometrically linked by z. Hence H = I + J is a Gorenstein ideal
of grade 4. Since the degrees of Xij are all 5, it follows from Proposition 2.1
that σ = σ(R/(z)) = 12. So we have [(σ − 1)/2] = 5 and [(σ − 1)/2] < σ∗

and [(σ − 1)/2] < α∗ = 6. Thus it follows from case (q) of Corollary 5.12
that h(R/H) = (1, 4, 10, 20, 35, 46, 46, 35, 20, 10, 4, 1) is a unimodal Gorenstein
sequence.

A Gorenstein sequence h = (1, 4, 10, 20, 35, 56, 75, 84, 75, 56, 35, 20, 10, 4, 1)
in the following example belongs to case (r) of Corollary 5.12.

Example 5.15. h = (1, 4, 10, 20, 35, 56, 75, 84, 75, 56, 35, 20, 10, 4, 1) is a uni-
modal Gorenstein sequence in (r) of Corollary 5.12. Let X = (xij) be an
2 × 4 matrix in (1) of Example 5.11 and let p = q = 3. The similar argu-
ment mentioned in Example 5.11 gives us that I = I2(X) is a perfect ideal of
grade 3 with type 3 and that z = X12, X13, X34 is a regular sequence. Then
J = (z) : I is a perfect ideal of grade 3. Furthermore, I and J are geometrically
linked by z. Thus H = I + J is a Gorenstein ideal of grade 4. We show that
h(R/H) = (1, 4, . . . , hs) is unimodal. Since the degrees of Xij are all 6, we
have σ = σ(R/(z)) = 15 and [(σ − 1)/2] = 7. Simple computation by CoCoA
4.5.7 says that

HR/I(λ) = 1+4λ+10λ2+20λ3+35λ4+56λ5+78λ6+96λ7+105λ8+

∞
∑

k=9

108λk.

Then σ∗ = σ(R/I) = 9 and α∗ = 6. This implies that α∗ ≤ [(σ−1)/2] ≤ σ∗ and
∆H(R/I, i)−∆H(R/I, σ−i) ≥ 0 for i = α∗, α∗+1, . . . , 7. Hence it follows from
(r) of Corollary 5.11 that h(R/H) = (1, 4, 10, 20, 35, 56, 75, 84, 75, 56, 35, 20, 10,
4, 1) is a unimodal Gorenstein sequence.
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