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CLASSIFICATION OF FREE ACTIONS OF FINITE GROUPS

ON 3-DIMENSIONAL NILMANIFOLDS

Daehwan Koo, Myungsung Oh, and Joonkook Shin

Abstract. We study free actions of finite groups on 3-dimensional nil-
manifolds with the first homology Z2 ⊕Zp. By the works of Bieberbach
and Waldhausen, this classification problem is reduced to classifying all
normal nilpotent subgroups of almost Bieberbach groups of finite index,
up to affine conjugacy.

1. Introduction

The classifying finite group actions on a 3-dimensional nilmanifold can be
understood by the works of Bieberbach, L. Auslander and Waldhausen [5,6,16].
Free actions of cyclic, abelian and finite groups on the 3-torus were studied in
[7], [10] and [4], respectively. In [4], the authors generalized the result of [10]
by changing the finite abelian groups condition into the finite groups condition.
Our motivation is analogous to this situation.

Let H be the 3-dimensional Heisenberg group; i.e., H consists of all 3 × 3
real upper triangular matrices with diagonal entries 1. Thus H is a simply
connected, 2-step nilpotent Lie group, and it fits an exact sequence

1 → R → H → R2 → 1,

where R = Z(H), the center of H. Hence H has the structure of a line bundle
over R2. We take a left invariant metric coming from the orthonormal basis











0 0 1
0 0 0
0 0 0



 ,





0 1 0
0 0 0
0 0 0



 ,





0 0 0
0 0 1
0 0 0











for the Lie algebra of H. This is, what is called, the Nil-geometry and its
isometry group is Isom(H) = H ⋊ O(2) [13, 14]. All isometries of H preserve
orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if there
is a subgroup π of Isom(H) so that π acts properly discontinuously and freely
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with quotient M = H
/

π. The simplest such a manifold is the quotient of H
by the lattice consisting of integral matrices. For each integer p > 0, let

Γp =











1 l n
p

0 1 m
0 0 1





∣

∣

∣

∣

∣

l,m, n ∈ Z







.

Then Γ1 is the discrete subgroup of H consisting of all matrices with integer
entries and Γp is a lattice of H containing Γ1 with index p. Clearly

H1(H/Γp;Z) = Γp/[Γp,Γp] = Z2 ⊕ Zp.

Note that these Γp’s produce infinitely many distinct nilmanifolds

Np = H/Γp

covered by N1.
It is interesting that if a finite group acts freely on the (standard) 3-dimen-

sional nilmanifold N1 with the first homology Z2, then it is cyclic (see [2]). Free
actions of finite abelian groups on the 3-dimensional nilmanifold with the first
homology Z2 ⊕ Zp were classified in [1]. In this paper we study free actions of
finite groups deleting an abelian condition on 3-dimensional nilmanifolds with
the first homology Z2 ⊕ Zp by utilizing the method used in [1] and classify all
such group actions, up to topological conjugacy. This classification problem
is reduced to classifying all normal nilpotent subgroups of almost Bieberbach
groups of finite index, up to affine conjugacy. This work contains the results of
[1] as corollaries.

Let G be a finite group acting freely on the nilmanifold Np. Then clearly,
M = Np/G is a topological manifold, and π = π1(M) ⊂ TOP(H) is isomorphic
to an almost Bieberbach group. Let π′ be an embedding of π into Aff(H). Such
an embedding always exists. Since any isomorphism between lattices extends
uniquely to an automorphism of H, we may assume the subgroup Γp goes to
itself by the embedding π → π′ ⊂ Aff(H). Then the quotient group G′ = π′/Γp

acts freely on the nilmanifold Np = H/Γp. Moreover, M ′ = Np/G
′ is an

infra-nilmanifold. Thus, a finite free topological action (G,Np) gives rise to
an isometric action (G′,Np) on the nilmanifold Np. Clearly, Np/G and Np/G

′

are sufficiently large, see [6, Proposition 2]. By works of Waldhausen and Heil
[5, 16], M is homeomorphic to M ′.

Definition 1.1. Let groups Gi act on manifolds Mi, for i = 1, 2. The action
(G1,M1) is topologically conjugate to (G2,M2) if there exists an isomorphism
θ : G1 → G2 and a homeomorphism h : M1 → M2 such that

h(g · x) = θ(g) · h(x)

for all x ∈ M1 and all g ∈ G1. When G1 = G2 and M1 = M2, topologically
conjugate is the same as weakly equivariant.

For Np/G and Np/G
′ being homeomorphic implies that the two actions

(G,Np) and (G′,Np) are topologically conjugate. Consequently, a finite free
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action (G,Np) is topologically conjugate to an isometric action (G′,Np). Such
a pair (G′,Np) is not unique. However, by the result obtained by Lee and
Raymond [9], all the others are topologically conjugate.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all possi-
ble finite group actions on 3-dimensional nilmanifolds with the first homology
Z2 ⊕ Zp. The problem will be reduced to a purely group-theoretic one. We
quote most of Introduction and Section 2 of [1] in this section for the reader’s
conveniences.

Let Γ be any lattice of H and Z(H) be the center of H. Then Z = Γ∩Z(H)
and Γ

/

Γ ∩ Z(H) are lattices of Z(H) and H
/

Z(H), respectively. Therefore,

the lattice Γ is an extension of Z by Z2, that is, there is an exact sequence:

1 → Z → Γ → Z2 → 1.

Let a, b and c be elements of Γ such that the images of a and b in Z2 generate
Z2 and c generates the center Z. Then it is known that such Γ is isomorphic
to one of the following groups, for some k:

Γk = 〈a, b, c | [b, a] = ck, [c, a] = [c, b] = 1〉, k 6= 0,

where [b, a] = b−1a−1ba. This group is realized as a uniform lattice of H if one
takes

a =





1 0 0
0 1 1
0 0 1



 , b =





1 1 0
0 1 0
0 0 1



 , c =





1 0 1
k

0 1 0
0 0 1



 .

Remark that Γk is equal to Γ−k.
The following proposition gives a characterization of an almost Bieberbach

group (see [8]).

Proposition 2.1. An abstract group π is the fundamental group of a 3-dimen-

sional infra-nilmanifold if and only if π is torsion-free and contains Γk for some

k > 0 as a maximal normal nilpotent subgroup of finite index.

It is well known that all 3-dimensional infra-nilmanifolds are Seifert mani-
folds (see [9,12]). Assume that M is a 3-dimensional infra-nilmanifold. ThenM
has a Seifert bundle structure; namely, M is a circle bundle over a 2-dimensional
orbifold with singularities. It is known that there are 15 classes of distinct closed
3-dimensional manifolds M with a Nil-geometry up to Seifert local invariant
[3, Proposition 6.1].

Note that if M = H
/

π is a 3-dimensional infra-nilmanifold, then there is a

diffeomorphism f between H and R3, and an isomorphism ϕ between π and
π′, where π′ is a subgroup of

Aff(R3) = R3 ⋊GL(3,R)
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such that (π,H) and (π′,R3) are weakly equivariant. Therefore, an infra-
nilmanifold M = H

/

π is diffeomorphic to an affine manifold M ′ = R3
/

π′.
The following is the list for 15 kinds of the 3-dimensional almost Bieberbach

groups imbedded in Aff(H) = H⋊ (R2⋊GL(2,R)) ([1, pp. 799–801]). We shall
use

t1 =









1 1 0
0 1 0
0 0 1



 , I



 , t2 =









1 0 0
0 1 1
0 0 1



 , I



 ,

t3 =









1 0 − 1
k

0 1 0
0 0 1



 , I



 ,

respectively, where I is the identity in Aut(H) = R2 ⋊ GL(2,R). In each
presentation, n is any positive integer and t3 is central except π3 and π4. Note
that t1 and t2 are fixed, but k in t3 varies for each πi,j . For example, k = n for
π1; k = 2n for π2, etc.

π1 = 〈 t1, t2, t3 | [t2, t1] = tn3 〉,

π2 = 〈 t1, t2, t3, α | [t2, t1] = t2n3 , α2 = t3, αt1α
−1 = t−1

1 , αt2α
−1 = t−1

2 〉,

π3 = 〈 t1, t2, t3, α | [t2, t1] = t2n3 , [t3, t1] = [t3, t2] = 1, αt3α
−1 = t−1

3 ,

αt1α
−1 = t1, αt2 = t−1

2 αt−n
3 , α2 = t1 〉,

π4 = 〈 t1, t2, t3, α, β | [t2, t1] = t4n3 , [t3, t1] = [t3, t2] = [α, t3] = 1,

βt3β
−1 = t−1

3 , αt1 = t−1
1 αt2n3 , αt2 = t−1

2 αt−2n
3 , α2 = t3, β

2 = t1,

βt1β
−1 = t1, βt2 = t−1

2 βt−2n
3 , αβ = t−1

1 t−1
2 βαt

−(2n+1)
3 〉,

π5,1 = 〈 t1, t2, t3, α | [t2, t1] = t4n−2
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 , α4 = t3 〉,

π5,2 = 〈 t1, t2, t3, α | [t2, t1] = t4n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 , α4 = t33 〉,

π5,3 = 〈 t1, t2, t3, α | [t2, t1] = t4n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 , α4 = t3 〉,

π6,1 = 〈 t1, t2, t3, α | [t2, t1] = t3n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 t−1

2 , α3 = t3 〉,

π6,2 = 〈 t1, t2, t3, α | [t2, t1] = t3n3 , αt1α
−1 = t2, αt2α

−1 = t−1
1 t−1

2 , α3 = t23 〉,

π6,3 = 〈 t1, t2, t3, α | [t2, t1] = t3n−2
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 t−1
2 , α3 = t23 〉,

π6,4 = 〈 t1, t2, t3, α | [t2, t1] = t3n−1
3 , αt1α

−1 = t2, αt2α
−1 = t−1

1 t−1
2 , α3 = t3 〉,

π7,1 = 〈 t1, t2, t3, α | [t2, t1] = t6n3 , αt1α
−1 = t1t2, αt2α

−1 = t−1
1 , α6 = t3 〉,

π7,2 = 〈 t1, t2, t3, α | [t2, t1] = t6n−2
3 , αt1α

−1 = t1t2, αt2α
−1 = t−1

1 , α6 = t3 〉,

π7,3 = 〈 t1, t2, t3, α | [t2, t1] = t6n3 , αt1α
−1 = t1t2, αt2α

−1 = t−1
1 , α6 = t53 〉,

π7,4 = 〈 t1, t2, t3, α | [t2, t1] = t6n−4
3 , αt1α

−1 = t1t2, αt2α
−1 = t−1

1 , α6 = t53 〉.

Let (G,Np) be a free affine action of a finite group G on the nilmanifold
Np. Then Np/G is an infra-nilmanifold. Let π = π1(Np/G) and Γp = π1(Np).
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Then π is an almost Bieberbach group. In fact, since the covering projection
Np → Np/G is regular, Γp is a normal subgroup of π.

Definition 2.2. Let π ⊂ Aff(H) = H⋊Aut(H) be an almost Bieberbach group,
and let N1, N2 be subgroups of π. We say that (N1, π) is affinely conjugate to
(N2, π), denoted by N1 ∼ N2, if there exists an element (t, T ) ∈ Aff(H) such
that (t, T )π(t, T )−1 = π and (t, T )N1(t, T )

−1 = N2.

Our classification problem of free finite group actions (G,Np) with

π1(Np/G) ∼= π

can be solved by finding all normal nilpotent subgroups N of π each of which
is isomorphic to Γp, and classify (N, π) up to affine conjugacy. This procedure
is a purely group-theoretic problem and can be handled by affine conjugacy.

The following proposition [1, Proposition 3.1] is a working criterion for de-
termining all normal nilpotent subgroups of π isomorphic to Γp.

Proposition 2.3. Let N be a normal nilpotent subgroup of an almost Bieber-

bach group π and isomorphic to Γp. Then N can be represented by a set of

generators

N = 〈 td1

1 tm2 tn1

3 , td2

2 tn2

3 , t
Kd1d2

p

3 〉,

where d1, d2 are divisors of p; K is determined by tK3 = [t2, t1]; 0 ≤ m < d2,

0 ≤ ni <
Kd1d2

p
(i = 1, 2).

“Realization” for the action of G on H/N as an action of G on H/Γp =
Np can be done by the following procedure. To describe the natural affine
action of G on the nilmanifold H/N as an action of G on Np, we must make
the nilmanifold H/N the nilmanifold Np whose fundamental group is Γp and
describe the action on the universal covering level. In other words, the action
of G should be defined on H as affine maps (this is really explaining the liftings
of a set of generators of G in π), and simply say that our action is the affine
action modulo the lattice Γp. It is quite easy to achieve this.

Let N = 〈 t1
d1tm2 tn1

3 , td2

2 tn2

3 , t
Kd1d2

p

3 〉 be a normal nilpotent subgroup of an
almost Bieberbach group π which is isomorphic to Γp. Then we can find an
automorphism

µ =









1 0 0
0 1 0
0 0 1



 ,

([ n2

d1d2K
m
2d2

− n1

d1d2K

]

,

[ 1
d1

0

− m
d1d2

1
d2

])



 ∈ Aut(H)

such that µNµ−1 = Γp, using the following relations:

µ(td1

1 tm2 tn1

3 )µ−1 = t1, µ(td2

2 tn2

3 )µ−1 = t2, µ(t
Kd1d2

p

3 )µ−1 = t
K
p

3 .

Therefore, the conjugation by µ ∈ Aff(H) maps π into another almost
Bieberbach group in such a way that N maps onto Γp. Suppose {α1, . . . , αk}
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generates the quotient group G when projected down via π → G, then

{µα1µ
−1, . . . , µαkµ

−1}

describes the action of G on the nilmanifold Np.

3. Free actions of finite groups on the nilmanifold

In this section, we shall find all possible finite groups acting freely (up to
topological conjugacy) on the 3-dimensional nilmanifold Np which yield an
orbit manifold homeomorphic to H/πi (1 ≤ i ≤ 7). This, as in other parts
of calculations, was done by using the program Mathematica [17] and hand-
checked.

Now we shall find all possible finite groups acting freely (up to topological
conjugacy) on the 3-dimensional nilmanifold Np which yield an orbit manifold
homeomorphic to H/π2.

Lemma 3.1. Let N be a normal nilpotent subgroup of an almost Bieberbach

group π2, π5,i (i = 1, 2, 3) or π7,j (j = 1, 2, 3, 4) which is isomorphic to Γp.

Then N can be represented by one of the following sets of generators

N1 = 〈td1

1 tm2 , td2

2 , t
Kd1d2

p

3 〉, N2 = 〈td1

1 tm2 , td2

2 t
Kd1d2

2p

3 , t
Kd1d2

p

3 〉,

N3 = 〈td1

1 tm2 t
Kd1d2

2p

3 , td2

2 , t
Kd1d2

p

3 〉, N4 = 〈td1

1 tm2 t
Kd1d2

2p

3 , td2

2 t
Kd1d2

2p

3 , t
Kd1d2

p

3 〉,

where d1, d2 are divisors of p; 0 ≤ m < d̄ = gcd(d1, d2),
pm
d1d2

∈ Z in the case of

π2,
d1

d2
+ m2

d1d2
∈ Z and d1 is a common divisor of m and d2 in the case of π5,i,

d1

d2
+ m(m−d1)

d1d2
∈ Z and d1 is a common divisor of m and d2 in the case of π7,j.

Proof. Let N be a normal nilpotent subgroup of π2 isomorphic to Γp. Then by
Proposition 2.3, we have

N = 〈 td1

1 tm2 tℓ3, t
d2

2 tr3, t
2nd1d2

p

3 〉,

(

0 ≤ m < d2, 0 ≤ ℓ, r <
2nd1d2

p

)

.

Note that we obtained the normalizer NAff(H)(π2) of π2 in [1]: for r, s ∈ Z,

NAff(H)(π2) =















1 r
2 ∗

0 1 s
2

0 0 1



 ,

([

0
0

]

,

[

a b
c d

])





∣

∣

∣

∣

∣

[

a b
c d

]

∈ GL(2,Z)







.

Let d̄ = gcd(d1, d2). Then there exist s, t ∈ Z such that d̄ = sd1 + td2. Also
there exist q, w ∈ Z such that m = d̄q + w (0 ≤ w < d̄). It is not hard to see

N ∼ 〈 td1

1 tw2 t
ℓ′

3 , t
d2

2 tr3, t
2nd1d2

p

3 〉

by using








1 0 0
0 1 sq

2
0 0 1



 ,

([

0
0

]

,

[

1 0
−sq 1

])



 ∈ NAff(H)(π2).
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Note that the relation

t1(t
d1

1 tm2 tℓ3)t
−1
1 = (td1

1 tm2 tℓ3)t
2nd1d2

p
(− pm

d1d2
)

3 ∈ N

shows pm
d1d2

∈ Z.
Let

µ =









1 0 z
0 1 0
0 0 1



 ,

([

u
v

]

,

[

−1 0
0 −1

])



 ∈ Aff(H).

Then we have

µ(td1

1 tm2 tℓ3)µ
−1 =









1 −d1 d1m− ℓ
K

+ d1v −mu
0 1 −m
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ,

µ(td2

2 tr3)µ
−1 =









1 0 − r
K

− d2u
0 1 −d2
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 .

Let µ = α, α2, α3 for the case of π2, π5,i or π7,j , respectively. Since N is a
normal nilpotent subgroup of π2, π5,i or π7,j , the following two relations

µ(td1

1 tm2 tℓ3)µ
−1 = (td1

1 tm2 tℓ3)
−1(t

Kd1d2
p

3 )x ∈ N,

µ(td2

2 tr3)µ
−1 = (td2

2 tr3)
−1(t

Kd1d2
p

3 )y ∈ N

show that

x =
2pℓ

Kd1d2
−

pm

d2
∈ Z, y =

2pr

Kd1d2
∈ Z, (for π2 and π5,i)

x =
2pℓ

Kd1d2
−

pm

d2
+

p(m− d1)

d1d2
∈ Z, y =

2pr

Kd1d2
+

p

d1
∈ Z, (for π7,j).

Similarly, the following two relations

α(td1

1 tm2 tℓ3)α
−1 ∈ N, α(td2

2 tr3)α
−1 ∈ N,

show that
d1
d2

+
m2

d1d2
∈ Z,

m

d1
∈ Z,

d2
d1

∈ Z, (for π5,i)

d1
d2

+
m(m− d1)

d1d2
∈ Z,

m

d1
∈ Z,

d2
d1

∈ Z, (for π7,j).

Therefore we can get 2pℓ
Kd1d2

∈ Z and 2pr
Kd1d2

∈ Z. Since 0 ≤ ℓ, r < Kd1d2

p
by

Proposition 2.3, we have ℓ = 0 or Kd1d2

2p and r = 0 or Kd1d2

2p . �

Remark. In the case of π2, the condition pm
d1d2

∈ Z in Lemma 3.1 is crucial to
determine the number of affinely non-conjugacy classes when d1, d2 and p are
given. In fact, for d̄ = (d1, d2) and p = kD where k ∈ N, D is the least common
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multiple of d1 and d2, we have pm
d1d2

∈ Z if and only if km
d̄

∈ Z. Let q = (d̄, k).

Then km
d̄

∈ Z if and only if k′m
d̄′

∈ Z, where

k = qk′, d̄ = qd̄′, (k′, d̄′) = 1.

Thus d̄′ is a divisor of m. Since 0 ≤ m < d̄ = qd̄′, we can get m = 0, d̄′, . . .,
(q − 1)d̄′.

Let Nm = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
Kd1d2

p

3 〉 and Nm′

= 〈 t1
d1tm

′

2 tℓ
′

3 , t
d2

2 tr
′

3 , t
Kd1d2

p

3 〉
be normal nilpotent subgroups of an almost Bieberbach group π which are
isomorphic to Γp. If N

m is affinely conjugate to Nm′

, then there exists

µ =









1 x z
0 1 y
0 0 1



 ,

([

u
v

]

,

[

a b
c d

])



 ∈ NAff(H)(π)

satisfying either

(3.1) µ(t1
d1t2

mtℓ3)µ
−1 = td1

1 t2
m′

tℓ
′

3 , µ(td2

2 tr3)µ
−1 = td2

2 tr
′

3 ,

or

(3.2) µ(t1
d1t2

mtℓ3)µ
−1 = td2

2 t3
r′ , µ(td2

2 tr3)µ
−1 = td1

1 t2
m′

tℓ
′

3 .

From (3.1) or (3.2), we obtain the following relations respectively:

(3.3) bd2 = 0, dd2 = d2, ad1 + bm = d1, cd1 + dm = m′,

or

(3.4) bd2 = d1, dd2 = m′, ad1 + bm = 0, cd1 + dm = d2.

From these two relations and the normalizer NAff(H)(π) of each almost
Bieberbach group π, we can get either

(3.5)

[

a b
c d

]

=

[

1 0
0 1

]

, m = m′

or

(3.6)

[

a b
c d

]

=

[

0 b
c 0

]

, m = m′ = 0, bc = 1.

So, we obtain the following theorem.

Theorem 3.2. Let Nm and Nm′

be normal nilpotent subgroups of an almost

Bieberbach group π which are isomorphic to Γp and whose sets of generators

are

Nm = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
Kd1d2

p

3 〉, Nm′

= 〈 t1
d1tm

′

2 tℓ
′

3 , t
d2

2 tr
′

3 , t
Kd1d2

p

3 〉.

If m 6= m′, then Nm is not affinely conjugate to Nm′

.
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Proposition 3.3 (π2). Let Ni (i = 1, 2, 3, 4) be a normal nilpotent subgroup

of π2 in Lemma 3.1 and isomorphic to Γp. Then we have the following:
(1) N1 ∼ N2 if and only if m = 0, d1 = p.
(2) N1 ∼ N3 if and only if m = 0, d2 = p.
(3) N1 ∼ N4 if and only if m = 0, d1 = d2 = p.
(4) N2 ∼ N3 if and only if m = 0, d1 = d2.
(5) N2 ∼ N4 if and only if either m = 0, d2 = p, or 2m = d2, 2d1 = p.
(6) N3 ∼ N4 if and only if m = 0, d1 = p.

Proof. (1) Suppose that N1 is affinely conjugate to N2. Then there exists

µ =









1 x z
0 1 y
0 0 1



 ,

([

0
0

]

,

[

a b
c d

])



 ∈ NAff(H)(π2)

satisfying either (3.1) or (3.2). From (3.5), we can get x = −d1

2p and y = −m
2p .

Since µ ∈ NAff(H)(π2), we have 2x = − d1

p
∈ Z and 2y = −m

p
∈ Z. Note that

d1, d2 are divisors of p and 0 ≤ m < d̄ by Lemma 3.1. Thus we have d1 = p and
m = 0. Similarly, from (3.6), we can get d1 = d2 = p and m = 0. Conversely,
suppose that d1 = p and m = 0. Then N1 ∼ N2 by using

µ =









1 −1
2 0

0 1 0
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ∈ NAff(H)(π2).

(4) Suppose that N2 is affinely conjugate to N3. Note that

N3 ∼ 〈 td1

1 tm2 t
−

nd1d2
p

3 , td2

2 , t
−

2nd1d2
p

3 〉.

Then there exists µ ∈ NAff(H)(π2) satisfying either (3.1) or (3.2). From (3.5),

we can get x = d1

2p and y = m+d2

2p . Since µ ∈ NAff(H)(π2), we have 2x = d1

p
∈ Z

and 2y = m+d2

p
∈ Z. Note that d1, d2 are divisors of p and 0 ≤ m < d2. Thus

we have d1 = d2 = p and m = 0. Next, from (3.6), a similar calculation shows
that

[

a b
c d

]

=

[

0 1
1 0

]

, d1 = d2, m = 0.

The converse is easy by using

µ =









1 0 0
0 1 0
0 0 1



 ,

([

0
0

]

,

[

0 1
1 0

])



 ∈ NAff(H)(π2).

The other cases can be done similarly. �

The following theorem can be obtained easily by using Proposition 3.3. From
now on, we shall denote affine conjugacy classes by AC classes.

Notation. ξ〈α1, . . . , αk〉 means the subgroup generated by conjugations of
α1, . . . , αk by ξ.
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Theorem 3.4 (π2). Table 2 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π2.

Table 2

Generators AC classes of normal nilpotent subgroups Conditions (m ≥ 0)

µi〈t1, t2, α〉 N1 = 〈td1

1 tm2 , td2

2 , t
2nd1d2

p

3 〉

N2 = 〈td1

1 tm2 , td2

2 t
nd1d2

p

3 , t
2nd1d2

p

3 〉 if m = 0, then d1 6= p

N3 = 〈td1

1 tm2 t
nd1d2

p

3 , td2

2 , t
2nd1d2

p

3 〉 if m = 0, then d2 6= p, d1 6= d2

N4 = 〈td1

1 tm2 t
nd1d2

p

3 , td2

2 t
nd1d2

p

3 , t
2nd1d2

p

3 〉 if m 6= 0, then either 2m 6= d2
or 2d1 6= p,

if m = 0, then d1 6= p, d2 6= p

where

µ1 =

(

I,

([

0
m
2d2

]

,

[ 1
d1

0

− m
d1d2

1
d2

]))

,

µ2 =

(

I,

([ 1
2p
m
2d2

]

,

[ 1
d1

0

− m
d1d2

1
d2

]))

,

µ3 =

(

I,

([

0
m
2d2

− 1
2p

]

,

[ 1
d1

0

− m
d1d2

1
d2

]))

,

µ4 =

(

I,

([ 1
2p

m
2d2

− 1
2p

]

,

[ 1
d1

0

− m
d1d2

1
d2

]))

.

Here I is the identity in H.

The realization for the action of G = π2/Ni on the nilmanifold H/Ni, as
an affine action on the nilmanifold Np , is easy provided that we follow the
“Realization” procedure. The generators of the group G = π2/Ni can be
obtained from t1, t2, α ∈ π2. For example, we observe that N2 in π2 is not
equal to Γp, but isomorphic to Γp. To obtain an action of G = π2/N2 on Np,
one has to conjugate the representation of π2 so that N2 becomes Γp by means
of an automorphism µ2 ∈ Aut(H), where

µ2 =

(

I,

([ 1
2p
m
2d2

]

,

[ 1
d1

0

− m
d1d2

1
d2

]))

∈ Aff(H).

Thus we can see that µ2 N2 µ
−1
2 = Γp, and the following three elements of

Aff(H)

µ2 t1 µ
−1
2 =













1 1
d1

−m(p+(1+p)d1)
2pd2

1
d2

0 1 − m
d1d2

0 0 1






,

([

0
0

]

,

[

1 0
0 1

])






,
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µ2 t2 µ
−1
2 =









1 0 1
2pd2

0 1 1
d2

0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ,

µ2 αµ−1
2 =









1 0 − 1
4nd1d2

0 1 0
0 0 1



 ,

([ 1
p
m
d2

]

,

[

−1 0
0 −1

])





describe actions of π2/N2 on Np. That is, these act on H by

µ2 t1 µ
−1
2 ·





1 x z
0 1 y
0 0 1



 =







1 x+ 1
d1

z + y
d1

− m(p+(1+p)d1)
2pd1

2d2

0 1 y − m
d1d2

0 0 1






,

µ2 t2 µ
−1
2 ·





1 x z
0 1 y
0 0 1



 =





1 x z + 1
2pd2

0 1 y + 1
d2

0 0 1



 ,

µ2 αµ−1
2 ·





1 x z
0 1 y
0 0 1



 =





1 −x z − y
p
+ mx

d2
− 1

4nd1d2

0 1 −y
0 0 1



 .

The other cases can be done similarly.
Note that π2/N is abelian if and only if N ⊃ [π2, π2] = 〈t21, t22, t2n3 〉. Thus

we obtain the following result, which is the same as Theorem 3.3 of [1].

Corollary 3.5. The following table gives a complete list of all free actions (up
to topological conjugacy) of finite abelian groups G on Np which yield an orbit

manifold homeomorphic to H/π2.

Group G Generators AC classes of normal nilpotent subgroups

Z 4n
p

〈α〉 2n
p

∈ N, N1 = 〈t1, t2, t
2n
p

3 〉

ξ2〈α〉 n
p
∈ N, p 6= 1, N2 = 〈t1, t2t

n
p

3 , t
2n
p

3 〉

ξ3〈α〉 N3 = 〈t1t
n
p

3 , t2t
n
p

3 , t
2n
p

3 〉

Z2 × Z 8n
p

η1〈t1, α〉
4n
p

∈ N, p ∈ 2N, L1 = 〈t21, t2, t
4n
p

3 〉

η2〈t1, α〉
2n
p

∈ N, p ∈ 2N+ 2, L2 = 〈t21, t2t
2n
p

3 , t
4n
p

3 〉

Z2 × Z2 × Z 16n
p

ζ〈t1, t2, α〉
8n
p

∈ N, p ∈ 4N, N = 〈t21, t
2
2, t

8n
p

3 〉

where

ξ2 =

(

I,

([ 1
2p

0

]

,

[

1 0
0 1

]))

, ξ3 =

(

I,

([ 1
2p

− 1
2p

]

,

[

1 0
0 1

]))

,

η1 =

(

I,

([

0
0

]

,

[

1
2 0
0 1

]))

, η2 =

(

I,

([ 1
2p

0

]

,

[

1
2 0
0 1

]))

,
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ζ =

(

I,

([

0
0

]

,

[

1
2 0
0 1

2

]))

.

Here I is the identity in H.

From now on, for the remaining cases we will omit to state a corollary which
is the same as the theorem in [1] respectively. The following example shows
that a free action of a finite group on the nilmanifold N2 has more affinely
non-conjugate classes than a free abelian group action on N2 which yields an
orbit manifold homeomorphic to H/π2.

Example. Let N be a normal nilpotent subgroup of π2 isomorphic to Γ2.
Then p = 2 and d1, d2 are divisors of p, 0 ≤ m < d̄ = gcd(d1, d2),

pm
d1d2

∈ Z by

Lemma 3.1. Thus the possible pairs of (d1, d2) are (1,1), (1,2), (2,1), or (2,2).
By Proposition 3.3, we have the following results:

(i) When d1 = d2 = 1: Since 0 ≤ m < d2, we have m = 0. Then, the
possible normal nilpotent subgroups are

N1 = 〈t1, t2, tn3 〉, N2 = 〈t1, t2t
n
2

3 , tn3 〉, N4 = 〈t1t
n
2

3 , t2t
n
2

3 , tn3 〉.

Since N ⊃ [π2, π2] = 〈t21, t
2
2, t

2n
3 〉, we can conclude that π2/Ni (i = 1, 2, 4) is

abelian.
(ii) When d1 = 1, d2 = 2, the possible normal nilpotent subgroups are

N1 = 〈t1, t22, t2n3 〉, N2 = 〈t1, t22t
n
3 , t2n3 〉.

Note that π2/N1 is abelian and π2/N2 is nonabelian.
(iii) When d1 = 2, d2 = 1, there exist 2 affinely non-conjuate normal sub-

groups

N ′

1 = 〈t21, t2, t2n3 〉, N ′

3 = 〈t21t
n
3 , t2, t2n3 〉.

It is easy to see that N ′
1 ∼ N1 and N ′

3 ∼ N2 in the case (ii).
(iv) When d1 = 2, d2 = 2, there exists only one normal subgroup N1 of π2,

N1 = 〈t21, t22, t4n3 〉.

Note that π2/N1 is nonabelian.

Lemma 3.6. Let N be a normal nilpotent subgroup of an almost Bieberbach

group π3 and isomorphic to Γp. Then N can be represented by one of the

following sets of generators

N1 = 〈td1

1 , td2

2 tr3, t
2nd1d2

p

3 〉, N2 = 〈td1

1 t
2nd1d2

2p

3 , td2

2 tr
′

3 , t
2nd1d2

p

3 〉,

N3 = 〈td1

1 t
d2
2

2 tℓ3, td2

2 ts3, t
2nd1d2

p

3 〉,

where 2d1 is a divisor of p, s = 2ℓ if p = 4kd1, or s = 2ℓ + 2nd1d2

2p if p =

2(2k − 1)d1 for k ∈ N.
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Proof. Let N be a normal nilpotent subgroup of π3 and isomorphic to Γp. Then
by Proposition 2.3, we have

N = 〈 td1

1 tm2 tℓ3, t
d2

2 tr3, t
2nd1d2

p

3 〉,

(

0 ≤ m < d2, 0 ≤ ℓ, r <
2nd1d2

p

)

.

Since N is a normal nilpotent subgroup of π3, the following two relations

α(td1

1 tm2 tℓ3)α
−1 = (td1

1 td2

2 tℓ3)(t
d2

2 tr3)
−

2m
d2 (t

2nd1d2
p

3 )x ∈ N,

α(td2

2 tr3)α
−1 = (td2

2 tr3)
−1(t

2nd1d2
p

3 )
p

2d1 ∈ N

show that

x =
2prm

2nd1d2
2 −

2pℓ

2nd1d2
+

pm

2d1d2
∈ Z,

2m

d2
∈ Z,

p

2d1
∈ Z.

Thus d2 is a divisor of 2m and 2d1 is a divisor of p. Since 0 ≤ m < d2, we have
m = 0 or d2 = 2m.

(i) When m = 0:

Since 2pℓ
2nd1d2

∈ Z and 0 ≤ ℓ < 2nd1d2

p
, we have ℓ = 0 or 2nd1d2

2p . Therefore N

can be represented by one of the following sets of generators

N1 = 〈td1

1 , td2

2 tr3, t
2nd1d2

p

3 〉, N2 = 〈td1

1 t
2nd1d2

2p

3 , td2

2 tr3, t
2nd1d2

p

3 〉.

(ii) When m = d2

2 :
In this case, we have

(3.7)
2prm

2nd1d2
2 −

2pℓ

2nd1d2
+

pm

2d1d2
=

pr

2nd1d2
−

2pℓ

2nd1d2
+

p

4d1
∈ Z.

Since 0 ≤ pr
2nd1d2

< 1 and 0 ≤ 2pℓ
2nd1d2

< 2, we have

(3.8) −2 <
pr

2nd1d2
−

2pℓ

2nd1d2
< 1.

From (3.7) and (3.8), it is easy to show that N can be represented by the
following set of generators

N = 〈td1

1 t
d2
2

2 tℓ3, td2

2 t2ℓ3 , t
2nd1d2

p

3 〉 (p = 4kd1, k ∈ N),

N = 〈td1

1 t
d2
2

2 tℓ3, td2

2 t
2ℓ+

2nd1d2
2p

3 , t
2nd1d2

p

3 〉 (p = (2k − 1)2d1, k ∈ N).

Therefore we have proved the lemma. �

Let

N r
1 = 〈td1

1 , td2

2 tr3, t
2nd1d2

p

3 〉, N r
2 = 〈td1

1 t
2nd1d2

2p

3 , td2

2 tr
′

3 , t
2nd1d2

p

3 〉,

N ℓ
3 = 〈td1

1 t
d2
2

2 tℓ3, td2

2 ts3, t
2nd1d2

p

3 〉.

Then we can obtain the following proposition which is easily proved by using
the methods in Proposition 3.3 and Lemma 3.6.
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Proposition 3.7 (π3). Let Ni (i = 1, 2, 3) be a normal nilpotent subgroup of

π3 in Lemma 3.6 and isomorphic to Γp. Then we have the following:
(1) N1 ∼ N2 if and only if d2 = p, r ≡ r′ (mod d2).
(2) N1 ≁ N3, N2 ≁ N3.

(3) N r
1 ∼ N r′

1 if and only if r ≡ r′ (mod d2).

(4) N r
2 ∼ N r′

2 if and only if r ≡ r′ (mod d2).

(5) N ℓ
3 ∼ N ℓ′

3 if and only if 2ℓ ≡ 2ℓ′ (mod d2).

Theorem 3.8 (π3). Table 3 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π3.

Table 3

Generators AC classes of normal nilpotent subgroups Conditions

µi〈t2, t3, α〉 N1 = 〈td1

1 , td2

2 tr13 , t
2nd1d2

p

3 〉

N2 = 〈td1

1 , td2

2 tr23 , t
2nd1d2

p

3 〉 r1 6≡ r2 (mod d2)

N3 = 〈td1

1 t
nd1d2

p

3 , td2

2 ts13 , t
2nd1d2

p

3 〉 d2 6= p or ri 6≡ s1 (mod d2)

N4 = 〈td1

1 t
nd1d2

p

3 , td2

2 ts23 , t
2nd1d2

p

3 〉 (d2 6= p or ri 6≡ s2 (mod d2))
and s1 6≡ s2 (mod d2)

N5 = 〈td1

1 t
d2
2

2 tℓ13 , td2

2 t2ℓ13 , t
2nd1d2

p

3 〉 p = 4kd1

N6 = 〈td1

1 t
d2
2

2 tℓ23 , td2

2 t2ℓ23 , t
2nd1d2

p

3 〉 p = 4kd1, 2ℓ1 6≡ 2ℓ2 (mod d2)

N7 = 〈td1

1 t
d2
2

2 tℓ13 , td2

2 t
2ℓ1+

nd1d2
p

3 , t
2nd1d2

p

3 〉 p = (2k − 1)2d1

N8 = 〈td1

1 t
d2
2

2 tℓ23 , td2

2 t
2ℓ2+

nd1d2
p

3 , t
2nd1d2

p

3 〉 p = (2k − 1)2d1, 2ℓ1 6≡ 2ℓ2 (mod d2)

where r = r1 for i = 1, r = r2 for i = 2, s = s1 for i = 3, s = s2 for i = 4,
ℓ = ℓ1 for i = 5, 7, ℓ = ℓ2 for i = 6, 8, and

µ1 =

(

I,

([

r
2nd1d2

0

]

,

[ 1
d1

0

0 1
d2

]))

,

µ2 =

(

I,

([ s
2nd1d2

− 1
2p

]

,

[ 1
d1

0

0 1
d2

]))

,

µ3 =

(

I,

([

ℓ
nd1d2

1
4 − ℓ

2nd1d2

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ4 =

(

I,

([

ℓ
nd1d2

+ 1
2p

1
4 − ℓ

2nd1d2

]

,

[ 1
d1

0

− 1
2d1

1
d2

]

))

.

Note that π3/N is abelian if and only if N ⊃ [π3, π3] = 〈t22t
n
3 , t

2
3〉. Therefore

it is easy to get Theorem 3.4 of [1] as a corollary of the above theorem.
The following lemma shows all possible finite groups acting freely (up to

topological conjugacy) on the 3-dimensional nilmanifold Np which yield an
orbit manifold homeomorphic to H/π4.
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Lemma 3.9. Let N be a normal nilpotent subgroup of an almost Bieberbach

group π4 and isomorphic to Γp. Then N can be represented by one of the

following sets of generators: for s, w ∈ N,
(A) p = 4sd1, p = 2wd2:

N(1,1) = 〈td1

1 , td2

2 , t
4nd1d2

p

3 〉, N(1,2) = 〈td1

1 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(2,1) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 , t
4nd1d2

p

3 〉, N(2,2) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(3,1) = 〈td1

1 t
d2
2

2 , td2

2 , t
4nd1d2

p

3 〉, N(3,3) = 〈td1

1 t
d2
2

2 t
4nd1d2

2p

3 , td2

2 , t
4nd1d2

p

3 〉.

(B) p = 2(2s− 1)d1, p = 2wd2:

N(1,1) = 〈td1

1 , td2

2 , t
4nd1d2

p

3 〉,

N(1,2) = 〈td1

1 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(2,1) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 , t
4nd1d2

p

3 〉,

N(2,2) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(4,1) = 〈td1

1 t
d2
2

2 t
12nd1d2

4p

3 , td2

2 , t
4nd1d2

p

3 〉,

N(4,3) = 〈td1

1 t
d2
2

2 t
4nd1d2

4p

3 , td2

2 , t
4nd1d2

p

3 〉.

(C) p = 4sd1, p = (2w − 1)d2:

N(3,2) = 〈td1

1 t
d2
2

2 t
4nd1d2

4p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(3,4) = 〈td1

1 t
d2
2

2 t
12nd1d2

4p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉.

(D) p = 2(2s− 1)d1, p = (2w − 1)d2:

N(4,2) = 〈td1

1 t
d2
2

2 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(4,4) = 〈td1

1 t
d2
2

2 t
4nd1d2

2p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉.

Proof. Let N be a normal nilpotent subgroup of π4 and isomorphic to Γp. Then
by Proposition 2.3,

N = 〈 td1

1 tm2 tℓ3, t
d2

2 tr3, t
4nd1d2

p

3 〉,

(

0 ≤ m < d2, 0 ≤ ℓ, r <
4nd1d2

p

)

.

Since N is a normal nilpotent subgroup of π4, the following two relations

β(td1

1 tm2 tℓ3)β
−1 = (td1

1 tm2 tℓ3)(t
d2

2 tr3)
−

2m
d2 (t

4nd1d2
p

3 )x ∈ N,

β(td2

2 tr3)β
−1 = (td2

2 tr3)
−1(t

4nd1d2
p

3 )
p

2d1 ∈ N
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show that − 2m
d2

∈ Z p
2d1

∈ Z and

(3.9) x =
2prm

4nd1d22
−

2pℓ

4nd1d2
+

pm

2d1d2
∈ Z.

Since 0 ≤ m < d2 and 2m
d2

∈ Z, we have m = 0 or d2

2 . Moreover the following
two relations

α(td1

1 tm2 tℓ3)α
−1 = (td1

1 tm2 tℓ3)
−1(t

4nd1d2
p

3 )y ∈ N,

α(td2

2 tr3)α
−1 = (td2

2 tr3)
−1(t

4nd1d2
p

3 )
2pr

4nd1d2
−

p

2d1 ∈ N

show that

(3.10) y =
2pℓ

4nd1d2
+

p

2d2
−

pm

2d1d2
∈ Z.

Since 2pr
4nd1d2

− p
2d1

∈ Z, p
2d1

∈ Z and 0 ≤ r < 4nd1d2

p
, we have r = 0 or 4nd1d2

2p .

Using (3.9) and (3.10), we can classify the normal nilpotent subgroups repre-
senting N . Now we can consider the following two cases.

(I) When m = 0:

From (3.9), we have 2pℓ
4nd1d2

∈ Z. Since 0 ≤ ℓ < 4nd1d2

p
, we obtain ℓ = 0 or

4nd1d2

2p . Thus N can be represented by the following two groups:

N1 = 〈td1

1 , td2

2 tr3, t
4nd1d2

p

3 〉, N2 = 〈td1

1 t
4nd1d2

2p

3 , td2

2 tr3, t
4nd1d2

p

3 〉.

Since r = 0 or 4nd1d2

2p , we have the following four types of normal nilpotent

subgroups representing N :

N(1,1) = 〈td1

1 , td2

2 , t
4nd1d2

p

3 〉, N(1,2) = 〈td1

1 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(2,1) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 , t
4nd1d2

p

3 〉, N(2,2) = 〈td1

1 t
4nd1d2

2p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉.

From (3.10), we have p
2d2

∈ Z.

(II) When 2m = d2:
From (3.9), we have

(3.11)
pr

4nd1d2
−

2pℓ

4nd1d2
+

p

4d1
∈ Z.

Since 0 ≤ pr
4nd1d2

< 1 and 0 ≤ 2pℓ
4nd1d2

< 2, we have

(3.12) −2 <
pr

4nd1d2
−

2pℓ

4nd1d2
< 1.

Since p
2d1

∈ Z, there are two cases. But we only deal with the case of p =

4sd1 (s ∈ N). From (3.11) and (3.12), we have pr
4nd1d2

− 2pℓ
4nd1d2

= 0, −1. Hence

r = 2ℓ, 2ℓ− 4nd1d2

p
, respectively.

(a) When r = 2ℓ: Since r = 0 or 4nd1d2

2p , we have ℓ = 0 or 4nd1d2

4p , respectively.
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(i) r = 0, ℓ = 0:

N(3,1) = 〈td1

1 t
d2
2

2 , td2

2 , t
4nd1d2

p

3 〉.

From (3.10), we have p
2d2

∈ Z.

(ii) r = 4nd1d2

2p or ℓ = 4nd1d2

4p :

N(3,2) = 〈td1

1 t
d2
2

2 t
4nd1d2

4p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉.

From (3.10), we have 1
2 + p

2d2
∈ Z.

Similarly we can obtain the following results.
(b) When r = 2ℓ− 4nd1d2

p
:

N(3,3) = 〈td1

1 t
d2
2

2 t
4nd1d2

2p

3 , td2

2 , t
4nd1d2

p

3 〉,
p

2d2
∈ Z.

N(3,4) = 〈td1

1 t
d2
2

2 t
12nd1d2

4p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,
1

2
+

p

2d2
∈ Z.

Note that 1
2 +

p
2d2

∈ Z if and only if p = (2w− 1)d2, w ∈ N. By (I) and (II),

we have proved (A) and (C). The other cases can be done similarly. �

Proposition 3.10 (π4). Let N(i,j) (i = 1, 2, j = 1, 2, 3, 4) be a normal nilpotent

subgroup of π4 in Lemma 3.9 and isomorphic to Γp. Then we have the following:

(1) N(1,2) ∼ N(2,1) if and only if d1 = d2.
N(1,1) ≁ N(1,2), N(1,1) ≁ N(2,1), N(1,1) ≁ N(2,2),

N(1,2) ≁ N(2,2), N(2,1) ≁ N(2,2).

(2) N(3,1) ≁ N(3,3), N(4,1) ≁ N(4,3).

(3) N(3,2) ∼ N(3,4) if and only if d2 = p.
N(4,2) ∼ N(4,4) if and only if d2 = p or 2d1 = p .

(4) N(1,k) ≁ N(3,j), N(1,k) ≁ N(4,j), N(2,k) ≁ N(3,j), N(2,k) ≁ N(4,j)

(k = 1, 2).

Proof. (1) First we need to find the normalizer NAff(H)(π4) by applying the
method used in Theorem 3.3 of [1]:

µ(x, y, z, u, v) =









1 x z
0 1 y
0 0 1



 ,

([

u
v

]

,

[

a b
c d

])



 ,

where 2x ∈ Z, 2y ∈ Z, z ∈ R and
[

a b
c d

]

∈ Z4 ⋊ Z2 =

〈[

0 −1
1 0

]

,

[

1 0
0 −1

]〉

.

Note that [ uv ] ∈ Aut(H) can be evaluated respectively by the elements of Z4 ⋊

Z2. More precisely, the values of [ uv ] ∈ Aut(H) are [ 00 ] ,
[

−
1

2

−
1

2

]

,
[

0
−

1

2

]

,
[

−
1

2

0

]

.

Note that the four types of normal nilpotent subgroupsN(1,1), N(1,2), N(2,1),
N(2,2) of π4 are of the same forms as the four types of normal nilpotent sub-
groups N1, N2, N3, N4 of π2, respectively. Thus all calculations to determine
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affine conjugacy among N(i,j) (1 ≤ i, j ≤ 2) are similar to those used in the
proof of Proposition 3.3. Therefore we can obtain the following results:

(a) N(1,1) ∼ N(1,2) if and only if m = 0, d1 = p.
(b) N(1,1) ∼ N(2,1) if and only if m = 0, d2 = p.
(c) N(1,1) ∼ N(2,2) if and only if m = 0, d1 = d2 = p.
(d) N(1,2) ∼ N(2,1) if and only if m = 0, d1 = d2.
(e) N(1,2) ∼ N(2,2) if and only if either m = 0, d2 = p or 2m = d2, d1 = p

2 .
(f) N(2,1) ∼ N(2,2) if and only if m = 0, d1 = p.

Note that if 2d1 and 2d2 are divisors of p, then there exist N(i,j) (1 ≤ i, j ≤ 2)
by (A) and (B) of Lemma 3.9. Therefore we can conclude that N(1,2) ∼ N(2,1)

if and only if d1 = d2,

N(1,1) ≁ N(1,2), N(1,1) ≁ N(2,1), N(1,1) ≁ N(2,2),

N(1,2) ≁ N(2,2), N(2,1) ≁ N(2,2).

(3) Suppose that N(4,2) is affinely conjugate to N(4,4), where

N(4,2) = 〈td1

1 t
d2
2

2 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉,

N(4,4) = 〈td1

1 t
d2
2

2 t
4nd1d2

2p

3 , td2

2 t
4nd1d2

2p

3 , t
4nd1d2

p

3 〉.

Then there exists µ ∈ NAff(H)(π4) satisfying either (3.1) or (3.2). From (3.5),

we can get x = 0 and y = d2

2p . Since 2y = d2

p
∈ Z, we have d2 = p. The converse

is easy by using








1 0 0
0 1 1

2
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ∈ NAff(H)(π4).

In (3.6), since d2

2 6= 0, we have a contradiction. Another possibility is as follows:

µ(td1

1 t
d2
2

2 )µ−1 = td1

1 t
d2
2

2 t
−

4nd1d2
2p

3 , µ(td2

2 t
4nd1d2

2p

3 )µ−1 = td2

2 t
−

4nd1d2
2p

3 .

From these two relations, we can get x = d1

p
and y = 0.

Note that in this case we have p = 2(2s− 1)d1, s ∈ N. Therefore 2x = 2d1

p
=

2d1

2(2s−1)d1
= 1

2s−1 ∈ Z ⇔ s = 1 ⇔ p = 2d1. The converse is easy by using









1 1
2 0

0 1 0
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ∈ NAff(H)(π4).

The other cases can be done similarly. �

Theorem 3.11 (π4). Table 4 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π4.
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Table 4

Generators AC classes of normal nilpotent subgroups Conditions

µi〈t2, α, β〉 N1 = 〈td1

1 , td2

2 , t
4nd1d2

p

3 〉 p = 2sd1, p = 2wd2

N2 = 〈td1

1 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = 2sd1, p = 2wd2

N3 = 〈td1

1 t
2nd1d2

p

3 , td2

2 , t
4nd1d2

p

3 〉 p = 2sd1, p = 2wd2, d1 6= d2

N4 = 〈td1

1 t
2nd1d2

p

3 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = 2sd1, p = 2wd2

N5 = 〈td1

1 t
d2
2

2 , td2

2 , t
4nd1d2

p

3 〉 p = 4sd1, p = 2wd2

N6 = 〈td1

1 t
d2
2

2 t
nd1d2

p

3 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = 4sd1, p = (2w − 1)d2

N7 = 〈td1

1 t
d2
2

2 t
2nd1d2

p

3 , td2

2 , t
4nd1d2

p

3 〉 p = 4sd1, p = 2wd2

N8 = 〈td1

1 t
d2
2

2 t
3nd1d2

p

3 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = 4sd1, p = (2w − 1)d2, d2 6= p

N9 = 〈td1

1 t
d2
2

2 t
3nd1d2

p

3 , td2

2 , t
4nd1d2

p

3 〉 p = (2s− 1)2d1, p = 2wd2

N10 = 〈td1

1 t
d2
2

2 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = (2s− 1)2d1, p = (2w − 1)d2

N11 = 〈td1

1 t
d2
2

2 t
nd1d2

p

3 , td2

2 , t
4nd1d2

p

3 〉 p = (2s− 1)2d1, p = 2wd2

N12 = 〈td1

1 t
d2
2

2 t
2nd1d2

p

3 , td2

2 t
2nd1d2

p

3 , t
4nd1d2

p

3 〉 p = (2s− 1)2d1, p = (2w − 1)d2
d2 6= p, 2d1 6= p

where

µ1 =

(

I,

([

0
0

]

,

[ 1
d1

0

0 1
d2

]))

,

µ2 =

(

I,

([ 1
2p

0

]

,

[ 1
d1

0

0 1
d2

]))

,

µ3 =

(

I,

([

0
− 1

2p

]

,

[ 1
d1

0

0 1
d2

]))

,

µ4 =

(

I,

([ 1
2p

− 1
2p

]

,

[ 1
d1

0

0 1
d2

]))

,

µ5 =

(

I,

([

0
1
4

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ6 =

(

I,

([ 1
2p

1
4 − 1

4p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ7 =

(

I,

([

0
1
4 − 1

2p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ8 =

(

I,

([ 1
2p

1
4 − 3

4p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ9 =

(

I,

([

0
1
4 − 3

4p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,
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µ10 =

(

I,

([ 1
2p
1
4

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ11 =

(

I,

([

0
1
4 − 1

4p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

,

µ12 =

(

I,

([ 1
2p

1
4 − 1

2p

]

,

[ 1
d1

0

− 1
2d1

1
d2

]))

.

Note that π4/N is abelian if and only if N ⊃ [π4, π4] = 〈t21, t22, t23, t1t2t3 〉.
Thus it is not hard to get Theorem 3.5 of [1] as a corollary of the above theorem.

In the following proposition, we show when affine conjugacy occurs between
4 types of normal nilpotent subgroups Nj (j = 1, 2, 3, 4) of π5,i (i = 1, 2, 3). It
can be proved by applying the method in [1, Theorem 3.7] and Lemma 3.1.

Proposition 3.12 (π5). Let Nj (j = 1, 2, 3, 4) be a normal nilpotent subgroup

of π5,i (i = 1, 2, 3) in Lemma 3.1 and isomorphic to Γp. Then we have the

following:
(1) N1 ∼ N4 if and only if m = 0, d1 = d2 = p.
(2) N2 ∼ N3 if and only if m = 0, d1 = d2.
(3) N1 ≁ N2, N1 ≁ N3, N2 ≁ N4, N3 ≁ N4.

Note that in Lemma 3.1, the following conditions of a normal subgroup of
π5,i,

d1
d2

+
m2

d1d2
∈ Z,

m

d1
∈ Z,

d2
d1

∈ Z

are crucial to prove the following theorem. Let d2 = d1s, m = d1t. Then we
have

d1
d2

+
m2

d1d2
∈ Z ⇐⇒

1 + t2

s
∈ Z ⇐⇒ 1 + t2 ≡ 0 (mod s).

Since 0 ≤ m < d2, if s = 1, then we must have m = 0. Also, if s, t ∈ 2N, then
1 + t2 6≡ 0 (mod s). So, if s is even, then t must be odd.

Theorem 3.13 (π5). Table 5 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π5,i (1 ≤ i ≤ 3).

Table 5

Generators AC classes of normal nilpotent subgroups Conditions

µi〈t1, t2, α̂〉 N1 = 〈td1

1 ttd1

2 , tsd1

2 , t
Ksd2

1

p

3 〉 0 ≤ t < s and
if s is even, then t is odd

N2 = 〈td1

1 ttd1

2 , tsd1

2 t
Ksd2

1

2p

3 , t
Ksd2

1

p

3 〉 0 ≤ t < s and
if s is even, then t is odd

N3 = 〈td1

1 ttd1

2 t
Ksd2

1

2p

3 , tsd1

2 , t
Ksd2

1

p

3 〉 0 ≤ t < s, s 6= 1 and
if s is even, then t is odd

N4 = 〈td1

1 ttd1

2 t
Ksd2

1

2p

3 , tsd1

2 t
Ksd2

1

2p

3 , t
Ksd2

1

p

3 〉 0 ≤ t < s, if s = 1, then d1 6= p,
and if s is even, then t is odd
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where K = 4n for the cases of π5,2 and π5,3, K = 4n− 2 for the case of π5,1,

α̂ = α−1t3 for the case of π5,2, α̂ = α for the cases of π5,1 and π5,3, and

µ1 =

(

I,

([

0
t
2s

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ2 =

(

I,

([ 1
2p
t
2s

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ3 =

(

I,

([

0
t
2s − 1

2p

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ4 =

(

I,

([ 1
2p

t
2s − 1

2p

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

.

Note that π5,i/N (i = 1, 2, 3) is abelian if and only if N ⊃ [π5,i, π5,i] =
〈t1t2, t22, tK3 〉. Therefore it is easy to obtain Theorem 3.7 of [1] as a corollary
of the above theorem.

Now we shall find all possible finite groups acting freely (up to topological
conjugacy) on the 3-dimensional nilmanifold Np which yield an orbit manifold
homeomorphic to H/π6,i (i = 1, 2, 3, 4).

Let N be a normal nilpotent subgroup of π6,i and isomorphic to Γp. Then
by Proposition 2.3,

N = 〈 td1

1 tm2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉,

(

0 ≤ m < d2, 0 ≤ ℓ, r <
Kd1d2

p

)

,

where K = 3n for i = 1, 2, K = 3n− 2 for i = 3 and K = 3n− 1 for i = 4.
We will begin by considering the following general situation. Let

N = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
Kd1d2

p

3 〉, N ′ = 〈 t1
d1tm2 tℓ

′

3 , t
d2

2 tr
′

3 , t
Kd1d2

p

3 〉

be two normal nilpotent subgroups of π6,i. SinceN (orN ′) is a normal nilpotent
subgroup of π6,i, the following two relations

α(td1

1 tm2 tℓ3)α
−1 = (td1

1 tm2 tℓ3)
−

m
d1 (td2

2 tr3)
x(t

Kd1d2
p

3 )y ∈ N,

α2(td2

2 tr3)(α
2)

−1
= (td1

1 tm2 tℓ3)
d2
d1 (td2

2 tr3)
−

m
d1 (t

Kd1d2
p

3 )z ∈ N

show that d1 is a common divisor of m and d2, and x = d1

d2
− m

d2
+ m2

d1d2
∈ Z,

which induce that d2 = (2s− 1)d1, s ∈ N, and

y = −
pr

Kd2
2 +

prm

Kd1d2
2 −

prm2

Kd1
2d2

2 −
pm

d2
+

pm2

d1d2
−

pm3

d1
2d2

+
pℓm

Kd1
2d2

+
pm2

2d1d2
(
m

d1
− 1) +

pℓ

Kd1d2
−

pm(m+ 1)

2d1d2
∈ Z,

z = −
prm

Kd1
2d2

−
pm

d1
2 +

p

d1
2 (d1m−

ℓ

K
) +

pm

2d1
(
d2
d1

− 1) +
pr

Kd1d2
∈ Z.
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Since d2 is a divisor of p and d2 = (2s− 1)d1, s ∈ N, we can get

(3.13) −
pr

Kd2
2 +

prm

Kd1d2
2 −

prm2

Kd1
2d2

2 +
pℓm

Kd1
2d2

+
pℓ

Kd1d2
−

pm(m+ 1)

2d1d2
∈ Z,

(3.14) −
prm

Kd1
2d2

−
pℓ

Kd1
2 +

pr

Kd1d2
∈ Z.

If N is affinely conjugate to N ′, then there exists µ ∈ NAff(H)(π6,i) satisfying
either (3.1) or (3.2). In case (3.2), we have the following result.

Proposition 3.14. Let N and N ′ be such normal nilpotent subgroups of π6,i

whose sets of generators are

N = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
Kd1d2

p

3 〉, N ′ = 〈 t1
d1tm2 tℓ

′

3 , t
d2

2 tr
′

3 , t
Kd1d2

p

3 〉.

If N ∼ N ′, then m = 0, ℓ = r, ℓ′ = r′, d1 = d2, and ℓ+ℓ′ = 0, Kd1

3 , 2Kd1

3 ,Kd1,
4Kd1

3 or 5Kd1

3 for the cases of π6,1 and π6,2, ℓ+ ℓ′ = 0 or Kd1 for the cases of

π6,3 and π6,4.

Proof. Recall that the normalizer NAff(H)(π6,i) of π6,i has been obtained [1,
Theorem 3.8]:

µ(x, y, z, u, v) :=









1 x z
0 1 y
0 0 1



 ,

([

u
v

]

,

[

a b
c d

])



 ∈ NAff(H)(π6,i),

where z ∈ R and if ad− bc = 1, then

x =
2r − s

3
, y =

r + s

3
(r, s ∈ Z),

x+ u =
1

2
ab+

r′

K
, y + v = −

1

2
cd+

s′

K
(r′, s′ ∈ Z),

if ad− bc = −1, then

x =
p+ q

3
, y =

2p− q

3
(p, q ∈ Z),

x+ u = −
1

2
ab+

r′

K
, y + v =

1

2
cd+

s′

K
(r′, s′ ∈ Z),

and
[

a b
c d

]

∈ Z6 ⋊ Z2 =

〈[

0 1
−1 1

]

,

[

0 1
1 0

]〉

.

Note that [ uv ] ∈ Aut(H) can be evaluated respectively by the elements of

Z6 ⋊ Z2. More precisely, the values of [ uv ] ∈ Aut(H) are
[

0
1

2

]

,
[

−
1

2

0

]

, [ 00 ],
[

−
1

3

1

3

]

,
[

−
1

3

−
1

6

]

,
[

1

6

1

3

]

.
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From (3.6), we have b = c = 1 and so d1 = d2. Since
[

a b
c d

]

= [ 0 1
1 0 ] ∈ Z6⋊Z2,

the corresponding element [ uv ] ∈ Aut(H) is
[

−
1

3

1

3

]

. Using these values, we can

get

(3.15) x−
1

3
= −

ℓ+ r′

Kd2
, y +

1

3
=

ℓ′ + r

Kd1
.

Since m = 0, from (3.13) and (3.14), we have

(3.16) −
pℓ

Kd1
2 +

pr

Kd1d2
= −

pℓ

Kd1d2
+

pr

Kd1d2
∈ Z.

Since 0 ≤ pℓ
Kd1d2

, pr
Kd1d2

< 1, we have ℓ = r and ℓ′ = r′. Since ad − bc = −1,

x + y and 2x − y are integers, 3x and 3y must be integers. From (3.15), we
obtain

3x = 1−
3(ℓ+ r′)

Kd1
∈ Z, 3y =

3(ℓ′ + r)

Kd1
− 1 ∈ Z.

Thus we have 3(ℓ+r′)
Kd1

= 3(ℓ′+r)
Kd1

= 3(ℓ+ℓ′)
Kd1

∈ Z. Since 0 ≤ ℓ
Kd1

, ℓ′

Kd1

< d2

p
≤ 1

and 3(ℓ+ℓ′)
Kd1

∈ Z, we have

3(ℓ+ ℓ′)

Kd1
= 0, 1, 2, 3, 4, 5.

For all these values, we have x+ y ∈ Z, 2x− y ∈ Z. Also, we have

ℓ+ ℓ′

d1
= 0,

K

3
,

2K

3
, K,

4K

3
,

5K

3
.

Since x− 1
3 and y+ 1

3 are multiples of 1
K
, ℓ+ℓ′

d1

must be an integer. In π6,1 and
π6,2, since K = 3n, we have

ℓ+ ℓ′

d1
= 0,

K

3
,

2K

3
, K,

4K

3
,

5K

3
∈ Z.

But in π6,3 and π6,4, since K = 3n − 2 or 3n − 1, we have ℓ+ℓ′

d1

= 0 or K,
respectively. �

In case (3.1), we have the following lemma:

Lemma 3.15. Let N and N ′ be such normal nilpotent subgroups of π6,i whose

sets of generators are

N = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
Kd1d2

p

3 〉, N ′ = 〈 t1
d1tm2 tℓ

′

3 , t
d2

2 tr
′

3 , t
Kd1d2

p

3 〉.

If there exists µ ∈ NAff(H)(π6,i) satisfying the relations stated in (3.1), then

µ =









1 x z
0 1 y
0 0 1



 ,

([

0
0

]

,

[

1 0
0 1

])



 ,

where x = r−r′

Kd2
and y = − (ℓ−ℓ′)

Kd1
+ m

d1
x.
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Proof. From (3.5), we have
[

a b
c d

]

= [ 1 0
0 1 ] ∈ Z6 ⋊Z2. Therefore the correspond-

ing element [ uv ] ∈ Aut(H) is [ 00 ]. Using this, we obtain

(3.17) x =
r − r′

Kd2
, y = −

ℓ− ℓ′

Kd1
+

m(r − r′)

Kd1d2
= −

ℓ− ℓ′

Kd1
+

mx

d1
.

�

Remark. In case (3.1), since ad−bc = 1, x+y and −x+2y are integers, 3x and
3y must be integers. By the same arguments used in the proof of Proposition
3.14 and (3.17), we obtain

3(r − r′)

Kd2
= ±2, ±1, 0,

3(ℓ− ℓ′)

Kd1
= ±2, ±1, 0.

Assume r ≥ r′. Then from (3.17) we have

x =
r − r′

Kd2
= 0,

1

3
,

2

3
, y = (±

2

3
, ±

1

3
, 0) +

m

d1
x.

Thus we can consider the following three cases: for w ∈ N ∪ {0},

(I) When m = 3wd1,

N1 = 〈 t1
d1t3wd1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉,

(II) When m = (3w + 1)d1,

N2 = 〈 t1
d1t

(3w+1)d1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉,

(III) When m = (3w + 2)d1,

N3 = 〈 t1
d1t

(3w+2)d1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉.

In the next theorem, we show when affine conjugacy occurs among three
types of nilpotent subgroups Nj (j = 1, 2, 3) of π6,i (i = 1, 2).

Let

N ℓ,r
1 = 〈 t1

d1t3wd1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉, N ℓ,r
2 = 〈 t1

d1t
(3w+1)d1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉,

N ℓ,r
3 = 〈 t1

d1t
(3w+2)d1

2 tℓ3, t
d2

2 tr3, t
Kd1d2

p

3 〉.

Then we can obtain the following proposition which can be proved by using
the method in Proposition 3.3.

Proposition 3.16 (π6−a). Let Nj (j = 1, 2, 3) be a normal nilpotent subgroup

of π6,i (i = 1, 2) and isomorphic to Γp. Then we have the following:

(1) N ℓ,r
1 ∼ N ℓ′,r′

1 if and only if (r − r′, ℓ − ℓ′) = (0, 0), (Kd2

3 , Kd1

3 ),

(Kd2

3 ,− 2Kd1

3 ), (2Kd2

3 , 2Kd1

3 ), (2Kd2

3 ,−Kd1

3 ).

(2) N ℓ,r
2 ∼ N ℓ′,r′

2 if and only if (r − r′, ℓ − ℓ′) = (0, 0), (Kd2

3 , 2Kd1

3 ),

(Kd2

3 ,−Kd1

3 ), (2Kd2

3 , Kd1

3 ), (2Kd2

3 ,− 2Kd1

3 ).

(3) N ℓ,r
3 ∼ N ℓ′,r′

3 if and only if (r − r′, ℓ− ℓ′) = (0, 0), (Kd2

3 , 0), (2Kd2

3 , 0).
(4) N1 ≁ N2, N1 ≁ N3, N2 ≁ N3.
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Proof. Assume N ℓ,r
1 is affinely conjugate to N ℓ′,r′

1 . Then there exists

µ =









1 x z
0 1 y
0 0 1



 ,

([

u
v

]

,

[

a b
c d

])



 ∈ NAff(H)(π6,i)

satisfying the following two relations:

µ(t1
d1t2

3wtℓ3)µ
−1 = td1

1 t2
3wtℓ

′

3 , µ(td2

2 tr3)µ
−1 = td2

2 tr
′

3 .

By Lemma 3.15 and remark above, we obtain
(

[ uv ] ,
[

a b
c d

])

= ([ 00 ] , [
1 0
0 1 ]) ,

(3.18) x =
r − r′

Kd2
= 0,

1

3
,
2

3
, y = −

ℓ− ℓ′

Kd1
+

mx

d1
= (±

2

3
, ±

1

3
, 0) + 3wx.

Thus we can consider the following three cases:
(i) When x = 0 (r = r′).
Since x = 0 and x+ y ∈ Z, we have y = 0 and so ℓ = ℓ′.
(ii) When x = 1

3 (r − r′ = Kd2

3 ).

Since x+y ∈ Z and −x+2y ∈ Z, from (3.18), we have y = − 1
3 +w or 2

3 +w.
Hence

(r − r′, ℓ− ℓ′) = (
Kd2
3

,
Kd1
3

), (
Kd2
3

, −
2Kd1
3

).

The converse is easy by using
([

1 1

3
0

0 1 −
1

3
+w

0 0 1

]

, ([ 00 ] , [
1 0
0 1 ])

)

or

([

1 1

3
0

0 1 2

3
+w

0 0 1

]

, ([ 00 ] , [
1 0
0 1 ])

)

,

respectively.
(iii) When x = 2

3 (r − r′ = 2Kd2

3 ).

Since x+y ∈ Z and −x+2y ∈ Z, from (3.18), we have y = − 2
3 +2w, 1

3 +2w.
Hence

(r − r′, ℓ− ℓ′) = (
2Kd2
3

,
2Kd1
3

), (
2Kd2
3

,−
Kd1
3

).

The converse is easy by using
([

1 2

3
0

0 1 −
2

3
+2w

0 0 1

]

, ([ 00 ] , [
1 0
0 1 ])

)

or

([

1 2

3
0

0 1 1

3
+2w

0 0 1

]

, ([ 00 ] , [
1 0
0 1 ])

)

,

respectively. The proofs of (2) and (3) are similar to that of (1) and we omit
their proofs. (4) is an immediate consequence of Theorem 3.2. �

Proposition 3.17 (π6−b). Let Nj (j = 1, 2, 3) be a normal nilpotent subgroup

of π6,i (i = 3, 4) and isomorphic to Γp. If r 6= r′ or ℓ 6= ℓ′, then

N ℓ,r
i ≁ N ℓ′,r′

j (1 ≤ i, j ≤ 3).

Proof. Assume N ℓ,r
i is affinely conjugate to N ℓ′,r′

j by conjugation of

µ(x, y, z, u, v) ∈ NAff(H)(π6,i) (i = 3, 4).
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By the same arguments in the proof of the preceding proposition and remark,
we have

x =
r − r′

Kd2
= 0,

1

3
,

2

3
, y = −

ℓ− ℓ′

Kd1
+

mx

d1
= (±

2

3
, ±

1

3
, 0) +

mx

d1
.

Recall that K = 3n− 2 for the case of π6,3, K = 3n− 1 for the case of π6,4 and

x+ u =
1

2
ab+

r′

K
, y + v = −

1

2
cd+

s′

K
(r′, s′ ∈ Z).

Hence r−r′

d2

∈ Z implies that x = 0 and r = r′. Therefore ℓ−ℓ′

d1

∈ Z implies that

y = 0 and ℓ = ℓ′. �

Theorem 3.18 (π6). Tables 6-1 and 6-2 give a complete list of all free actions

(up to topological conjugacy) of finite groups G on Np which yield an orbit

manifold homeomorphic to H/π6,i (1 ≤ i ≤ 4).

Table 6-1

Generators AC classes of normal nilpotent subgroups Conditions (s ∈ 2N− 1)

µ〈t1, t2, α̂〉 N1 = 〈td1

1 t3wd1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉 (∗)

N2 = 〈td1

1 t3wd1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 (u, v) 6= (1, 1), (1,−2), (2, 2), (2,−1)

N3 = 〈td1

1 t
(3w+1)d1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉

N4 = 〈td1

1 t
(3w+1)d1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 (u, v) 6= (1, 2), (1,−1), (2, 1), (2,−2)

N5 = 〈td1

1 t
(3w+2)d1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉

N6 = 〈td1

1 t
(3w+2)d1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 (u, v) 6= (1, 0), (2, 0)

where u = 3(r1−r2)
Ksd1

, v = 3(ℓ1−ℓ2)
Kd1

, w ∈ N ∪ {0}, K = 3n, α̂ = α for the case of

π6,1, and α̂ = α−1t3 for the case of π6,2.

Here (∗): if s = 1, ℓi = ri (i = 1, 2), (u, v) 6= (1, 1), then ℓ1 + ℓ2 6= jKd1

3 (0 ≤
j ≤ 5).

Table 6-2

Generators AC classes of normal nilpotent subgroups Conditions (s ∈ 2N− 1)

µ〈t1, t2, α̂〉 N1 = 〈td1

1 t3wd1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉 (∗)

N2 = 〈td1

1 t3wd1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 ℓ1 6= ℓ2 or r1 6= r2

N3 = 〈td1

1 t
(3w+1)d1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉

N4 = 〈td1

1 t
(3w+1)d1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 ℓ1 6= ℓ2 or r1 6= r2

N5 = 〈td1

1 t
(3w+2)d1

2 tℓ13 , tsd1

2 tr13 , t
Ksd2

1

p

3 〉

N6 = 〈td1

1 t
(3w+2)d1

2 tℓ23 , tsd1

2 tr23 , t
Ksd2

1

p

3 〉 ℓ1 6= ℓ2 or r1 6= r2
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where w ∈ N ∪ {0}, K = 3n− 2 for the case of π6,3, K = 3n− 1 for the case

of π6,4, α̂ = α−1t3 for the case of π6,3, and α̂ = α for the case of π6,4.

Here (∗): if s = 1, ℓi = ri(i = 1, 2), ℓ1 6= ℓ2, then ℓ1 + ℓ2 6= 0,Kd1.

µ =

(

I,

([

r
Ksd2

1

t
2s − ℓ

Ksd2

1

]

,

[ 1
d1

0

− t
sd1

1
sd1

]

))

,

where t = 3w for j = 1, 2, t = 3w + 1 for j = 3, 4, t = 3w + 2 for j = 5, 6,
ℓ = ℓ1, r = r1 for j = 1, 3, 5, and ℓ = ℓ2, r = r2 for j = 2, 4, 6.

Note that π6,i/N (i = 1, 2, 3, 4) is abelian if and only if N ⊃ [π6,i, π6,i] =

〈t2t
−1
1 , t−1

1 t−2
2 , t3n3 〉 = 〈t1t

−1
2 , t32, t3n3 〉. Thus it is not hard to get Theorems

3.8 and 3.9 of [1] as corollaries of the above theorem by adding the abelian
condition.

For the case of π7,i (i = 1, 2, 3, 4), we can obtain the following result [11], by
applying the same methods used in Proposition 3.12.

Proposition 3.19 (π7). Let Nj (j = 1, 2, 3, 4) be a normal nilpotent subgroup

of π7,i (i = 1, 2, 3, 4) in Lemma 3.1 and isomorphic to Γp. Then we have the

following:
(1) N2 ∼ N3 if and only if m = 0, d1 = d2.
(2) N1 ≁ N2, N1 ≁ N3, N1 ≁ N4, N2 ≁ N4, N3 ≁ N4.

Note that the following conditions of a normal subgroup of π7,i in Lemma
3.1

d1
d2

+
m(m− d1)

d1d2
∈ Z,

m

d1
∈ Z,

d2
d1

∈ Z

are critical to prove the next theorem. Let d2 = d1s, m = d1t. Then we have

d1
d2

+
m(m− d1)

d1d2
∈ Z ⇐⇒

t(t− 1) + 1

s
∈ Z ⇐⇒ t(t− 1) + 1 ≡ 0 (mod s).

Since 0 ≤ m < d2, if s = 1, then we must have m = 0. Also, since t(t− 1) + 1
is odd, if s ∈ 2N, then 1 + t(t− 1) 6≡ 0 (mod s). So, s must be odd.

Theorem 3.20 (π7). Table 7 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π7,i (1 ≤ i ≤ 4).

Table 7

Generators AC classes of normal nilpotent subgroups Conditions

µi〈t1, t2, α̂〉 N1 = 〈td1

1 ttd1

2 , tsd1

2 , t
Ksd2

1

p

3 〉 s ∈ 2N− 1, 0 ≤ t < s

N2 = 〈td1

1 ttd1

2 , tsd1

2 t
Ksd2

1

2p

3 , t
Ksd2

1

p

3 〉 s ∈ 2N− 1, 0 ≤ t < s

N3 = 〈td1

1 ttd1

2 t
Ksd2

1

2p

3 , tsd1

2 , t
Ksd2

1

p

3 〉 s ∈ 2N+ 1, 0 ≤ t < s

N4 = 〈td1

1 ttd1

2 t
Ksd2

1

2p

3 , tsd1

2 t
Ksd2

1

2p

3 , t
Ksd2

1

p

3 〉 s ∈ 2N− 1, 0 ≤ t < s
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where K = 6n for the cases of π7,1 and π7,3, K = 6n− 2 for the case of π7,2,

K = 6n − 4 for the case of π7,4, α̂ = α for the cases of π7,1, π7,2, α̂ = α−1t3
for the case of π7,3 and π7,4, and

µ1 =

(

I,

([

0
t
2s

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ2 =

(

I,

([ 1
2p
t
2s

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ3 =

(

I,

([

0
t
2s − 1

2p

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

,

µ4 =

(

I,

([ 1
2p

t
2s − 1

2p

]

,

[ 1
d1

0

− t
sd1

1
sd1

]))

.

Note that π7,i/N is abelian if and only if N ⊃ [π7,i, π7,i] = 〈t1, t2, tK3 〉,
where K = 6n for i = 1, 3, K = 6n − 2 for i = 2 and K = 6n − 4 for i = 4.
Thus Theorem 3.10 of [1] can be obtained immediately as a consequence of the
above theorem.

Let N = 〈t1d1tm2 tℓ3, t
d2

2 tr3, t
nd1d2

p

3 〉 be a normal nilpotent subgroup of π1. We
recall the following results [15] for the reader’s conveniences which show the
conditions of affine conjugacy to N for given d1, d2 and m, and corrects the
missing one in [1, Theorem 3.11].

Proposition 3.21 (π1). Let N and N ′ be normal nilpotent subgroups of π1

whose sets of generators are

N = 〈 t1
d1tm2 tℓ3, t

d2

2 tr3, t
nd1d2

p

3 〉, N ′ = 〈 t1
d1tm2 tℓ

′

3 , t
d2

2 tr
′

3 , t
nd1d2

p

3 〉.

Then N ∼ N ′ is equivalent to either r ≡ r′ (mod d2), ℓ ≡ (ℓ′ + m(r−r′)
d2

) (mod

d1), or m = 0, d1 = d2 and d1 is a divisor of ℓ+ r′ and r + ℓ′.

The following theorem is easily obtained from the above proposition.

Theorem 3.22 (π1). Table 1 gives a complete list of all free actions (up to

topological conjugacy) of finite groups G on Np which yield an orbit manifold

homeomorphic to H/π1.

Table 1

Generators AC classes of normal nilpotent subgroups Conditions ( pm
d1d2

∈ Z)

µi〈t1, t2, t3〉 N1 = 〈td1

1 tm2 tℓ13 , td2

2 tr13 , t
nd1d2

p

3 〉

N2 = 〈td1

1 tm2 tℓ23 , td2

2 tr23 , t
nd1d2

p

3 〉 (∗) or (∗∗)

where

µi =

(

I,

([ ri
nd1d2

m
2d2

− ℓi
nd1d2

]

,

[ 1
d1

0

− m
d1d2

1
sd2

]))

(i = 1, 2).
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Here (∗): r1 6≡ r2 (mod d2) or ℓ1 6≡ (ℓ2 +
m(r1−r2)

d2
) (mod d1).

(∗∗): m 6= 0, d1 6= d2, d1 ∤ (ℓ1 + r2), or d1 ∤ (r1 + ℓ2).
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